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Abstract. Our aim in this paper is to deal with a norm version of Hardy’s inequality

for Orlicz-Sobolev functions with |∇u| ∈ Lp(·) log Lp(·)q(·)(Ω) for an open set Ω ⊂
Rn. Here p(·) and q(·) are variable exponents satisfying log-Hölder and loglog-Hölder

conditions, respectively. We are also concerned with the case when p attains the value

1 in some parts of the domain is included in the results.
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1. Introduction and statement of results

In recent years, the generalized Lebesgue spaces have attracted more
and more attention, in connection with the study of elasticity, fluid mechan-
ics and differential equations with p(·)-growth; see for example Kováčik-
Rákosńık [17], Musielak [24], Orlicz [25] and Růžička [26].

Let Rn denote the n-dimensional Euclidean space. In this paper, fol-
lowing Cruz-Uribe and Fiorenza [1], we consider variable exponents p(·) and
q(·) are continuous functions on Rn satisfying:

(p1) 1 ≤ p− = infx∈Rn p(x) ≤ supx∈Rn p(x) = p+ < ∞;

(p2) |p(x)− p(y)| ≤ Clog

log(e + 1/|x− y|) whenever x ∈ Rn and y ∈ Rn;

(p3) |p(x)− p(y)| ≤ Clog

log(e + |x|) whenever |y| ≥ |x|/2;

(q1) −∞ < q− = infx∈Rn q(x) ≤ supx∈Rn q(x) = q+ < ∞;

(q2) |q(x) − q(y)| ≤ Clog log

log(e + log(e + 1/|x− y|)) whenever x ∈ Rn and

y ∈ Rn.
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Condition (p3) implies that p∞ = lim|x|→∞ p(x) exists and

|p(x)− p∞| ≤ Clog

log(e + |x|) for all x ∈ Rn. (1.1)

Set

Φp(·),q(·)(x, t) =
(
t(log(c0 + t))q(x)

)p(x);

here, we assume the existence of c0 > e such that

(Φ1) Φp(·),q(·)(x, ·) is convex on [0,∞) for every x ∈ Rn.

We note by a computation of the second derivative of Φ(x, ·) that if there is
a positive constant C0 such that

C0(p(x)− 1) + p(x)q(x) ≥ 0, (1.2)

then condition (Φ1) holds. For example, if p− > 1, then (1.2) is satisfied
with C0 ≥ −p−q−/(p−−1); if p− = 1 and q− ≥ 0, then (1.2) is also satisfied
with every C0 ≥ 0. For later use it is convenient to see from (Φ1) that

(Φ2) t−1Φp(·),q(·)(x, t) is nondecreasing on (0,∞) for fixed x ∈ Rn.

Let Ω be an open set in Rn. Define the Φp(·),q(·)(Ω) norm by

‖f‖Φp(·),q(·)(Ω) = inf
{

λ > 0 :
∫

Ω

Φp(·),q(·)

(
x,
|f(x)|

λ

)
dx ≤ 1

}

and denote by Φp(·),q(·)(Ω) the space of all measurable functions f on Ω with
‖f‖Φp(·),q(·)(Ω) < ∞.

We define the variable exponent Sobolev–Orlicz space by

W 1,Φp(·),q(·)(Ω) =
{
u ∈ Φp(·),q(·)(Ω) : |∇u| ∈ Φp(·),q(·)(Ω)

}
.

The norm ‖u‖1,Φp(·),q(·)(Ω) = ‖u‖Φp(·),q(·)(Ω) + ‖|∇u|‖Φp(·),q(·)(Ω) makes
W 1,Φp(·),q(·)(Ω) a Banach space. Further we denote the closure of C∞0 (Ω)
in W 1,Φp(·),q(·)(Ω) by W

1,Φp(·),q(·)
0 (Ω), which is extended to be 0 outside Ω.

In case q ≡ 0, Φp(·),q(·)(Ω) and W 1,Φp(·),q(·)(Ω) are denote by Lp(·)(Ω) and
W 1,p(·)(Ω) for simplicity. For fundamental properties of these spaces, see,
for example, Kováčik and Rákosńık [17].
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We denote by B(x, r) the open ball centered at x of radius r. For a
measurable set E, we denote by |E| the Lebesgue measure of E.

