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Abstract. In an n (= 2)-dimensional nonflat complex space form fMn(c)(= CP n(c)

or CHn(c)), we classify real hypersurfaces M2n−1 which are contact with respect to

the almost contact metric structure (φ, ξ, η, g) induced from the Kähler structure J

and the standard metric g of the ambient space fMn(c). Our theorems show that this

contact manifold M2n−1 is congruent to a homogeneous real hypersurface of fMn(c).
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1. Introduction

Let M̃n(c) be a complex n-dimensional complete and simply connected
Kähler manifold of constant holomorphic sectional curvature c (6= 0). That
is, M̃n(c) is holomorphically isometric to either an n-dimensional complex
projective space CPn(c) of constant holomorphic sectional curvature c or an
n-dimensional complex hyperbolic space CHn(c) of constant holomorphic
sectional curvature c according as c is positive or negative. It is well-known
that every real hypersurface M2n−1 of M̃n(c) admits an almost contact
metric structure (φ, ξ, η, g) induced from this ambient space. Making use of
such a structure, many geometers have studied real hypersurfaces in nonflat
complex space forms (cf. [6]). On the other hand, contact geometry has been
developed also by many geometers (cf. [2]). Contact manifolds, Sasakian
manifolds and Sasakian space forms are analogues to Hermitian manifolds,
Kähler manifolds and complex space forms, respectively.
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The aim of this paper is to bridge between submanifold theory and
contact geometry and show nice examples of contact manifolds from the
viewpoint of submanifold theory. We investigate real hypersurfaces in M̃n(c)
whose induced structure (φ, ξ, η, g) is a contact metric structure (Theorems
1 and 2). Our theorems show that every real hypersurface which is contact
in M̃n(c) is an orbit of some subgroup of the isometry group I(M̃n(c)) of the
ambient space M̃n(c).

2. Contact metric structures

Let M be an odd dimensional Riemannian manifold. A quartet
(φ, ξ, η, g) of a (1, 1)-tensor φ, a vector field ξ, a 1-form η and a Riemannian
metric g on M is called an almost contact metric structure if

φ2(X) = −X + η(X)ξ, η(ξ) = 1 and g(φX, φY ) = g(X, Y )− η(X)η(Y )

hold for all vectors X, Y ∈ TM . It is known that these conditions show
that φξ = 0 and η(φ(X)) = 0. We say an odd dimensional manifold to
be an almost contact metric manifold if it admits an almost contact metric
structure. When the exterior differentiation dη of the contact form η on
M which is given by dη(X, Y ) := (1/2){X(η(Y )) − Y (η(X)) − η([X, Y ])}
satisfies

dη(X, Y ) = g(X, φY ) for all X, Y ∈ TM,

the structure (φ, ξ, η, g) is said to be a contact metric structure on M . An
almost contact metric manifold M is said to be a Sasakian manifold if the
structure tensor φ of M satisfies the equation (∇Xφ)Y = g(X, Y )ξ−η(Y )X
with the Riemannian connection ∇ on M associated with g for all X, Y ∈
TM . By easy computation we find that the structure of a Sasakian manifold
is a contact metric structure. For a unit tangent vector u ∈ TM orthogonal
to ξ of a Sasakian manifold M we call K(u, φu) := g(R(u, φu)φu, u) its φ-
sectional curvature, where R is the curvature tensor of M . A Sasakian space
form is a Sasakian manifold whose φ-sectional curvatures do not depend on
the choice of unit tangent vectors orthogonal to ξ. For more detail on contact
geometry see [2] for example.
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3. Standard real hypersurfaces in a complex space form

In order to explain our results we briefly recall some properties on stan-
dard real hypersurfaces in a nonflat complex space form. Let M2n−1 be a
real hypersurface in an n-dimensional Kähler manifold M̃ with Riemannian
metric g and Kähler structure J . The Riemannian connections ∇̃ of M̃ and
∇ of M are related by the following formulas of Gauss and Weingarten with
a unit normal local vector field N :

∇̃XY = ∇XY + g(AX, Y )N and ∇̃XN = −AX (3.1)

for arbitrary vector fields X and Y on M , where g is the Riemannian metric
of M induced from the ambient space M̃ and A is the shape operator of M in
M̃ associated with N . On M an almost contact metric structure (φ, ξ, η, g)
associated with N is canonically induced from the Kähler structure of the
ambient space M̃ . They are defined by

g(φX, Y ) = g(JX, Y ), ξ = −JN and η(X) = g(ξ,X) = g(JX,N ).

