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Abstract. In this paper we introduce a new function space which unifies and gen-

eralizes the Besov-type and the Triebel-Lizorkin-type function spaces introduced by

S. Jaffard and D. Yang- W. Yuan. This new function space covers the Besov spaces

and the Triebel-Lizorkin spaces in the homogeneous case, and further the Morrey

spaces. We define the new function space through wavelet expansions. We establish

characterizations of the new function space such as the ϕ-transform characterization

in the sense of Frazier-Jawerth, the atomic and molecular decomposition character-

ization. Moreover, in the inhomogeneous case, we give a characterization by local

polynomial approximation. As application, we investigate the boundedness of the

Calderòn-Zygmund operator and the trace theorem on the new function space.

Key words: wavelet, Besov space, Triebel-Lizorkin space, trace theorem, Calderòn-

Zygmund operator, atomic and molecular decomposition.

1. Introduction

It is well known that function spaces are now of increasing applications in
many areas of modern analysis, in particular, harmonic analysis and partial
differential equations. The most general scales, probably, are the scales
of Besov spaces and Triebel-Lizorkin spaces which cover many well known
classical concrete function spaces such as Lebesgue spaces, Lipschitz spaces,
Sobolev spaces, Hardy spaces and the space BMO.

In recent years D. Yang and W. Yuan in [10], [11] introduced a new class
of Besov-type and Triebel-Lizorkin-type spaces which includes the Q spaces.
S. Jaffard in [4] introduced the oscillation spaces in order to quantify the
degree of correlations between positions of large wavelet coefficients through
the scales. In this paper new function spaces are introduced which unify and
generalize the function spaces in [4] and [10], [11]. This new function space
covers the Besov and Triebel-Lizorkin spaces in the homogeneous case, and
further the Morrey spaces.

The plan of next sections in the paper is as follows:
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In Section 2 we define corresponding sequence spaces of our new function
spaces and we give some embedding properties for the sequence spaces.

Furthermore, we discuss the almost diagonality and we give conditions
under which the almost diagonal operators are bounded on the correspond-
ing sequence spaces.

In Section 3 we will define our new function spaces by wavelet expansions
through the sequence spaces. Those new function spaces cover the Besov
spaces and Triebel-Lizorkin spaces in the homogeneous case and the Morrey
spaces. Furthermore, the function spaces introduced by Jaffard [4], Yang-
Yuan [10], [11] and Sawano-Tanaka [7], are special cases of the new function
spaces.

In Section 4 we investigate equivalent characterizations of the new func-
tion spaces. We establish the ϕ-transform characterization in the sense of
Frazier-Jawerth [1] and further the smooth atomic and molecular decompo-
sition characterization of the new function spaces.

In Section 5, as applications, we investigate the boundedness of the
Calderòn-Zygmund operators and the trace theorem on the new function
space.

In Section 6 we describe the corresponding results of previous sections
for the inhomogeneous cases. Moreover, we give a characterization by local
polynomial approximation treated as in [5] for inhomogeneous cases.

We use C to denote a positive constant different in each occasion. But
it will depend on the parameters appearing in each assertion. The same
notations C are not necessarily the same on any two occurrences. We set
N = {1, 2, . . . } and N0 = N ∪ {0}.

2. Sequence spaces

We consider dyadic cubes in Rn of the form Q = [0 2−l)n + 2−lk for
k ∈ Zn and l ∈ Z and use notations l(Q) = 2−l for the side length and
xQ = 2−lk for the corner point. Throughout the paper, when dyadic cubes
Q appear as indices, it is understood that Q runs over all dyadic cubes of the
above form Q = [0 2−l)n + 2−lk in Rn. We denote by χE the characteristic
function of a set E in Rn.

Let s ∈ R and 0 < q ≤ ∞. For a sequence c = (cQ) indexed by dyadic
cubes Q, we define
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‖c‖ḃs
pq

=
( ∑

l∈Z

∥∥∥∥
∑

l(Q)=2−l

l(Q)−s|cQ|χQ

∥∥∥∥
q

Lp(Rn)

)1/q

when 0 < p ≤ ∞,

‖c‖ḟs
pq

=
∥∥∥∥
{ ∑

l∈Z

( ∑

l(Q)=2−l

l(Q)−s|cQ|χQ

)q}1/q∥∥∥∥
Lp(Rn)

when 0 < p < ∞,

and

‖c‖ḟs∞q
= sup

Q
l(Q)−

n
q

∥∥∥∥
{ ∑

j≥− log2 l(Q)

( ∑

l(P )=2−j

l(P )−s|cP |χP

)q}1/q∥∥∥∥
Lq(Q)

,

with the usual modification for q = ∞.
For a sequence c = (cQ) we define some sequences indexed by dyadic

cubes Q:

cbs
pq(Q) =

( ∑

j≥− log2 l(Q)

∥∥∥∥
∑

l(P )=2−j

l(P )−s|cP |χP

∥∥∥∥
q

Lp(Q)

)1/q

, 0 < p ≤ ∞,

cfs
pq(Q) =

∥∥∥∥
{ ∑

j≥− log2 l(Q)

( ∑

l(P )=2−j

l(P )−s|cP |χP

)q}1/q∥∥∥∥
Lp(Q)

, 0 < p < ∞,

and

cfs∞q(Q) = l(Q)−
n
q

∥∥∥∥
{ ∑

j≥− log2 l(Q)

( ∑

l(P )=2−j

l(P )−s|cP |χP

)q}1/q∥∥∥∥
Lq(Q)

,

with the usual modification for q = ∞.
We use notations ȧs

pq, ės
pq to denote either ḃs

pq or ḟs
pq, and as

pq, es
pq to

denote either bs
pq or fs

pq.
We define the sequence spaces

ȧs
pq =

{
c = (cQ) : ‖c‖ȧs

pq
< ∞}

,

and

ȧs
pq

(
es′
ζη

)
=

{
c = (cQ) : ‖c‖ȧs

pq(es′
ζη) < ∞}
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where ‖c‖ȧs
pq(es′

ζη) =
∥∥{ces′

ζη(Q)}
∥∥

ȧs
pq

.

We have following properties for the sequence spaces ȧs
pq

(
es′
ζη

)
. In what

follows, the symbol ⊂ stands for continuous embeddings.

Theorem 1 (The embedding theorem) Suppose that s, s′ ∈ R and 0 < p,
q, ζ, η ≤ ∞.

(1) ȧs−ε1
pq

(
es′+ε1
ζη

) ⊂ ȧs
pq

(
es′
ζη

) ⊂ ȧs+ε2
pq

(
es′−ε2
ζη

)
if 0 < ε1, ε2.

(2) ȧ
s+ n

ζ1
pq

(
es′
ζ1η

) ⊂ ȧ
s+ n

ζ2
pq

(
es′
ζ2η

)
if 0 < ζ2 ≤ ζ1 < ∞.

(3) ȧs
pq

(
es′
ζη

) ⊂ ȧ
s+s′−n

ζ
pq .

(4) ȧ0
∞∞

(
es
pq

)
= ės

pq.

(5) ḟs
∞q = ḟ

n
p∞∞

(
fs

pq

)
.

(6) When s <
n

p
, ȧs

pq

(
es′
ζη

)
= {0}.

(7) When s >
n

p
,

ḃs
pq

(
es′
ζη

)
= ḃ

s+s′−n
ζ

pq if 0 < p ≤ ζ ≤ η ≤ ∞,

ḃs
pq

(
es′
ζη

)
= ḃ

s+s′−n
p

pq if 0 < ζ ≤ p ≤ η ≤ ∞.