Recently Hästö [11, Theorem 3.2] proved the following:

Theorem A Let Ω 6= Rn be an open set. Suppose 1 < p− ≤ p+ < ∞.
Assume that Ω satisfies the measure density condition, that is, there exists
a constant k > 0 such that

|B(z, r) ∩ Ωc| ≥ k|B(z, r)| (1.3)

for every z ∈ ∂Ω and r > 0 (see [8]). Then there exist positive constants C

and b0 such that the inequality

‖δb−1u‖Lp(·)(Ω) ≤ C‖δb|∇u|‖Lp(·)(Ω)

holds for all u ∈ W
1,p(·)
0 (Ω) and all 0 ≤ b < b0, where δ(x) = dist(x, ∂Ω)

and the constants C, b0 depend on p+, p−, n, k.

This gives an Harjulehto, Hästö and Koskenoja [10, Theorem 3.3] in the
case when Ω is bounded. In the constant exponent case, Theorem A is given
by HajÃlasz [7, Theorem 1]; for related results, see also Edmunds and Evans
[4], Kufner and L. E. Persson [18], Wannebo [30], Kinnunen and Martio [15].

Our aim in this paper is to give Hardy’s inequality for W
1,Φp(·),q(·)
0 (Ω),

as an extension of Theorem A. For 0 ≤ a ≤ 1, set

1/p]
a(x) = 1/p(x)− a/n

and

Φp]
a(·),q(·)(x, t) = (t(log(c0 + t))q(x))p]

a(x).

Note that

Φp]
a(·),q(·)(x, t) =

(
Φp(·),q(·)(x, t)

)p]
a(x)/p(x)

and Φp]
a(·),q(·) also satisfies (Φ1), since p]

a(x)/p(x) ≥ 1.

Theorem 1.1 Let Ω 6= Rn be an open set satisfying (1.3). Suppose 1 <

p− ≤ p+ < ∞, 0 < A ≤ 1 and 0 < A < n/p+. Then there exist C > 0 and
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0 < b0 < 1 depending on A such that

‖δa+b−1u‖Φ
p

]
a(·),q(·)(Ω) ≤ C‖δb|∇u|‖Φp(·),q(·)(Ω)

for all u ∈ W
1,Φp(·),q(·)
0 (Ω), 0 ≤ a ≤ A and 0 ≤ b ≤ b0.

This theorem extends Theorem A given by Hästö [11], whose crucial idea
is a partition norm on Lp(·)(Rn). We give a straightforward and simple proof
of Theorem 1.1 in a quite different manner. In fact, we apply Poincaré’s
inequality and the boundedness of maximal functions, following the idea by
Hedberg [13].

If p− > n, then we do not need the measure density condition to derive
Poincaré’s inequality. In fact we will show the following result, which gives
an extension of Harjulehto, Hästö and Koskenoja [10, Theorem 3.5].

Theorem 1.2 Let Ω 6= Rn be an open set. Suppose n < p− ≤ p+ < ∞
and 0 < A < n/p+. Then there exist C > 0 and 0 < b0 < 1 depending on A

such that

‖δa+b−1u‖Φ
p

]
a(·),q(·)(Ω) ≤ C‖δb|∇u|‖Φp(·),q(·)(Ω)

for all u ∈ W
1,Φp(·),q(·)
0 (Ω), 0 ≤ a ≤ A and 0 ≤ b ≤ b0.

Finally we are concerned with the case p− ≥ 1:

Theorem 1.3 Let Ω 6= Rn be an open set satisfying (1.3). 0 < A <

min{1, n/p+} and γ > 1. Let

L(t) = (log(c0 + t + 1/t))−γ .

Then there exists a constant C > 0 depending on A and γ such that
∫

Ω

Φp]
a(·),q(·)(x, δ(x)a−1|u(x)|)L(δ(x)a−1|u(x)|)dx ≤ C

for all u ∈ W
1,Φp(·),q(·)
0 (Ω) with ‖|∇u|‖Φp(·),q(·)(Ω) ≤ 1 and 0 ≤ a ≤ A.