By the formulas of Gauss and Weingarten and by the property ∇̃J = 0 we
have

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ and ∇Xξ = φAX. (3.2)

We now restrict ourselves on real hypersurfaces M in an n (= 2)-
dimensional nonflat complex space form M̃n(c) which is either CPn(c) or
CHn(c). We call eigenvectors and eigenvalues of the shape operator A prin-
cipal curvature vectors and principal curvatures of M in M̃n(c), respectively.
We usually say that M is a Hopf hypersurface if its characteristic vector ξ

is a principal curvature vector at each point of M in the ambient space
M̃n(c). It is known that every tube of sufficiently small constant radius
around each Kähler submanifold of a nonflat complex space form M̃n(c) is
a Hopf hypersurface. The following properties on principal curvatures of a
Hopf hypersurface M in M̃n(c) are well-known.

Lemma 1
(1) The principal curvature δ associated with ξ is locally constant.
(2) If a vector v ∈ TM orthogonal to ξ satisfies Av = λv, then (2λ − δ)

Aφv = (δλ + (c/2))φv holds. In particular, when c > 0, we have Aφv =
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(
δλ + (c/2))/(2λ− δ)

)
φv.

Remark 1 When c < 0, in Lemma 1 (2) there exists a case that both
of equations 2λ − δ = 0 and δλ + (c/2) = 0 hold. In fact, for example, we
take a horoshere in CHn(c). It is known that this real hypersurface has two
distinct constant principal curvatures either λ =

√
|c|/2, δ =

√
|c| or λ =

−
√
|c|/2, δ = −

√
|c|. Hence, when c < 0, we must consider two cases

2λ− δ = 0 and 2λ− δ 6= 0.

Hopf hypersurfaces in a nonflat complex space form all of whose prin-
cipal curvatures are constant are completely classified. In CPn(c) (n = 2),
such a Hopf hypersurface is locally congruent to one of the following (cf.
[6]):

(A1) A geodesic sphere of radius r, where 0 < r < π/
√

c;
(A2) A tube of radius r around totally geodesic CP `(c) (1 5 ` 5 n − 2),

where 0 < r < π/
√

c;
(B) A tube of radius r around complex hyperquadric CQn−1, where 0 <

r < π/(2
√

c);
(C) A tube of radius r around CP 1(c) × CP (n−1)/2(c), where 0 < r <

π/(2
√

c) and n (= 5) is odd;
(D) A tube of radius r around complex Grassmann CG2,5, where 0 < r <

π/(2
√

c) and n = 9;
(E) A tube of radius r around Hermitian symmetric space SO(10)/U(5),

where 0 < r < π/(2
√

c) and n = 15.

These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D)
and (E). The numbers of distinct principal curvatures of these real hyper-
surfaces are 2, 3, 3, 5, 5, 5, respectively. These principal curvatures are given
as follows:

(A1) (A2) (B) (C, D, E)

λ1

√
c

2 cot
(√c

2 r
) √

c
2 cot

(√c
2 r

) √
c

2 cot
(√c

2 r − π
4

) √
c

2 cot
(√c

2 r − π
4

)

λ2 — −
√

c
2 tan

(√c
2 r

) √
c

2 cot
(√c

2 r + π
4

) √
c

2 cot
(√c

2 r + π
4

)

λ3 — — —
√

c
2 cot

(√c
2 r

)

λ4 — — — −
√

c
2 tan

(√c
2 r

)

δ
√

c cot(
√

c r)
√

c cot(
√

c r)
√

c cot(
√

c r)
√

c cot(
√

c r)
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In CHn(c) (n = 2), a Hopf hypersurface all of whose principal curvatures
are constant is locally congruent to one of the following (c.f. [6]):

(A0) A horosphere;
(A1,0) A geodesic sphere of radius r (0 < r < ∞);
(A1,1) A tube of radius r around totally geodesic CHn−1(c), where 0 < r <

∞;
(A2) A tube of radius r around totally geodesic CH`(c) (1 5 ` 5 n− 2),

where 0 < r < ∞;
(B) A tube of radius r around totally real totally geodesic RHn(c/4),

where 0 < r < ∞.