(8) When s =
n

p
,

ḃ
s+s′−n

ζ
pp ⊂ ḃs

p∞
(
es′
ζη

) ⊂ ḃ
s+s′−n

ζ
p∞ if 0 < p ≤ ζ ≤ η ≤ ∞,

ḃs′
ζζ ⊂ ḃs

p∞
(
es′
ζζ

) ⊂ ḃ
s+s′−n

ζ
pp if 0 < ζ ≤ p ≤ ∞.

Proof. The properties (1) through (6) are simple consequences of both the
monotonicity of the lq-norm and Hölder’s inequality. (See [9, Proposition
2 in 2.3.2]). We will prove the first statement of (7). By (3) we have
the embedding ḃ

s+s′−n/ζ
pq ⊃ ḃs

pq

(
es′
ζη

)
. Therefore it suffices to prove the

converse inclusion. Applying the monotonicity of the lp-norm, we have for
0 < p ≤ ζ ≤ η ≤ ∞,
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‖c‖ḃs
pq(es′

ζη) ≤ ‖c‖ḃs
pq(es′

ζζ)

≤
{ ∑

l∈Z

( ∑

l(Q)=2−l

2(s−n
p )lp

∑

j≥l

2j(s′−n
ζ )p

∑

l(P )=2−j , P⊂Q

|cP |p
)q/p}1/q

=
{ ∑

l∈Z

(
2(s−n

p )lp
∑

j≥l

2j(s′−n
ζ )p

∑

l(Q)=2−l

∑

l(P )=2−j , P⊂Q

|cP |p
)q/p}1/q

=
{ ∑

l∈Z

(
2(s−n

p )lp
∑

j≥l

2j(s′−n
ζ )p

∑

l(P )=2−j

|cP |p
)q/p}1/q

≤ C

{ ∑

l∈Z

(
2(s+s′−n

ζ )lp2−nl
∑

l(P )=2−l

|cP |p
)q/p}1/q

= C‖c‖
ḃ

s+s′−n
ζ

pq

where the last inequality follows from Hardy’s inequality if sp−n > 0. This
yields the first statement of (7). In order to prove the second statement of
(7), we observe from (2), (3) and the first statement of (7),

ḃ
s+s′−n

p
pq = ḃs

pq

(
es′
pp

) ⊂ ḃ
s+ n

ζ −n
p

pq

(
es′
ζp

) ⊂ ḃ
s+ n

ζ −n
p

pq

(
es′
ζη

) ⊂ ḃ
s+s′−n

p
pq

if 0 < ζ ≤ p ≤ ∞. Hence we have the second statement of (7). Similarly to
(7) by the monotonicity of lp-norm and (3), we have

ḃ
s+s′−n

ζ
pp ⊂ ḃs

p∞
(
es′
ζζ

) ⊂ ḃs
p∞

(
es′
ζη

) ⊂ ḃ
s+s′−n

ζ
p∞

if 0 < p ≤ ζ ≤ η ≤ ∞ and s = n/p. Therefore we obtain the first inclusion
of (8). We will prove the second inclusion of (8). Similarly to (7) we see

ḃ
n
p
p∞

(
es′
ζζ

) ⊂ ḃ
s′−n

ζ + n
p

pp

if 0 < ζ ≤ p ≤ ∞. Hence we have from the embedding theorem of the Besov
space ḃs

pq and the first inclusion of (8),

ḃs′
ζζ ⊂ ḃ

n
ζ

ζ∞
(
es′
ζζ

) ⊂ ḃ
n
p
p∞

(
es′
ζζ

) ⊂ ḃ
s′−n

ζ + n
p

pp

if 0 < ζ ≤ p ≤ ∞. This completes the second inclusion of (8).
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Let k1, k2 ≥ 0 and L > n. We say that a matrix operator A associated
with matrix {aQP }QP , indexed by dyadic cubes Q and P , is (k1, k2, L)-
almost diagonal if the matrix {aQP } satisfies that

sup
Q,P

|aQP |
ω(Q,P )

< ∞

where

ω(Q,P ) =
(

l(Q)
l(P )

)k1(
1 + l(P )−1|xQ − xP |

)−L if l(Q) < l(P ),

ω(Q,P ) =
(
1 + l(P )−1|xQ − xP |

)−L if l(Q) = l(P ),

and

ω(Q,P ) =
(

l(P )
l(Q)

)k2(
1 + l(Q)−1|xQ − xP |

)−L if l(Q) > l(P ).

Lemma A Let Q,P be dyadic cubes. Let k1, k2 ∈ N0, L > n and L1 >

n + k1, L2 > n + k2. Assume that φQ, ϕP are functions on Rn such that

∫

Rn

φQ(x)xγdx = 0 for |γ| < k1, (A.1)

|φQ(x)| ≤ C
(
1 + l(Q)−1|x− xQ|

)−max(L,L1)
, (A.2)

∣∣∂γφQ(x)
∣∣ ≤ Cl(Q)−|γ|

(
1 + l(Q)−1|x− xQ|

)−L for 0 < |γ| ≤ k2, (A.3)
∫

Rn

ϕP (x)xγdx = 0 for |γ| < k2, (A.4)

|ϕP (x)| ≤ C
(
1 + l(P )−1|x− xP |

)−max(L,L2)
, (A.5)

∣∣∂γϕP (x)
∣∣ ≤ Cl(P )−|γ|

(
1 + l(P )−1|x− xP |

)−L for 0 < |γ| ≤ k1. (A.6)

(A.1) and (A.6) are void when k1 = 0, while (A.3) and (A.4) are void when
k2 = 0.

Then we have
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(1) l(Q)−n|〈φQ, ϕP 〉| ≤ C

(
l(Q)
l(P )

)k1(
1 + l(P )−1|xQ − xP |

)−L

if l(Q) ≤ l(P )

and

(2) l(P )−n|〈φQ, ϕP 〉| ≤ C

(
l(P )
l(Q)

)k2(
1 + l(Q)−1|xQ − xP |

)−L

if l(P ) < l(Q).

Hence {l(Q)−n〈φQ, ϕP 〉}QP is (k1, k2 + n,L)-almost diagonal.

Proof. See Corollary B.3 in [1].

Lemma B Suppose that s, s′ ∈ R and 0 < p, q, ζ, η ≤ ∞. Let k1,
k2 ∈ N0, L > n and L1 > n + k1, L2 > n + k2. Assume that φQ, ϕP as in
Lemma A.

Then for c ∈ ȧs
pq

(
es′
ζη

)
and a dyadic cube Q, we have

∑
P cP 〈ϕP , φQ〉

is convergent if k1 > s + s′ − n
p − n

ζ , k2 > J − n − s′ and L > J where
J = n/ min(1, ζ, η) in the case es′

ζη = fs′
ζη, or J = n/ min(1, ζ) in the case

es′
ζη = bs′

ζη.

Proof. We will prove this lemma using an argument similar to that for
Lemmas 4.1 and 4.2 in [6].

Let Q be a dyadic cube and c ∈ ȧs
pq

(
es′
ζη

)
. Then

∣∣∣∣
∑

P

cP 〈ϕP , φQ〉
∣∣∣∣ ≤

∑

l(Q)≤l(P )

|cP ||〈ϕP , φQ〉|+
∑

l(Q)>l(P )

|cP ||〈ϕP , φQ〉|

= σ1 + σ2.

Using Lemma A, we get

σ1 ≤ C
∑

l(Q)≤l(P )

|cP |l(Q)n

(
l(Q)
l(P )

)k1(
1 + l(P )−1|xQ − xP |

)−L
.