Theorem 1.3 is not always valid when γ = 1 (see Remark 4.3). The
case a = 1, that is, Sobolev inequality for W

1,Φp(·),q(·)
0 (Ω), is given in [12,

Theorem 1.1], which was an extension of the results by Harjulehto and Hästö
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[9, Proposition 4.2(1)] and Hästö [11, Theorem 3.4].
For further related results, see Samko [27], [28], Kokilashvili and Samko

[16], Diening and Samko [3], Humberto and Samko[14] and Futamura,
Mizuta and Shimomura [6].

2. Proof of Theorem 1.1.

Throughout this paper, let C denote various constants independent of
the variables in question and C(a, b, . . . ) be a constant that depends on
a, b, . . . .

Denote by W 1,1
loc (Rn) the class of all functions u such that ϕu ∈

W 1,1(Rn) for every ϕ ∈ C∞0 (Rn).
First let us begin with the following lemma (see the proof of HajÃlasz [7,

Proposition 1]).

Lemma 2.1 Let Ω 6= Rn be an open set satisfying (1.3). Then there exists
a constant C = C(n, k) > 0 such that

|u(x)| ≤ C

∫

B(x,2δ(x))

|x− y|1−n|∇u(y)|dy

for almost every x ∈ Ω, whenever u ∈ W 1,1
loc (Rn) and u = 0 outside Ω.

Proof. Let u ∈ W 1,1
loc (Rn) and u = 0 outside Ω. By (1.3), we obtain

|u(x)| = 1
|B(x, 2δ(x)) ∩ Ωc|

∫

B(x,2δ(x))∩Ωc

|u(x)− u(y)|dy

≤ C

|B(x, 2δ(x))|
∫

B(x,2δ(x))

|u(x)− u(y)|dy

≤ C

∫

B(x,2δ(x))

|x− y|1−n|∇u(y)|dy

for almost every x ∈ Ω. ¤

For a locally integrable function f on Rn, we consider the maximal
function

Mf(x) = sup
r>0

1
|B(x, r)|

∫

B(x,r)

|f(y)|dy.
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We know the following result concerning the boundedness of maximal func-
tions in Φp(·),q(·)(Ω).

Lemma 2.2 ([5, Proposition 2.2]) Suppose p− > 1. Then there exists a
constant C > 0 such that

‖Mf‖Φp(·),q(·)(Rn) ≤ C‖f‖Φp(·),q(·)(Rn)

for all f ∈ Φp(·),q(·)(Rn).

Lemma 2.3 Let Ω 6= Rn be an open set satisfying (1.3). Suppose 1 <

p− ≤ p+ < ∞. Then there exist C > 0 and 0 < b0 < 1 such that

‖δb−1u‖Φp(·),q(·)(Ω) ≤ C‖δb|∇u|‖Φp(·),q(·)(Ω)

for all u ∈ W
1,Φp(·),q(·)
0 (Ω) and 0 ≤ b ≤ b0.

Proof. Since Ω 6= Rn, without loss of generality, we may assume that the
origin is on the boundary ∂Ω, that is,

0 ∈ ∂Ω. (2.1)

We first treat u ∈ C∞0 (Ω). Applying Lemma 2.1 to δbu, we have

δ(x)b|u(x)| ≤ C

∫

B(x,2δ(x))

|x− y|1−n
{
bδ(y)b−1|u(y)|+ δ(y)b|∇u(y)|}dy,

(2.2)

so that

δ(x)b−1|u(x)| ≤ CbM(δb−1|u|)(x) + CM(δb|∇u|)(x).

In view of Lemma 2.2, we find

‖δb−1u‖Φp(·),q(·)(Ω) ≤ Cb‖δb−1u‖Φp(·),q(·)(Ω) + C‖δb|∇u|‖Φp(·),q(·)(Ω),

which gives

(1− Cb)‖δb−1u‖Φp(·),q(·)(Ω) ≤ C‖δb|∇u|‖Φp(·),q(·)(Ω).

Now it suffices to take b0 such that 1− Cb0 > 0.
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We next treat u ∈ W
1,Φp(·),q(·)
0 (Ω) with compact support. Then we can

find a sequence ϕj ∈ C∞0 (Ω) such that ϕj → u in W
1,Φp(·),q(·)
0 (Ω). Suppose

u = 0 outside B(0, R). Then we may assume that ϕj = 0 outside B(0, 2R).
By the above discussions we have

‖δb−1ϕj‖Φp(·),q(·)(Ω) ≤ C‖δb|∇ϕj |‖Φp(·),q(·)(Ω).