These real hypersurfaces are said to be of types (A0), (A1,0), (A1,1), (A2)
and (B). Summing up real hypersurfaces of types (A1,0) and (A1,1), we
call them hypersurfaces of type (A1). The numbers of distinct princi-
pal curvatures of real hypersurfaces of types (A0), (A1,0), (A1,1), (A2)
are 2, 2, 2, 3, respectively. A real hypersurface of type (B) with radius
r = (1/

√
|c| ) loge(2 +

√
3 ) has 2 distinct constant principal curvatures

λ1 = δ =
√

3|c| /2 and λ2 =
√
|c|/(2

√
3 ). Except this, a real hypersur-

face of type (B) has 3 distinct constant principal curvatures. The principal
curvatures of these real hypersurfaces are given as follows:

(A0) (A1,0) (A1,1) (A2) (B)

λ1

√
|c|
2

√
|c|
2

coth
`√|c|

2
r
´ √|c|

2
tanh

`√|c|
2

r
´ √|c|

2
coth

`√|c|
2

r
´ √|c|

2
coth

`√|c|
2

r
´

λ2 — — —

√
|c|
2

tanh
`√|c|

2
r
´ √|c|

2
tanh

`√|c|
2

r
´

δ
p
|c|
p
|c| coth(

p
|c|r)

p
|c| coth(

p
|c|r)

p
|c| coth(

p
|c|r)

p
|c| tanh(

p
|c|r)

We denote by V 0
λi

the restricted principal foliation associated with λi,
that is V 0

λi
= {v ∈ TM |Av = λiv, v ⊥ ξ}. Then we have the following.

(1) For a hypersurface of type (A), that is of type either (A0), (A1) or (A2)
in M̃n(c), the restriced foliation V 0

λi
is invariant under the action of φ.

In particular, Aφ = φA holds.
(2) For a hypersurface of type (B) in M̃n(c), the restriced foliations satisfy

φ(V 0
λ1

) = V 0
λ2

, φ(V 0
λ2

) = V 0
λ1

.

Real hypersurfaces in a nonflat complex space form M̃n(c) listed above are
said to be standard real hypersurfaces. It is well-known that they are homo-
geneous, which means that each of them is an orbit of some subgroup of the
full isometry group I(M̃n(c)) of M̃n(c) (see [6]).
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For each standard real hypersurface M which is not of type (B) with
radius r = (1/

√
|c| ) loge(2 +

√
3 ), we see that the restricted principal folia-

tion V 0
µ coincides with the principal foliation Vµ := {v ∈ TM |Av = µv} for

every principal curvature µ of M .

4. Hypersurfaces admitting canonical contact metric structures

We use the following lemma which characterizes real hypersurfaces of
types (A0), (A1) and (B) by an relationship between their shape operators
denoted by A and their structure tensors denoted by φ.

Lemma 2 Let M be a connected real hypersurface of a nonflat complex
space form M̃n(c) (n = 2). Then M is of type either (A0), (A1) or (B) if
and only if φA + Aφ = kφ holds for some nonzero constant k.

Proof. We shall prove the “only if” part. When M is of type either (A0)
or (A1), its shape operator satisfies φA = Aφ and Aφ = αφ with some
constant α. That is, φ preserves subbundles of principal curvature vectors
and all vectors orthogonal to ξ are principal. So this real hypersurface M

satisfies the relationship. When M is of type (B), the decomposition TM =
{ξ}R ⊕ V 0

λ1
⊕ V 0

λ2
into subbundles of principal curvature vectors satisfies

φV 0
λ1

= V 0
λ2

and φV 0
λ2

= V 0
λ1

. Thus we see that (φA + Aφ)X = (λ1 + λ2)φX

for each X ∈ V 0
λi

(i = 1, 2). Combining (φA + Aφ)ξ = 0 = (λ1 + λ2)φξ, we
find this real hypersurface also satisfies the relationship.

We now prove the “if ” part. Suppose that φA + Aφ = kφ holds with
some constant k. We then have φAξ = 0, which shows that ξ is principal. We
denote by δ its principal curvature. We study principal curvatures associated
with principal curvature vectors orthogonal to ξ. When such a principal
curvature λ satisfies 2λ − δ 6= 0 at some point of M , the assumption and
Lemma 1 (2) show that it satisfies the quadratic equation 4λ2 − 4kλ + c +
2kδ = 0 on the set {p ∈ M | 2λ(p) 6= δ}. Since k and δ are constant, this
implies that λ is also constant on this set. This also shows that if 2λ−δ = 0
at some point of M then the continuous function λ satisfies λ ≡ δ/2 on
some sufficiently small neighborhood of this point. Thus we can see that
our real hypersurface is locally congruent to a Hopf hypersurface with at
most 4 distinct constant principal curvatures. In view of the list of principal
curvatures we find M is of type either (A0), (A1), (A2) or (B). But real
hypersurfaces of type (A2) do not satisfy the condition φA + Aφ = kφ.
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Therefore we can conclude that M is of type either (A0), (A1) or (B). ¤