Using the fact that

|cP | ≤ Cl(P )s−n
p l(P )s′−n

ζ
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since c ∈ ȧs
pq

(
es′
ζη

)
, we obtain that

σ1 ≤ C
∑

j≥log2 l(Q)

2−j(k1−s−s′+ n
p + n

ζ )l(Q)n+k1
∑

l(P )=2j

(
1 + l(P )−1|xQ − xP |

)−L

≤ C
∑

j≥log2 l(Q)

2−j(k1−s−s′+ n
p + n

ζ )l(Q)n+k1 < ∞

because k1 > s + s′ − n
p − n

ζ and L > n.
To estimate σ2, we will use the operator Mt defined by Mt(f) ≡

M(f t)1/t for the maximal operator M . Using Lemma A and [6, Lemma
7.1] with 0 < t ≤ 1 and L > n/t, we get

σ2 ≤ C
∑

l(P )<l(Q)

|cP |l(P )n

(
l(P )
l(Q)

)k2(
1 + l(Q)−1|xQ − xP |

)−L

≤ C
∑

j≥− log2 l(Q)

l(Q)n/t−k22−j(k2−n/t+n+s′)Mt

( ∑

l(P )=2−j

2js′ |cP |χP

)
(x)

for x ∈ Q. Using the monotonicity of the lq-norm and Hölder’s inequality,
we get

σ2 ≤ Cl(Q)n/t−k2

( ∑

j≥− log2 l(Q)

(
Mt

( ∑

l(P )=2−j

2js′ |cP |χP

)
(x)

)η)1/η

for x ∈ Q where 0 < η ≤ ∞ if k2 > n/t − n − s′. Taking Lζ(Q) norm
(0 < ζ < ∞) and using the Fefferman-Stein inequality for 0 < t < min(ζ, η),
we have

σ2 = l(Q)−
n
ζ ‖σ2‖Lζ(Q)

≤ Cl(Q)n/t−n/ζ−k2

∥∥∥∥
( ∑

j≥− log2 l(Q)

(
Mt

( ∑

l(P )=2−j

2js′ |cP |χP

))η)1/η∥∥∥∥
Lζ(Q)

≤ Cl(Q)n/t−n/ζ−k2

∥∥∥∥
( ∑

j≥− log2 l(Q)

( ∑

l(P )=2−j

2js′ |cP |χP

)η)1/η∥∥∥∥
Lζ(Q)

≤ Cl(Q)n/t−n/ζ−k2+s−n/pl(Q)−(s−n/p)cfs′
ζη(Q) ≤ C‖c‖ȧs

pq(fs′
ζη) < ∞.
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Repeating the above argument, we will prove the case ζ = ∞. Taking the
Lη(Q) norm, we have

σ2 = l(Q)−
n
η ‖σ2‖Lη(Q)

≤ Cl(Q)n/t−n/η−k2

∥∥∥∥
( ∑

j≥− log2 l(Q)

(
Mt

( ∑

l(P )=2−j

2js′ |cP |χP

))η)1/η∥∥∥∥
Lη(Q)

≤ Cl(Q)n/t−k2 l(Q)−
n
η

∥∥∥∥
( ∑

j≥− log2 l(Q)

( ∑

l(P )=2−j

2js′ |cP |χP

)η)1/η∥∥∥∥
Lη(Q)

≤ Cl(Q)n/t−k2+s−n/pl(Q)−(s−n/p)cfs′∞η(Q) ≤ C‖c‖ȧs
pq(fs′∞η) < ∞.

Using the above same argument, we can also prove in the case of B-type
that

σ2 ≤ Cl(Q)n/t−n/ζ−k2+s−n/pl(Q)−(s−n/p)cbs′
ζη(Q) ≤ C‖c‖ȧs

pq(bs′
ζη) < ∞

if k2 > J − n − s′ where J = n/ min(1, ζ). This completes the proof of the
lemma.

The results about the boundedness of almost diagonal operators in [1],
are generalized into the following conclusions.

Theorem 2 Suppose that p
n ≤ s < ∞, s′ ∈ R and 0 < p, q, ζ, η ≤

∞. A (k1, k2, L)-almost diagonal operator is bounded on ȧs
pq

(
es′
ζη

)
if k1 >

max
(
s′, s + s′− n

ζ

)
, k2 > J − s′ and L > J where J = n/ min(1, ζ, η) in the

case es′
ζη = fs′

ζη, or J = n/ min(1, ζ) in the case es′
ζη = bs′

ζη.

Proof. We assume that A = (aPP ′) is almost diagonal. Let c = (cQ) ∈
ȧs

pq

(
es′
ζη

)
. For dyadic cubes Q and P with P ⊂ Q, we write Ac = A0c +

A1c + A2c with

(A0c)P =
∑

l(P )≤l(P ′)≤l(Q)

aPP ′cP ′ ,

(A1c)P =
∑

l(P ′)<l(P )

aPP ′cP ′ and
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(A2c)P =
∑

l(P )≤l(Q)<l(P ′)

aPP ′cP ′ .

We will consider the case of the F-type. Since A is almost diagonal, we see
that for dyadic cubes Q with l(Q) = 2−l,

(A0c)fs′
ζη(Q)

=
∥∥∥∥
{ ∑

j≥l

∑

l(P )=2−j

(
l(P )−s′ |(A0c)P |

)η
χP

}1/η∥∥∥∥
Lζ(Q)

≤ C

∥∥∥∥
{ ∑

j≥l

∑

l(P )=2−j

2js′η
( ∑

j≥i≥l

∑

l(P ′)=2−i

|aPP ′ ||cP ′ |
)η

χP

}1/η∥∥∥∥
Lζ(Q)

≤ C

∥∥∥∥
{ ∑

j≥l

∑

l(P )=2−j

2js′η
( ∑

j≥i≥l

∑

l(P ′)=2−i

2−(j−i)k1

· (1 + l(P ′)−1|xP − xP ′ |)−L|cP ′ |
)η

χP

}1/η∥∥∥∥
Lζ(Q)

.

Using Lemma 3.1 of [10] for the maximal function Mf , we have

(A0c)fs′
ζη(Q)

≤ C

∥∥∥∥
{ ∑

j≥l

∑

l(P )=2−j

2js′η2−jk1η

·
( ∑

j≥i≥l

2ik1M

( ∑

l(P ′)=2−i

|cP ′ |χP ′

))η

χP

}1/η∥∥∥∥
Lζ(Q)

≤ C

∥∥∥∥
{ ∑

j≥l

2−j(k1−s′)η
( ∑

j≥i≥l

2ik1M

( ∑

l(P ′)=2−i

|cP ′ |χP ′

))η}1/η∥∥∥∥
Lζ(Q)

≤ C

∥∥∥∥
{ ∑

j≥l

2js′ηM

( ∑

l(P ′)=2−j

|cP ′ |χP ′

)η}1/η∥∥∥∥
Lζ(Q)

≤ C

∥∥∥∥
{ ∑

j≥l

2js′η
( ∑

l(P ′)=2−j

|cP ′ |χP ′

)η}1/η∥∥∥∥
Lζ(Q)

= Ccfs′
ζη(Q)
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where these inequalities follow from Hardy’s inequality and the Fefferman-
Stein vector valued inequality if k1 > s′, 1 < ζ < ∞ and 1 < η ≤ ∞.
Similarly to the above A0 case we can prove that

(A1c)fs′
ζη(Q) ≤ Ccfs′

ζη(Q)

if k2 > n− s′, 1 < ζ < ∞ and 1 < η ≤ ∞. Note that we also get the same
estimate for the case ζ = ∞. Hence we have

‖Aic‖ȧs
pq(fs′

ζη) ≤ C‖c‖ȧs
pq(fs′

ζη), i = 0, 1

if k1 > s′, k2 > n− s′, 1 < ζ ≤ ∞ and 1 < η ≤ ∞.
For the B-type case we have

(A0c)bs′
ζη(Q)