Since ‖δb|∇(ϕj − u)|‖Φp(·),q(·)(Ω) tends to zero as j →∞, we obtain

‖δb−1u‖Φp(·),q(·)(Ω) ≤ C‖δb|∇u|‖Φp(·),q(·)(Ω).

Finally we treat a general u ∈ W
1,Φp(·),q(·)
0 (Ω). For N > 1 we consider a

continuous function hN on [0,∞) and N∗ such that 0 ≤ hN ≤ 1 on [0,∞),
hN = 0 on [0, N ], hN = 0 on [N∗,∞], hN (t) ≤ t−1 for t ∈ [N, N∗] and

∫ N∗

N

hN (t)dt = 1;

the existence of N∗ is assured since
∫∞

N
t−1dt = ∞. Set

HN (x) = 1−
∫ |x|

0

hN (t)dt

for x ∈ Rn. Then we know as above that

‖δb−1(HNu)‖Φp(·),q(·)(Rn)

≤ C‖δb|∇(HNu)|‖Φp(·),q(·)(Rn)

≤ C‖δb|∇HN |u‖Φp(·),q(·)(Rn) + C‖δbHN |∇u|‖Φp(·),q(·)(Rn)

≤ C‖|x|b|∇HN |u‖Φp(·),q(·)(Rn) + C‖δb|∇u|‖Φp(·),q(·)(Rn).

Since |∇HN (x)| ≤ hN (|x|) ≤ |x|−1 for x ∈ Ω, ‖|x|b|∇HN |u‖Φp(·),q(·)(Rn)

tends to 0 as N →∞, so that

‖δb−1u‖Φp(·),q(·)(Rn) ≤ lim inf
N→∞

‖δb−1(HNu)‖Φp(·),q(·)(Rn)

≤ C‖δb|∇u|‖Φp(·),q(·)(Rn),
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which completes the proof. ¤

Note that

δ(x)a−1

∫

B(x,2δ(x))

|x− y|1−nf(y)dy

≤ 21−a

∫

B(x,2δ(x))

|x− y|a−nf(y)dy (2.3)

for x ∈ Ω, 0 ≤ a ≤ 1 and nonnegative measurable function f on Rn. To
give its estimate, we prepare the following result.

Lemma 2.4 Let 0 < A < n/p+. Then there exists a constant C > 0
depending on A such that

I ≡
∫

B(x,2|x|)\B(x,r)

|x− y|a−nf(y)dy ≤ Cra−n/p(x)(log(c0 + r−1))−q(x)

for all x ∈ Rn, r > 0, 0 ≤ a ≤ A and f ≥ 0 with ‖f‖Φp(·),q(·)(Rn) ≤ 1.

This follows from [12, Lemmas 3.1 and 3.2]. Actually, since the estimate
of the integral outside B(x, 2|x|) given in the proof of [12, Lemma 3.1] is not
needed here, we use [12, Lemma 3.1] if r is large, and both of [12, Lemmas
3.1 and 3.2] if r is small.

Next consider

J ≡ δ(x)a−1

∫

B(x,2δ(x))

|x− y|1−nf(y)dy

for x ∈ Ω and f ≥ 0. When a = 0, we find

J ≤ CMf(x).

Lemma 2.5 Let Ω 6= Rn be an open set. If 0 < A ≤ 1 and 0 < A < n/p+,
then there exists a constant C > 0 depending on A such that

J ≤ C{Mf(x)}1−ap(x)/n{log(c0 + Mf(x))}−ap(x)q(x)/n

for all x ∈ Ω, 0 ≤ a ≤ A and f ≥ 0 with ‖f‖Φp(·),q(·)(Ω) ≤ 1.

Proof. We have only to consider the case a > 0. Let f ≥ 0 with
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‖f‖Φp(·),q(·)(Ω) ≤ 1.
First suppose {Mf(x)}−p(x)/n{log(c0 + Mf(x))}−p(x)q(x)/n ≤ δ(x); we

set f = 0 outside Ω as before. For 0 < r < δ(x), we have by (2.1) and
Lemma 2.4

J ≤ C

{
δ(x)a−1rMf(x) +

∫

B(x,2δ(x))\B(x,r)

|x− y|a−nf(y)dy

}

≤ C
{
raMf(x) + ra−n/p(x)(log(c0 + 1/r))−q(x)

}
.