We now investigate real hypersurfaces which are contact in a nonflat
complex space form. We here clarify the meaning of this condition. On
an orientable connected real hypersurface M in a Kähler manifold M̃ , an
almost contact metric structure (φ, ξ, η, g) associated with a unit normal N
is canonically induced from Kähler structure of the ambient space. Clearly
(φ,−ξ,−η, g) is also an almost contact metric structure on M which is asso-
ciated with a unit nomal −N . We call a real hypersurface M contact if one
of these induced structures on M is a contact metric structure. In another
word, if we fix a unit normal N of M , this real hypersurface is contact if
and only if either dη(X, Y ) = g(X, φY ) holds for arbitrary X, Y ∈ TM or
dη(X, Y ) = −g(X, φY ) holds for arbitrary X, Y ∈ TM .

Theorem 1 Let M2n−1 (n = 2) be a connected real hypersurface of
CPn(c). If it is contact, then it is locally congruent to one of the following
homogeneous real hypersurfaces;

1) a geodesic sphere G(r) of radius r = (2/
√

c) tan−1(
√

c/2), 0 < r < π/
√

c ,
2) a tube of radius r = (2/

√
c) tan−1(

√
c + 4 − √

c )/2 around complex
hyperquadric CQn−1, 0 < r < π/(2

√
c ).

Theorem 2 Let M2n−1 (n = 2) be a connected real hypersurface of
CHn(c). If it is contact, then it is locally congruent to one of the following
homogeneous real hypersurfaces;

1) a horosphere in CHn(c) (c = −4),
2) either a geodesic sphere G(r) of radius r = (1/

√
|c|){ log(2 +

√
|c| ) −

log(2−
√
|c| )} or a tube of radius r =

(
1/(2

√
|c|)){ log(2+

√
|c| )−log(2−√

|c| )} around totally real totally geodesic RHn(c/4) (−4 < c < 0),
3) a tube of radius r = (1/

√
|c|){ log(

√
|c| + 2) − log(

√
|c| − 2)

}
around

totally geodesic CHn−1(c) (c < −4).

Proof of Theorem 1. Since we have ∇Xξ = φAX (see the second equality
in (3.2)), we find that the relation dη(X, Y ) = ±g(X, φY ) for arbitrary
X, Y ∈ TM means

X(g(ξ, Y ))− Y (g(ξ, X))− g(∇XY −∇Y X, ξ)∓ 2g(X, φY ) = 0,

so that
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0 = g(φAX, Y )− g(φAY, X)∓ 2g(X, φY ) = g
(
(φA + Aφ± 2φ)X, Y

)
.

This yields that a real hypersurface M in CPn(c) is contact if and only if
the following holds:

φA + Aφ = ∓2φ. (4.1)

Hence, Lemma 2 tells us that our real hypersurface M is of type either (A1)
or (B).

When M is of type (A1), as all nonzero vectors orthogonal to ξ are
principal associated with the principal curvature (

√
c/2) cot(

√
c r/2), the

relation (4.1) turns to cot(
√

c r/2) = ∓2/
√

c (0 < r < π/
√

c). Thus we find
that only the positive sign holds and obtain r = (2/

√
c) tan−1(

√
c/2).

When M is of type (B), along the same lines as in the proof of Lemma 2
we find the relation (4.1) turns to λ1 +λ2 = ∓2 with its principal curvatures
λ1 = (

√
c/2) cot(

√
c r/2 − π/4) and λ2 = (

√
c/2) cot(

√
c r/2 + π/4). Since

0 < r < π/(2
√

c ), we have λ1 < −√c /2 and 0 < λ2 <
√

c /2. We therefore
find that only the negative sign holds. As λ1 + λ2 = −2 is equivalent to the
equality

tan(
√

c r/2) + 1
tan(

√
c r/2)− 1

− tan(
√

c r/2)− 1
tan(

√
c r/2) + 1

= − 4√
c

,

we obtain tan(
√

c r/2) = (
√

c + 4 −√c )/2 because 0 < r < π/(2
√

c ). We
hence get the conclusion. ¤

Proof of Theorem 2. By the same discussion as in the proof of Theorem
1, we have φA + Aφ = ∓2φ, hence M is of type either (A0), (A1) or (B).