=
( ∑

j≥l

∥∥∥∥
∑

l(P )=2−j

l(P )−s′ |(A0c)P |χP

∥∥∥∥
η

Lζ(Q)

)1/η

≤ C

{ ∑

j≥l

∥∥∥∥
∑

l(P )=2−j

2js′
∑

j≥i≥l

∑

l(P ′)=2−i

2−(j−i)k1

· (1 + l(P ′)−1|xP − xP ′ |
)−L|cP ′ |χP

∥∥∥∥
η

Lζ(Q)

}1/η

≤ C

{ ∑

j≥l

2−j(k1−s′)η
∥∥∥∥

∑

l(P )=2−j

∑

j≥i≥l

2ik1M

·
( ∑

l(P ′)=2−i

|cP ′ |χP ′

)
χP

∥∥∥∥
η

Lζ(Q)

}1/η

≤ C

{ ∑

j≥l

2−j(k1−s′)η
( ∑

j≥i≥l

2ik1

∥∥∥∥M

( ∑

l(P ′)=2−i

|cP ′ |χP ′

)∥∥∥∥
Lζ(Q)

)η}1/η

≤ C

{ ∑

j≥l

2−j(k1−s′)η
( ∑

j≥i≥l

2ik1

∥∥∥∥
∑

l(P ′)=2−i

|cP ′ |χP ′

∥∥∥∥
Lζ(Q)

)η}1/η

≤ C

( ∑

j≥l

2js′η
∥∥∥∥

∑

l(P ′)=2−j

|cP ′ |χP ′

∥∥∥∥
η

Lζ(Q)

)1/η

= Ccbs′
ζη(Q)
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where the inequalities follow from Hardy’s inequality and the boundedness
of maximal operators if k1 > s′, 1 < ζ ≤ ∞ and 0 < η ≤ ∞. Similarly to
the above A0 case we obtain that

(A1c)bs′
ζη(Q) ≤ Ccbs′

ζη(Q)

if k2 > n− s′, 1 < ζ ≤ ∞ and 0 < η ≤ ∞. Hence we have

‖Aic‖ȧs
pq(bs′

ζη) ≤ C‖c‖ȧs
pq(bs′

ζη), i = 0, 1

if k1 > s′, k2 > n− s′, 1 < ζ ≤ ∞ and 0 < η ≤ ∞.
Next, we will give the estimates for the A2 case. By applying the bound-

edness of maximal operators on the Lζ-space, we obtain, for 1 < ζ < ∞ and
0 < η ≤ ∞,

(A2c)fs′
ζη(Q)

=
∥∥∥∥
{ ∑

j≥l

∑

l(P )=2−j

(
l(P )−s′ |(A2c)P |

)η
χP

}1/η∥∥∥∥
Lζ(Q)

≤ C

∥∥∥∥
{ ∑

j≥l

∑

l(P )=2−j

l(P )−s′η
( ∑

l≥i

∑

l(P ′)=2−i

2−(j−i)k1

· (1 + l(P ′)−1|xP − xP ′ |
)−L|cP ′ |

)η

χP

}1/η∥∥∥∥
Lζ(Q)

≤ C

∥∥∥∥
{ ∑

j≥l

2−j(k1−s′)η
∑

l(P )=2−j

·
( ∑

l≥i

2ik1M

( ∑

l(P ′)=2−i

|cP ′ |χP ′

))η

χP

}1/η∥∥∥∥
Lζ(Q)

≤ C

∥∥∥∥2−l(k1−s′)
∑

l≥i

2ik1M

( ∑

l(P ′)=2−i

|cP ′ |χP ′

)∥∥∥∥
Lζ(Q)

≤ C2−l(k1−s′)
∑

l≥i

2ik1

∥∥∥∥M

( ∑

l(P ′)=2−i

|cP ′ |χP ′

)∥∥∥∥
Lζ(Q)
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≤ C2−l(k1−s′)
∑

l≥i

2ik1

∥∥∥∥
∑

l(P ′)=2−i

|cP ′ |χP ′

∥∥∥∥
Lζ(Q)

≤ C2−l(k1−s′+ n
ζ ) ∑

l≥i

2ik1
∑

l(P ′)=2−i,Q⊂P ′
|cP ′ |

if k1 > s′. We also see the same estimate for the case ζ = ∞.
Similarly, for the B-type case we have

(A2c)bs′
ζη(Q)

=
( ∑

j≥l

∥∥∥∥
∑

l(P )=2−j

l(P )−s′ |(A2c)P |χP

∥∥∥∥
η

Lζ(Q)

)1/η

≤ C

{ ∑

j≥l

∥∥∥∥
∑

l(P )=2−j

2s′j
∑

l≥i

∑

l(P ′)=2−i

2−(j−i)k1

· (1 + l(P ′)−1|xP − xP ′ |
)−L|cP ′ |χP

∥∥∥∥
η

Lζ(Q)

}1/η

≤ C

{ ∑

j≥l

2−j(k1−s′)η
∥∥∥∥

∑

l(P )=2−j

∑

l≥i

2ik1M

( ∑

l(P ′)=2−i

|cP ′ |χP ′

)
χP

∥∥∥∥
η

Lζ(Q)

}1/η

≤ C2−l(k1−s′)
∑

l≥i

2ik1

∥∥∥∥M

( ∑

l(P ′)=2−i

|cP ′ |χP ′

)∥∥∥∥
Lζ(Q)

≤ C2−l(k1−s′)
∑

l≥i

2ik1

∥∥∥∥
∑

l(P ′)=2−i

|cP ′ |χP ′

∥∥∥∥
Lζ(Q)

≤ C2−l(k1−s′+ n
ζ ) ∑

l≥i

2ik1
∑

l(P ′)=2−i, Q⊂P ′
|cP ′ |

if k1 > s′, 1 < ζ ≤ ∞ and 0 < η ≤ ∞. Hence we have, for p < ∞,

‖A2c‖ḟs
pq(es′

ζη)

=
∥∥∥∥
( ∑

l∈Z

∑

l(Q)=2−l

l(Q)−sq(A2c)
q

es′
ζη(Q)

χQ

)1/q∥∥∥∥
Lp(Rn)
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≤ C

∥∥∥∥
{ ∑

l∈Z

∑

l(Q)=2−l

2lsq2−l(k1−s′+ n
ζ )q

·
( ∑

l≥i

2ik1
∑

l(P ′)=2−i, Q⊂P ′
|cP ′ |

)q

χQ

}1/q∥∥∥∥
Lp(Rn)

≤ C

∥∥∥∥
{ ∑

l∈Z
2−l(k1−s−s′+n/ζ)q

( ∑

l≥i

2ik1
∑

l(P ′)=2−i

|cP ′ |χP ′

)q}1/q

‖Lp(Rn)

≤ C

∥∥∥∥
{ ∑

l∈Z
2l(s′+s−n/ζ)q

( ∑

l(P ′)=2−l

|cP ′ |χP ′

)q}1/q∥∥∥∥
Lp(Rn)

= C‖c‖
ḟ

s+s′−n/ζ
pq

≤ C‖c‖ḟs
pq(es′

ζη)

where these inequalities follow from Hardy’s inequality and (3) of Theorem
1 if k1 > s + s′ − n/ζ. For the case p = ∞ we also get the same estimation.
Similarly, for the B-type case we see

‖A2c‖ḃs
pq(es′

ζη) ≤ C‖c‖ḃs
pq(es′

ζη)

if k1 > s + s′ − n/ζ. Thus we obtain the desired conclusion

‖Ac‖ȧs
pq(es′

ζη) ≤ C‖c‖ȧs
pq(es′

ζη)

for min(ζ, η) > 1 when es′
ζη = fs′

ζη or for ζ > 1 when es′
ζη = bs′

ζη. For the other
cases of ζ and η the desired conclusion follows by the usual routine. See [1]
for details.