Now, letting r = {Mf(x)}−p(x)/n{log(c0 +Mf(x))}−p(x)q(x)/n (≤ δ(x)), we
have

J ≤ C{Mf(x)}1−ap(x)/n{log(c0 + Mf(x))}−ap(x)q(x)/n.

Next suppose {Mf(x)}−p(x)/n{log(c0 + Mf(x))}−p(x)q(x)/n > δ(x).
Then we have

J ≤ Cδ(x)aMf(x)

≤ C{Mf(x)}1−ap(x)/n{log(c0 + Mf(x))}−ap(x)q(x)/n,

which proves the case a > 0. ¤

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let u ∈ W
1,Φp(·),q(·)
0 (Ω) with ‖δb|∇u|‖Φp(·),q(·)(Ω) ≤

1. We have by (2.2)

δ(x)a+b−1|u(x)| ≤ Cδ(x)a−1

∫

B(x,2δ(x))

|x− y|1−nf(y)dy, (2.4)

where f(y) = bδ(y)b−1|u(y)|+δ(y)b|∇u(y)|. Here note from Lemma 2.3 that

‖f‖Φp(·),q(·)(Ω) ≤ C.

Let 0 < A ≤ 1, 0 < A < n/p+ and 0 ≤ a ≤ A. Then we obtain by Lemma
2.5

δ(x)a+b−1|u(x)| ≤ CMf(x)p(x)/p]
a(x)(log(c0 + Mf(x)))−ap(x)q(x)/n.
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By Lemmas 2.2 and 2.3, we have

‖δa+b−1u‖Φ
p

]
a(·),q(·)(Ω) ≤ C‖Mf‖Φp(·),q(·)(Ω) ≤ C‖f‖Φp(·),q(·)(Ω)

≤ Cb‖δb−1u‖Φp(·),q(·)(Ω) + C‖δb|∇u|‖Φp(·),q(·)(Ω)

≤ C‖δb|∇u|‖Φp(·),q(·)(Ω),

which proves the theorem. ¤

Remark 2.6 Let Ω be a bounded domain in Rn satisfying (1.3), n ≤ p− ≤
p+ < ∞ and 1 − 1/p− > q+. Then there exist C1, C2 > 0 and 0 < b0 < 1
such that

∫

Ω

exp
(
C1(δ(x)a+b−1u(x))p(x)/(p(x)−p(x)q(x)−1)

)
dx ≤ C2

for all u ∈ W
1,Φp(·),q(·)
0 (Ω) with ‖δb|∇u|‖Φp(·),q(·)(Ω) ≤ 1, n/p− ≤ a ≤ 1 and

0 ≤ b ≤ b0.

In fact, (2.4) gives

δ(x)a+b−1|u(x)| ≤ C

∫

B(x,2δ(x))

|x− y|a−nf(y)dy,

where f(y) = bδ(y)b−1|u(y)| + δ(y)b|∇u(y)| and n/p− ≤ a ≤ 1. As in the
proof of Theorem 1.1 and [22, Lemma 4.4], we obtain

δ(x)a+b−1|u(x)| ≤ C(log(c0 + Mf(x)))(p(x)−p(x)q(x)−1)/p(x),

so that

exp
(
(C−1δ(x)a+b−1|u(x)|)p(x)/(p(x)−p(x)q(x)−1)

) ≤ c0 + Mf(x).

By integration we establish the required inequality.

3. Proof of Theorem 1.2

For a proof of Theorem 1.2, we prepare the following lemma instead of
Lemma 2.3. We write f ∼ g if there exists a constant C so that C−1g ≤
f ≤ Cg.
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Lemma 3.1 Let Ω 6= Rn be an open set. Suppose n < p− ≤ p+ < ∞.
Then there exist C > 0 and 0 < b0 < 1 such that

‖δb−1u‖Φp(·),q(·)(Ω) ≤ C‖δb|∇u|‖Φp(·),q(·)(Ω)

for all u ∈ W
1,Φp(·),q(·)
0 (Ω) and 0 ≤ b ≤ b0.