When M is of type (A0), we find the relation turns to
√
|c| = ∓2.

Hence we find only the positive sign holds and c = −4. When M is of type
(A1,0), we find the relation turns to coth(

√
|c| r/2) = ∓2/

√
|c| . Hence we

find only the positive sign holds and −4 < c < 0. Solving this, we obtain
r = (1/

√
|c|){ log(2 +

√
|c| ) − log(2 −

√
|c| )}. When M is of type (A1,1),

we know that the relation turns to tanh(
√
|c| r/2) = ∓2/

√
|c| . Hence we

see that only the positive sign holds and c < −4. Solving this, we obtain
r = (1/

√
|c|){log(

√
|c|+ 2)− log(

√
|c| − 2)

}
.

When M is of type (B), we find the relation (4.1) turns to λ1 +
λ2 = ∓2 with its principal curvatures λ1 = (

√
|c|/2) coth(

√
|c| r/2) and
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λ2 = (
√
|c|/2) tanh(

√
|c| r/2). Hence we find only the positive sign holds.

Rewritng the relation, we have

exp(
√
|c| r) + 1

exp(
√
|c| r)− 1

+
exp(

√
|c| r)− 1

exp(
√
|c| r) + 1

=
4√
|c| ,

we therefore obtain −4 < c < 0 and r =
(
1/(2

√
|c|)){ log(2+

√
|c| )−log(2−√

|c| )}. ¤

As we mentioned before, on an orientable connected real hypersurface
M in a Kähler manifold M̃ , if we fix its unit normal N , two almost contact
metric structures are canonically induced. We call M Sasakian if it is a
Sasakian manifold with respect to one of them. As an immediate conse-
quence of Theorems 1 and 2 we obtain the following result which was shown
in [1].

Corollary 1 Let M2n−1 (n = 2) be a connected real hypersurface in a
nonflat complex space form M̃n(c). Then the following three conditions are
mutually equivalent to each other :

(1) It is Sasakian manifold ;
(2) It is a Sasakian space form of constant φ-sectional curvature c + 1;
(3) It is locally congruent to one of the following homogeneous real hyper-

surfaces corresponding to c;
i) a geodesic sphere G((2/

√
c) tan−1(

√
c/2)) when c > 0,

ii) a geodesic sphere G((1/
√
|c|){log(2+

√
|c| )− log(2−

√
|c| )}) when

−4 < c < 0,
iii) a horosphere when c = −4,
iv) a tube of radius r = (1/

√
|c|){log(

√
|c|+2)− log(

√
|c|−2)} around

totally geodesic CHn−1(c) when c < −4.

A real hypersurface M in a nonflat complex space form M̃n(c) (n = 2) is
called totally η-umbilic if its shape operator A is of the form A = αI +βη⊗ξ

for some smooth functions α and β on M . This definition is equivalent to
saying that Au = αu for each vector u ∈ TM orthogonal to the characteristic
vector ξ of M with some smooth function α on M . We remark that this
function α is automatically locally constant on M . It is known that a totally
η-umbilic hypersurface in a nonflat complex space form M̃n(c) (n = 2) is
locally congruent to a homogeneous real hypersurface of type either (A0)
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or (A1). We hence have the following characterization of real hypersurfaces
listed in Corollary 1.

Corollary 2 ([1]) A connected real hypersurface in a nonflat complex space
form M̃n(c) is Sasakian if and only if it is totally η-umbilic and its shape
operator is of the form A = −I + (c/4)η ⊗ ξ.

In view of the proof of Theorem 1, we find the following by use of Lemma
2.

Proposition 1 A connected real hypersurface M2n−1 (n = 2) in a non-
flat complex space form M̃n(c) satisfies dη(X, Y ) = kg(X, φY ) with some
constant k for arbitrary X, Y ∈ TM if and only if it is locally congruent to
a homogeneous real hypersurface of type either (A0), (A1) or (B).