3. Definition

Let S = S(Rn) be the space of all Schwartz functions on Rn and S∞ =
S∞(Rn) = {f ∈ S :

∫
Rn f(x)xγdx = 0, for all γ ∈ Nn

0}. S ′∞ = S ′∞(Rn) =
S ′/P denotes the topological dual of S∞ where P denotes the set of all
polynomials on Rn.

Let r ∈ N and L > n. We will use a family of (r, L)- smooth wavelets
ψ(i) such that {2nj/2ψ(i)(2jx− k) (i = 1, . . . , 2n− 1, j ∈ Z, k ∈ Zn)} forms
an orthonormal basis of L2(Rn) and satisfies that for γ ∈ Nn

0 ,
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|ψ(i)(x)| ≤ C(1 + |x|)−max(L,L0) for some L0 > n + r, (3.1)

|∂γψ(i)(x)| ≤ C(1 + |x|)−L for 0 < |γ| ≤ r, (3.2)
∫

Rn

ψ(i)(x)xγdx = 0 for |γ| < r. (3.3)

We denote ψQ(x) = ψ(l(Q)−1(x − xQ)), xQ = 2−jk for a dyadic cube
Q = [0, 2−j)n + 2−jk. We will forget to write the index i of the wavelet,
which is of no consequence.

Definition Let s, s′, ∈ R, and 0 < p, q, ζ, η ≤ ∞. We assume that

r > max
(

s′, s′ + s− n

ζ
, J − n− s′

)
and (3.4)

L > J. (3.5)

where J is as in Theorem 2. We define

Ȧs
pq

(
Es′

ζη

)
=

{
f =

∑

Q

cQψQ ∈ S ′∞ : (cQ) ∈ ȧs
pq

(
es′
ζη

)}

with ‖f‖Ȧs
pq(Es′

ζη) = ‖c‖ȧs
pq(es′

ζη).

Remark 1

(1) From Lemma B we observe that for every (cQ) ∈ ȧs
pq

(
es′
ζη

)
, the series∑

Q cQψQ converges in S ′∞, and for f ∈ Ȧs
pq

(
Es′

ζη

)
the representation

f =
∑

Q cQψQ is unique. Furthermore, 〈f, ψQ〉 is well-defined and we
have cQ = l(Q)−n〈f, ψQ〉

(2) We can prove that the above definition is independent of the choice
of any (r, L)-smooth wavelet ψ which satisfies (3.1) through (3.5). In-
deed, suppose that ψ1 and ψ2 are (r, L)-smooth wavelets satisfying (3.1)
through (3.5). Define Ȧs

pq

(
Es′

ζη

)
(ψ1) and Ȧs

pq

(
Es′

ζη

)
(ψ2) as the above

definition, using ψ1 and ψ2 in the place of ψ. Notice that the wavelet
expansion

ψ1
P =

∑

Q

l(Q)−n
〈
ψ1

P , ψ2
Q

〉
ψ2

Q.
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Then, for Ȧs
pq

(
Es′

ζη

)
(ψ1) 3 f =

∑
P cP ψ1

P

(
c ∈ ȧs

pq(e
s′
ζη)

)
, we have

f =
∑

P

cP ψ1
P =

∑

Q

(Ac)Qψ2
Q

where A = {l(Q)−n〈ψ1
P , ψ2

Q〉}QP . We may assume that n
p ≤ s <

∞ by Theorem 1 (6). From Lemma A and Theorem 2, we see
that Ac ∈ ȧs

pq

(
es′
ζη

)
. This shows that f ∈ Ȧs

pq

(
Es′

ζη

)
(ψ2) and so

Ȧs
pq

(
Es′

ζη

)
(ψ1) ⊂ Ȧs

pq

(
Es′

ζη

)
(ψ2). By the same argument, we also see

that Ȧs
pq

(
Es′

ζη

)
(ψ2) ⊂ Ȧs

pq

(
Es′

ζη

)
(ψ1). This implies that the definition of

Ȧs
pq

(
Es′

ζη

)
is independent of the choice of ψ.

We have homeomorphism ȧs
pq

(
es′
ζη

) ∼= Ȧs
pq

(
Es′

ζη

)
from Remark 1 (1) as

above. Hence we have

Theorem 3 Theorem 1 holds with Besov-type or Triebel-Lizorkin type
notations of the small letters ȧs

pq

(
es′
ζη

)
, ȧs

pq and ės
pq replaced by the corre-

sponding ones of the capital letters Ȧs
pq

(
Es′

ζη

)
, Ȧs

pq and Ės
pq respectively.

Examples

( i ) From (4) of Theorem 1 and Theorem 3 we see that Ȧ0
∞∞(Es

pq) = Ės
pq.

Hence the above definition covers the classical class of Besov spaces
Ḃs

pq and Triebel-Lizorkin spaces Ḟ s
pq.

( ii ) The oscillation spaces Os,s′
p introduced by S. Jaffard [4], are contained

in our definition as that Os,s′
p = Ḃs

p∞(Bs′
∞∞).

(iii) The Besov type spaces Ḃs,τ
pq and the Triebel-Lizorkin type spaces

Ḟ s,τ
pq introduced by D. Yang and W. Yuan [10], [11], are contained

in our definition as special cases that Ḃs,τ
pq = Ḃnτ

∞∞(Bs
pq) and Ḟ s,τ

pq =
Ḟnτ
∞∞(F s

pq). See Theorem 5 as below.
(iv) The Triebel-Lizorkin-Morrey spaces Ės

upq introduced by Y. Sawano
and H. Tanaka [7], are contained in our definition as special cases, that

is, Ės
upq = Ḟ

n( 1
p− 1

u )
∞∞ (F s

pq) if 0 < p ≤ u < ∞ and 0 < q ≤ ∞. Especially

the Morrey space is Mu
p = Ḟ

n( 1
p− 1

u )
∞∞ (F 0

p2) if 1 < p ≤ u < ∞.
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4. Characterizations

Let φ be a Schwartz function satisfying

supp φ̂ ⊂
{

ξ ∈ Rn :
1
2
≤ |ξ| ≤ 2

}
, (4.1)

∣∣φ̂(ξ)
∣∣ ≥ C > 0 if

3
5
≤ |ξ| ≤ 5

3
. (4.2)

Remark 2 (See [2]) Note that for a given φ as above there exists a
Schwartz function ϕ satisfying the same conditions as φ such that

∑

j∈Z
ϕ̂(2jξ)φ̂(2jξ) = 1 if ξ 6= 0.

Assume that s, s′, p, q, ζ, η are as in Section 3. We set φj(x) =
2jnφ(2jx) and φQ(x) = φ(l(Q)−1(x− xQ)) for dyadic cubes Q. We define

Dȧs
pq

(
es′
ζη

)
=

{
f =

∑

Q

cQφQ ∈ S ′∞ : (cQ) ∈ ȧs
pq

(
es′
ζη

)}

with a (quasi-)norm

‖f‖Dȧs
pq(es′

ζη) = inf
f=
P

Q cQφQ

‖c‖ȧs
pq(es′

ζη)

where the infimum is taken over all admissible representations f =∑
Q cQφQ.

By Lemma B, note that f =
∑

Q cQφQ is convergent in S ′∞.

Theorem 4 For s, s′ ∈ R and 0 < p, q, ζ, η ≤ ∞, we have

Ȧs
pq

(
Es′

ζη

)
= Dȧs

pq

(
es′
ζη

)

with equivalent (quasi-)norms

‖f‖Ȧs
pq(Es′

ζη) ≈ ‖f‖Dȧs
pq(es′

ζη).