Proof. Let u ∈ W
1,Φp(·),q(·)
0 (Ω). Suppose n < p− ≤ p+ < ∞. Since

u ∈ W 1,s
loc (Rn) with n < s < p−, u is (Hölder) continuous in Ω and

|u(x)| ≤ C

(
δ(x)s−n

∫

B(x,2δ(x))

|∇u(y)|sdy

)1/s

for every x ∈ Ω; for this, see also [7, Proposition 1], [15, (3.1)] and [23,
Theorem 1]. This implies that

[δ(x)−1|u(x)|]s ≤ Cδ(x)−n

∫

B(x,2δ(x))

|∇u(y)|sdy. (3.1)

Applying (3.1) to δbu as in Lemma 2.3, we have

[δ(x)b−1|u(x)|]s ≤ Cδ(x)−n

∫

B(x,2δ(x))

[
bδ(y)b−1|u(y)|+ δ(y)b|∇u(y)|]s

dy,

(3.2)

so that

[δ(x)b−1|u(x)|]s ≤ C
{
bsM([δb−1u]s)(x) + M([δb|∇u|]s)(x)

}
.

In view of Lemma 2.2, we find

‖[δb−1u]s‖Φp(·)/s,sq(·)(Ω)

≤ C
{
bs‖[δb−1u]s‖Φp(·)/s,sq(·)(Ω) + ‖[δb|∇u|]s‖Φp(·)/s,sq(·)(Ω)

}
,

which gives

(1− Cbs)‖[δb−1u]s‖Φp(·)/s,sq(·)(Ω) ≤ C‖[δb|∇u|]s‖Φp(·)/s,sq(·)(Ω).

Since ‖fs‖Φp(·)/s,sq(·)(Ω) ∼ ‖f‖Φp(·),q(·)(Ω), we obtain
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(1− Cbs)‖δb−1u‖Φp(·),q(·)(Ω) ≤ C‖δb|∇u|‖Φp(·),q(·)(Ω).

Now it suffices to take b0 such that 1− Cbs
0 > 0. ¤

Proof of Theorem 1.2. Let u ∈ W
1,Φp(·),q(·)
0 (Ω). Suppose n < s < p− ≤

p+ < ∞ and

‖δb|∇u|‖Φp(·),q(·)(Ω) ≤ 1.

For 0 ≤ a ≤ A < n/p+, we have by (3.2)

[δ(x)a+b−1|u(x)|]s ≤ Cδ(x)as−n

∫

B(x,2δ(x))

f(y)dy

≤ Cδ(x)as−As

∫

B(x,2δ(x))

|x− y|As−nf(y)dy,

where f = [bδ(y)b−1|u(y)|+ δ(y)b|∇u(y)|]s. Here note from Lemma 3.1 that

‖f‖Φp(·)/s,sq(·)(Ω) ≤ C.

Hence, as in the proof of Lemma 2.5 with a, p(x) and q(x) replaced by as,
p(x)/s and sq(x), respectively, we obtain

δ(x)a+b−1|u(x)| ≤ CMf(x)p(x)/(sp]
a(x))(log(c0 + Mf(x)))−ap(x)q(x)/n.

By Lemmas 2.2 and 3.1, we have

‖δa+b−1u‖Φ
p

]
a(·),q(·)(Ω)

≤ C‖Mf‖Φp(·)/s,sq(·)(Ω) ≤ C‖f‖Φp(·)/s,sq(·)(Ω)

≤ C
{
bs‖[δb−1u]s‖Φp(·)/s,sq(·)(Ω) + ‖[δb|∇u|]s‖Φp(·)/s,sq(·)(Ω)

}

≤ C
{
bs‖δb−1u‖Φp(·),q(·)(Ω) + ‖δb|∇u|‖Φp(·),q(·)(Ω)

}

≤ C‖δb|∇u|‖Φp(·),q(·)(Ω),

which proves the theorem. ¤
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4. Proof of Theorem 1.3

For a proof of Theorem 1.3, we prepare the following results.