We shall characterize contact hypersurfaces M2n−1 in a nonflat com-
plex space form M̃n(c) by investigating geometric properties of these real
hypersurfaces. On a Riemannian manifold N with Riemannian connection
∇, a real smooth curve γ = γ(s) parametrized by its arclenth s is called a
circle if there exist a nonnegative constant k and a field Ys of unit vectors
along γ satisfying the differential equations ∇γ̇ γ̇ = kYs, ∇γ̇Ys = −kγ̇. The
constant k is called the curvature of γ. Clearly, a circle of null curvature is
a geodesic. It follows from Corollary 2 that

Lemma 3 Let M2n−1 (n = 2) be a Sasakian hypersurface of a nonflat
complex space form M̃n(c). Then every geodesic γ whose initial vector γ̇(0)
is orthogonal to the characteristic vector ξγ(0) on M is mapped to a circle
of the same curvature 1 in the ambient space M̃n(c) through the inclusion.

Considering the converse of Lemma 3, we have

Proposition 2 ([1], [5]) A connected real hypersurface M2n−1 (n = 2)
in a nonflat complex space form M̃n(c) is Sasakian if and only if at each
fixed point p of M there exist such orthonormal vectors v1, v2, . . . , v2n−2

orthogonal to ξp that all geodesics of M through p in the direction vi + vj

(1 5 i 5 j 5 2n−2) are mapped to circles of the same curvature 1 in M̃n(c).

We next study geometric properties of real hypersurfaces which are con-
tact but not Sasakian in a nonflat complex space form M̃n(c) with the aid
of the following (see [3], [4]):
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Lemma 4 Let M2n−1 (n = 2) be a connected real hypersurface of a nonflat
complex space form M̃n(c). Then the following two conditions are mutually
equivalent.

1) M is of type (B).
2) The holomorphic distribution T 0M = {X ∈ TM |X ⊥ ξ} of M is decom-

posed into the direct sum of restricted principal foliations V 0
λi

= {X ∈
T 0M |AX = λiX}. Moreover, every foliation V 0

λi
is integrable and each

of its leaves is a totally geodesic submanifold of the real hypersurface M .

The following proposition follows from Theorems 1, 2 and Lemma 4.

Proposition 3 A connected real hypersurface M2n−1 (n = 2) of a nonflat
complex space form M̃n(c) is contact but not Sasakian if and only if M

satisfies the following two conditions.

i) The holomorphic distribution T 0M = {X ∈ TM |X ⊥ ξ} of M is decom-
posed into the direct sum of restricted principal foliations V 0

λi
= {X ∈

T 0M |AX = λiX}. Moreover, every foliation V 0
λi

is integrable and each
of its leaves is a totally geodesic submanifold of the real hypersurface M .

ii) There exists an integral curve of ξ on M which is mapped to a circle of
positive curvature |c|/2 in the ambient space M̃n(c).

Proof. By virtue of Lemma 4 we only need to show that a homogeneous real
hypersurface M of type (B) is contact if and only if M satisfies Condition ii).
When c > 0, our real hypersurface M has three distinct constant principal
curvatures

λ1 =
√

c

2
cot

(√
c

2
r − π

4

)
, λ2 =

√
c

2
cot

(√
c

2
r +

π

4

)
, δ =

√
c cot(

√
c r).

The discussion in the proof of Theorem 1 tells us that M is contact if and
only if λ1 + λ2 = −2. On the other hand, we have

λ1 + λ2 =
√

c

2
cot

(√
c

2
r − π

4

)
−
√

c

2
tan

(√
c

2
r − π

4

)

=
√

c cot
(√

c r − π

2

)

= −√c tan(
√

c r).
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We hence find that the real hypersurface M is contact if and only if M

satisfies Aξ = (c/2)ξ (i.e., δ = c/2). Note that in this case every integral
curve of ξ, considered as a curve in the ambient space CPn(c), is a circle of
curvature c/2 (see (3.1) and the second equation in (3.2)). This, together
with the constancy of the principal curvature δ, implies that a homogeneous
real hypersurface M of type (B) is contact if and only if M satisfies Condition
ii).

When c < 0, we have

λ1 + λ2 =

√
|c|
2

{
coth

(√
|c|
2

r

)
+ tanh

(√
|c|
2

r

)}
=

√
|c| coth

(√|c| r).

By the same discussion as in the case of c > 0, we also obtain the desired
conclusion. ¤

At the end of this paper we pose the following open problem:

Problem Find a geometric condition from the viewpoint of submanifold
theory which characterizes all contact hypersurfaces in a nonflat complex
space form M̃n(c).
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