Proof. We may assume that n
p ≤ s < ∞ by Theorem 1 (6). Let
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Dȧs
pq

(
es′
ζη

) 3 f =
∑

Q cQφQ. Notice that the wavelet expansion

φQ =
∑

P

l(P )−n〈φQ, ψP 〉ψP .

Then we have

f =
∑

Q

cQφQ =
∑

P

(A0c)P ψP

where A0 = {l(Q)−n〈φP , ψQ〉}QP . Lemma A and Theorem 2 yield that

‖f‖Ȧs
pq(Es′

ζη) = ‖A0c‖ȧs
pq(es′

ζη) ≤ C‖c‖ȧs
pq(es′

ζη)

which implies ‖f‖Ȧs
pq(Es′

ζη) ≤ C‖f‖Dȧs
pq(es′

ζη) and so Dȧs
pq

(
es′
ζη

) ⊂ Ȧs
pq

(
Es′

ζη

)
.

Conversely, let Ȧs
pq

(
Es′

ζη

) 3 f =
∑

Q cQψQ. Notice, from [1, Lemma
2.1], that

ψQ =
∑

P

l(P )−n〈ψQ, ϕP 〉φP .

where ϕ as in Remark 2. Hence we have

f =
∑

Q

cQψQ =
∑

P

(A1c)P φP

where A1 = {l(Q)−n〈ψP , ϕQ〉}QP . Applying Lemma A and Theorem 2, we
obtain

‖f‖Dȧs
pq(es′

ζη) ≤ ‖A1c‖ȧs
pq(es′

ζη) ≤ C‖c‖ȧs
pq(es′

ζη) = ‖f‖Ȧs
pq(Es′

ζη)

which implies Ȧs
pq(E

s′
ζη) ⊂ Dȧs

pq(e
s′
ζη) and so, the proof of the theorem fol-

lows.

Remark 3

(1) We see that the definition of Dȧs
pq(e

s′
ζη) is independent of the choice of

φ ∈ S satisfying the above conditions (4.1) and (4.2).
(2) We observe that the definition of Ȧs

pq(E
s′
ζη) is independent of the choice

of r, L satisfying (3.1) through (3.5) for the wavelets as in Section 3.
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Let s ∈ R, 0 < q ≤ ∞ and φ satisfying (4.1) and (4.2) as above. For
f ∈ S ′∞ we define some sequences indexed by dyadic cubes Q:

fbs
pq(Q)φ =

( ∑

j≥− log2 l(Q)

∥∥2jsφj ∗ f
∥∥q

Lp(Q)

)1/q

, 0 < p ≤ ∞,

ffs
pq(Q)φ =

∥∥∥∥
( ∑

j≥− log2 l(Q)

(
2js|φj ∗ f |)q

)1/q∥∥∥∥
Lp(Q)

, 0 < p < ∞,

ffs∞q(Q)φ = l(Q)−
n
q

∥∥∥∥
( ∑

j≥− log2 l(Q)

(
2js|φj ∗ f |)q

)1/q∥∥∥∥
Lq(Q)

,

with the usual modification for q = ∞. We define

T ȧs
pq

(
es′
ζη

)
=

{
f ∈ S ′∞ : ‖f‖T ȧs

pq(es′
ζη) ≡

∥∥{
fes′

ζη(Q)φ

}∥∥
ȧs

pq
< ∞

}
.

Then we have the following ϕ-transform characterization in the sense of
Frazier-Jawerth [1].

Theorem 5 For s, s′ ∈ R and 0 < p, q, ζ, η ≤ ∞, we have

Ȧs
pq

(
Es′

ζη

)
= T ȧs

pq

(
es′
ζη

)

with equivalent (quasi-)norms

‖f‖Ȧs
pq(Es′

ζη) ≈ ‖f‖T ȧs
pq(es′

ζη).

Proof. By Theorem 4, it is sufficient to prove that T ȧs
pq(e

s′
ζη) = Dȧs

pq(e
s′
ζη).

Let ϕ be as in Remark 2. Let f ∈ Dȧs
pq(e

s′
ζη). From Remark 3 (1), we see

that f =
∑

Q cQϕQ : (cQ) ∈ ȧs
pq(e

s′
ζη). Notice that

|φj ∗ f(x)| =
∣∣∣∣
∑

Q

cQφj ∗ ϕQ(x)
∣∣∣∣ =

∣∣∣∣
j+1∑

l=j−1

∑

l(Q)=2−l

cQφj ∗ ϕQ(x)
∣∣∣∣

≤ C

j+1∑

l=j−1

∑

l(Q)=2−l

|cQ|
(
1 + 2l|x− xQ|

)−L
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for a large enough L. Then, using the argument similar to the proof of [1,
Theorem 2.2], it is not difficult to show that

fes′
ζη(Q)φ ≤ Cces′

ζη(Q).

Thus, we have

‖f‖T ȧs
pq(es′

ζη) =
∥∥{

fes′
ζη(Q)φ

}∥∥
ȧs

pq
≤ C‖c‖ȧs

pq(es′
ζη).

This implies Dȧs
pq

(
es′
ζη

) ⊂ T ȧs
pq

(
es′
ζη

)
.

We will prove the converse inclusion. Let T ȧs
pq

(
es′
ζη

) 3 f . Then from
Lemma 2.1 in [1] we have the ϕ-transform f =

∑
Q cQ(f)ϕQ where cQ(f) =

l(Q)−n〈f, φQ〉. Then we have

|cQ(f)| = |φj ∗ f(xQ)| ≤ sup
Q

f ≡ sup
y∈Q

|φj ∗ f(y)|

for a dyadic cube Q with l(Q) = 2−j . Hence using the argument similar to
the proof of [1, Lemma 2.5], we can prove that

c(f)es′
ζη(Q) ≤ Cfes′

ζη(Q)φ .

Thus, by Remark 3 (1), ‖f‖Dȧs
pq(es′

ζη) ≤ ‖c(f)‖ȧs
pq(es′

ζη) ≤ C‖{fes′
ζη(Q)φ}‖ȧs

pq
=

C‖f‖T ȧs
pq(es′

ζη).

This implies T ȧs
pq

(
es′
ζη

) ⊂ Dȧs
pq

(
es′
ζη

)
. Hence we have T ȧs

pq(e
s′
ζη) =

Dȧs
pq(e

s′
ζη). Furthermore, in the course of the above proof we proved

‖f‖Dȧs
pq(es′

ζη) ≈ ‖c(f)‖ȧs
pq(es′

ζη) ≈ ‖f‖T ȧs
pq(es′

ζη).

Remark 4 Note that the definition of T ȧs
pq

(
Es′

ζη

)
is independent of the

choice of φ ∈ S satisfying (4.1) and (4.2) as above.

We recall the definitions of smooth atoms and molecules.
Let r1, r2 ∈ N0 and L > n. We assume that r1, r2 and L satisfy

r1 > max
(

s′, s + s′ − n

ζ

)
, (4.3)
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r2 > J − n− s′, (4.4)

L > J (4.5)

where J is as in Theorem 2.
A family of functions m = (mQ) indexed by dyadic cubes Q is called a

family of smooth molecules with (r1, r2, L) if

( i ) |mQ(x)| ≤ (1 + l(Q)−1|x− xQ|)−max(L,L2) for some L2 > n + r2

( ii ) |∂γmQ(x)| ≤ l(Q)−|γ|(1 + l(Q)−1|x− xQ|)−L for 0 < |γ| ≤ r1, and

(iii)
∫

Rn

xγmQ(x)dx = 0 for |γ| < r2.