Lemma 4.1 ([12, Lemmas 2.1–2.3]) Let f be a nonnegative measurable
function on Ω such that ‖f‖Φp(·),q(·)(Ω) ≤ 1. Then there exists a constant
C > 0 such that

{Mf(x)}p(x) ≤ C
{
Mg(x)(log(c0 + Mg(x)))−p(x)q(x) + C(1 + |x|)−n

}
,

and

Φp(·),q(·)(x,Mf(x)) ≤ C{Mg(x) + (1 + |x|)−n},

where g(y) = Φp(·),q(·)(y, f(y)).

The next lemma is proved along the same lines as in Stein [29, Chapter
1]; see also [20, Lemma 2.5].

Lemma 4.2 Suppose 1 < γ ≤ 2. Then there exists a constant C > 0 such
that

∫

Ω

Mg(x)(log(c0 + Mg(x) + Mg(x)−1))−γdx ≤ C‖g‖L1(Ω)

for all g ∈ L1(Ω).

Proof. For 1 < γ ≤ 2, we see that t(log(γ + t + 1/t))−γ is increasing on
(0,∞) and

t(log(c0 + t + 1/t))−γ ≤ C(γ)t(log(γ + t + 1/t))−γ .

Hence
∫

Ω

Mg(x)(log(c0 + Mg(x) + Mg(x)−1))−γdx

≤ C(γ)
∫

Ω

Mg(x)(log(γ + Mg(x) + Mg(x)−1))−γdx

= C(γ)
∫ ∞

0

λ(t)d(t(log(γ + t + t−1))−γ),
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where λ(t) = |{x ∈ Ω : Mg(x) > t}|. Here we note from [29, Theorem 1,
Chapter 1] that

λ(t) ≤ Ct−1

∫

{x∈Ω:|g(x)|>t/2}
|g(x)| dx

for t > 0. Now we obtain by Fubini’s Theorem
∫

Ω

Mg(x)(log(c0 + Mg(x) + Mg(x)−1))−γdx

≤ C

∫

Ω

|g(x)|
{ ∫ 2|g(x)|

0

t−1d(t(log(γ + t + t−1))−γ)
}

dx

≤ C

∫

Ω

|g(x)|dx,

as required. ¤

Proof of Theorem 1.3. We may assume that 1 < γ ≤ 2. By Lemmas 2.1
and 2.5 we have

δ(x)a−1|u(x)|
≤ C{M(|∇u|)(x)}1−ap(x)/n{log(c0 + M(|∇u|)(x))}−ap(x)q(x)/n

for x ∈ Ω and 0 ≤ a ≤ A (< min{1, n/p+}). Hence Lemma 4.1 gives

Φp]
a(·),q(·)(x, δ(x)a−1|u(x)|)( log(c0 + δ(x)a−1|u(x)|+ δ(x)1−a|u(x)|−1)

)−γ

≤ CΦp(·),q(·)(x,M(|∇u|)(x))
(
log(c0 + M(|∇u|)(x) + M(|∇u|)(x)−1)

)−γ

≤ C
{
Mg(x)(log(c0 + Mg(x) + Mg(x)−1))−γ

+ (1 + |x|)−n(log(c0 + |x|))−γ
}
,

where g(y) = Φp(·),q(·)(y, |∇u(y)|). Thus we obtain the required conclusion
with the aid of Lemma 4.2. ¤

Remark 4.3 Theorem 1.3 is not valid when (p− =) p+ = 1 and γ = 1.
To show this when n = 1, first consider the function
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v(x) = (log(log(4/x)))−β

for β > 0. Then |∇v(x)| = βx−1(log(4/x))−1(log(log(4/x)))−β−1 and

∫ 1

0

|∇v(x)|dx < ∞.

On the other hand, if 0 < a < 1 and 1/p]
a(x) = 1− a, then

∫ 1/2

0

(xa−1|v(x)|)p]
a(x)(log(c0 + xa−1|v(x)|))−1dx

≥ C

∫ 1/2

0

x−1(log(log(4/x)))−β/(1−a)(log(1/x))−1dx = ∞

when −β/(1−a)+1 ≥ 0, that is, 0 < β ≤ 1−a. Now, letting ϕ ∈ C∞((0, 1))
such that ϕ(x) = 1 for x ∈ (0, 1/2) and limx→1−0 ϕ(x) = 0, one may consider
u(x) = ϕ(x)v(x) for 0 < x < 1.
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