Note that (ii) is void when r1 = 0 and (iii) is void when r2 = 0.

A family of functions a = (aQ) indexed by dyadic cubes Q is called a family
of smooth atoms with (r1, r2) if

( i ) supp aQ ⊂ 3Q for each dyadic cube Q,

where cQ denotes the cube obtained by expanding the cube Q with the
factor c around its center,

( ii ) |∂γaQ(x)| ≤ l(Q)−|γ| for |γ| ≤ r1, and

(iii)
∫

Rn

xγaQ(x)dx = 0 for |γ| < r2.

Note that (iii) is void when r2 = 0.

We define

Mȧs
pq

(
es′
ζη

)
=

{
f =

∑

Q

cQmQ ∈ S ′∞ : (mQ) smooth molecules with

(r1, r2, L) satisfying (4.3), (4.4) and (4.5), (cQ) ∈ ȧs
pq

(
es′
ζη

)}

with

‖f‖Mȧs
pq(es′

ζη) = inf
f=
P

Q cQmQ

‖c‖ȧs
pq(es′

ζη)

where the infimum is taken over all admissible representations f =
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∑
Q cQmQ,

Aȧs
pq

(
es′
ζη

)
=

{
f =

∑

Q

cQaQ ∈ S ′∞ : (aQ) smooth atoms with

(r1, r2) satisfying (4.3) and (4.4), (cQ) ∈ ȧs
pq

(
es′
ζη

)}

with

‖f‖Aȧs
pq(es′

ζη) = inf
f=
P

Q cQaQ

‖c‖ȧs
pq(es′

ζη)

where the infimum is taken over all admissible representations f =∑
Q cQaQ.

Remark 5 By Lemma B we remark that f =
∑

Q cQmQ or f =
∑

Q cQaQ

is convergent in S ′∞.

We have the following molecular and atomic decomposition characteri-
zation:

Theorem 6 Let s, s′ ∈ R and 0 < p, q, ζ, η ≤ ∞.

Ȧs
pq

(
Es′

ζη

)
= Mȧs

pq

(
es′
ζη

)
= Aȧs

pq

(
es′
ζη

)

with equivalent (quasi-)norms

‖f‖Ȧs
pq(Es′

ζη) ≈ ‖f‖Mȧs
pq(es′

ζη) ≈ ‖f‖Aȧs
pq(es′

ζη).

Proof. We may assume that n
p ≤ s < ∞ by Theorem 1 (6). From Lemma

A and Theorem 2, it is easy to see that Aȧs
pq

(
es′
ζη

) ⊂ Mȧs
pq

(
es′
ζη

) ⊂ Ȧs
pq

(
Es′

ζη

)
.

Hence, by Theorem 5, in order to prove the theorem, it suffices to prove that
T ȧs

pq

(
es′
ζη

) ⊂ Aȧs
pq

(
es′
ζη

)
. Let φ, ϕ as in Remark 2 and f ∈ T ȧs

pq

(
es′
ζη

)
. From

[1, Lemma 2.1], we have the ϕ-transform

f =
∑

Q

cQ(f)ϕQ

with cQ(f) = l(Q)−n〈f, φQ〉 satisfying that ‖c(f)‖ȧs
pq(es′

ζη) ≈ ‖f‖T ȧs
pq(es′

ζη)
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by the proof of Theorem 5. Using the argument similar to the proof of [1,
Theorem 4.1], we see that there exist a family of smooth atoms {aQ} and
a sequence of coefficients {cQ} such that f =

∑
Q cQaQ and ‖c‖ȧs

pq(es′
ζη) ≤

C‖c(f)‖ȧs
pq(es′

ζη) ≈ C‖f‖T ȧs
pq(es′

ζη). Thus we get the desired result.

Remark 6 The definition of Mȧs
pq

(
es′
ζη

)
and Aȧs

pq

(
es′
ζη

)
is independent of

the choice of (r1, r2, L) satisfying (4.3), (4.4) and (4.5) for smooth molecules
or of (r1, r2) satisfying (4.3) and (4.4) for smooth atoms.

5. Calderòn-Zygmund operators and trace theorems

Let D be the space of Schwartz test functions and D′ its dual. For an
arbitrary r1, r2 ∈ N0 the Calderòn-Zygmund operator T with an exponent
ε > 0 is a continuous linear operator D → D′ such that its kernel K off the
diagonal {(x, y) ∈ Rn × Rn : x = y} satisfies that

( i ) |∂γ
1 K(x, y)| ≤ C|x− y|−(n+|γ|) for |γ| ≤ r1,

( ii ) |K(x, y)−K(x, y′)| ≤ C|y−y′|r2+ε|x−y|−(n+r2+ε) if 2|y′−y| ≤ |x−y|,
(iii) |∂γ

1 K(x, y) − ∂γ
1 K(x, y′)| ≤ C|y − y′|ε|x − y|−(n+|γ|+ε) if 2|y′ − y| ≤

|x− y| for 0 < |γ| ≤ r1 (where this statement is void when r1 = 0),

∣∣∂γ
1 K(x, y)− ∂γ

1 K(x′, y)
∣∣ ≤ C|x′ − x|ε|x− y|−(n+|γ|+ε)

if 2|x′ − x| ≤ |x− y| for |γ| ≤ r1,

(where the subindex 1 stands for derivatives in the first variable)

(iv) T is bounded on L2(Rn).

We obtain the following theorem.

Theorem 7 For n
p ≤ s < ∞, s′ ∈ R and 0 < p, q, ζ, η ≤ ∞ and J as in

Theorem 2, the Calderòn-Zygmund operator T with an exponent ε > J − n

satisfying T (xγ) = 0 for |γ| ≤ r1 and T ∗(xγ) = 0 for |γ| < r2, is bounded
on Ȧs

pq

(
Es′

ζη

)
if r1 > max

(
s′, s + s′ − n

ζ

)
and r2 > J − n− s′.

Proof. The proof is similar to ones of [3]. Let f ∈ Ȧs
pq

(
Es′

ζη

)
with a wavelet

expansion f =
∑

Q cQψQ : (cQ) ∈ ȧs
pq

(
es′
ζη

)
. We suppose that the wavelet ψ

is compactly supported with large enough smoothness by Remark 1 (2) and
Remark 3 (2). Let suppψQ ⊂ cQ for every dyadic cube Q.
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We claim that Tf =
∑

Q cQ(TψQ) is convergent in S ′∞ and
‖Tf‖Ȧs

pq(Es′
ζη) ≤ C‖f‖Ȧs

pq(Es′
ζη). To see this, by Theorem 6, it suffices to

prove that TψQ is a constant multiple of smooth molecule with (r1, r2, n+ε)
satisfying (4.3), (4.4) and (4.5) for a dyadic cube Q with l(Q) = 2−l. The
zero moment condition follows from the assumption T ∗xγ = 0 for |γ| < r2.
We choose a suitable large constant C0. From [3, Corollary 2.14], when
|x− xQ| < 2C02−l, we see that

∣∣∂γTψQ(x)
∣∣ ≤ ∥∥∂γTψQ

∥∥
∞ ≤ C

∑

|α|≤|γ|+1

2l(|γ|−|α|)∥∥∂αψQ

∥∥
∞

≤ C2l|γ| ≤ Cl(Q)−|γ|
(
1 + l(Q)−1|x− xQ|

)−L

for any L ≥ 0 and |γ| ≤ r1. When |x − xQ| ≥ 2C02−l, using the condition
(ii) as above, we obtain

|TψQ(x)| =
∣∣∣∣
∫

Rn

K(x, y)ψQ(y)dy

∣∣∣∣

=
∣∣∣∣
∫

Rn

(
K(x, y)−K(x, xQ)

)
ψQ(y)dy

∣∣∣∣

≤ C

∫

cQ

|K(x, y)−K(x, xQ)||ψQ(y)|dy

≤ C

∫

|y−xQ|≤C02−l

|y − xQ|r2+ε|x− xQ|−(n+r2+ε)dy

≤ C(2l|x− xQ|)−(n+r2+ε) ≤ C(1 + 2l|x− xQ|)−(n+r2+ε).

Moreover, using the condition (iii) as above for 0 < |γ| ≤ r1, we have

∣∣∂γTψQ(x)
∣∣ ≤ C

∫

cQ

∣∣∂γ
1 K(x, y)− ∂γ

1 K(x, xQ)
∣∣|ψQ(y)|dy

≤ C

∫

|y−xQ|≤C02−l

|y − xQ|ε|x− xQ|−(n+|γ|+ε)dy

≤ C2−l(n+ε)|x− xQ|−(n+|γ|+ε)

≤ C2l|γ|(1 + 2l|x− xQ|)−(n+ε).
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Hence we observe that TψQ is a constant multiple of smooth molecule with
(r1, r2, n + ε) satisfying (4.3), (4.4) and (4.5).

We put x = (x′, xn) ∈ Rn where x′ = (x1, x2, . . . , xn−1) ∈ Rn−1. The
trace operator is defined by Tr f(x′) = f(x′, 0) for f ∈ S(Rn). The trace
theorem for the function spaces is as follows.

Theorem 8 Let n ≥ 2 and n
p ≤ s < ∞, s′ ∈ R and 0 < p, q, ζ, η ≤ ∞.

Assume that

s′ − 1
ζ

> (n− 1)
(

1
min(1, ζ)

− 1
)

.

Then the trace operator Tr extends to a linear continuous surjective operator
such that

(1) Tr Ḃs
pq

(
Bs′

ζη

)
(Rn) = Ḃ

s− 1
p

pq

(
B

s′− 1
ζ

ζη

)
(Rn−1),

(2) Tr Ḃs
pq

(
F s′

ζη

)
(Rn) = Ḃ

s− 1
p

pq

(
F

s′− 1
ζ

ζζ

)
(Rn−1) if 0 < ζ < ∞,

(3) Tr Ḟ s
pq

(
Bs′

ζη

)
(Rn) = Ḟ

s− 1
p

pp

(
B

s′− 1
ζ

ζη

)
(Rn−1) if 0 < p < ∞,

(4) Tr Ḟ s
pq

(
F s′

ζη

)
(Rn) = Ḟ

s− 1
p

pp

(
F

s′− 1
ζ

ζζ

)
(Rn−1) if 0 < p, ζ < ∞.

Proof. The proof is similar to ones of [8]. We will only prove (1) and (2)
since the proofs of (3) and (4) are as same as the proofs of (1) and (2).

(I) Proof of (1): Let f ∈ Ḃs
pq

(
Bs′

ζη

)
(Rn). By Theorem 6, we have f =∑

Q cQaQ, where aQ is a smooth atom with (r1, r2) satisfying (4.3) and (4.4)
in Rn, and c ∈ ḃs

pq

(
bs′
ζη

)
(Rn).

We claim that Tr f(x′) =
∑

Q cQaQ(x′, 0) is convergent in S ′∞(Rn−1)
and

‖Tr f‖
Ḃ

s− 1
p

pq

(
B

s′− 1
ζ

ζη

)
(Rn−1)

≤ C‖f ‖Ḃs
pq(Bs′

ζη)(Rn).

Since supp aQ ⊂ 3Q for any dyadic cube Q, there is a positive integer N

such that
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∑

Q

cQaQ(x′, 0) =
N∑

i=−N

∑

Q′
cQ′×[il(Q′),(i+1)l(Q′))aQ′×[il(Q′),(i+1)l(Q′))(x′, 0)

≡
N∑

i=−N

∑

Q′
c̃Q′,iaQ′,i(x′)

where c̃Q′,i = cQ′×[il(Q′),(i+1)l(Q′)) and aQ′,i(x′) = aQ′×[il(Q′),(i+1)l(Q′))

·(x′, 0). From the assumption it is straightforward to see that aQ′,i(x′)
is a smooth atom with (r1, 0) satisfying (4.3) and (4.4) for Rn−1 because
r1 > max

(
s′, s+s′− n

ζ

) ≥ max
(
s′− 1

ζ , s− 1
p +s′− 1

ζ− n−1
ζ

)
, and 0 > n−1

min(1,ζ)−
(n− 1)− (

s′ − 1
ζ

)
. In order to show that Tr f =

∑N
i=−N

∑
Q′ c̃Q′,iaQ′,i(x′)

converges in S ′∞(Rn−1) it suffices to see (c̃Q′,i) ∈ ḃ
s− 1

p
pq

(
b
s′− 1

ζ

ζη

)
(Rn−1). By

similarity, we only consider the case c̃Q′ ≡ c̃Q′,0. Then we have for a dyadic
cube Q′ with l(Q′) = 2−l in Rn−1,

c̃
b

s′− 1
ζ

ζη (Q′)
=

{ ∑

j≥l

∥∥∥∥
∑

l(P ′)=2−j

l(P ′)−(s′− 1
ζ )|c̃P ′ |χP ′

∥∥∥∥
η

Lζ(Q′)

}1/η

≤ C

{ ∑

j≥l

( ∫

Q′×[0,2−l)

·
( ∑

l(P ′)=2−j

2js′
∣∣cP ′×[0,2−j)

∣∣χP ′×[0,2−j)

)ζ

dx

)η/ζ}1/η

≤ Ccbs′
ζη(Q′×[0,2−l)).

Hence we have

‖c̃‖
ḃ

s− 1
p

pq

(
b

s′− 1
ζ

ζη

)
(Rn−1)

=
{ ∑

l

( ∑

l(Q′)=2−l

2l(s− 1
p−n−1

p )p c̃p

b
s′− 1

ζ
ζη (Q′)

)q/p}1/q

≤ C

{ ∑

l

( ∑

l(Q′)=2−l

2l(s−n
p )p cp

bs′
ζη(Q′×[0,2−l))

)q/p}1/q

≤ C‖c‖ḃs
pq(bs′

ζη)(Rn).
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This implies that c̃ ∈ ḃ
s− 1

p
pq

(
b
s′− 1

ζ

ζη

)
(Rn−1) and ‖Tr f‖

Ḃ
s− 1

p
pq

(
B

s′− 1
ζ

ζη

)
(Rn−1)

≤ C‖f‖Ḃs
pq(Bs′

ζη)(Rn).

Next, let us show that the trace operator is onto. Let f ∈ Ḃ
s− 1

p
pq

(
B

s′− 1
ζ

ζη

)

·(Rn−1). By Theorem 6 and Remark 6, we have f =
∑

Q′ cQ′aQ′ where aQ′ is
a smooth atom with large enough (r1, r2) satisfying (4.3) and (4.4) in Rn−1,

and c ∈ ḃ
s− 1

p
pq

(
b
s′− 1

ζ

ζη

)
(Rn−1). Let φ̃ ∈ C∞c (R) with supp φ̃ ⊂ ( − 1

2 , 1
2

)
and

φ̃(0) = 1 and ‖∂γ φ̃‖∞ ≤ 1 for |γ| ≤ r1. We set φ̃l(t) = φ̃(2lt), ãQ′×[0,2−l) =
aQ′ ⊗ φ̃l and c′Q′×[0,2−l) = cQ′ . We define F =

∑
l

∑
l(Q′)=2−l c′Q′×[0,2−l)

·ãQ′×[0,2−l). It is easy to see that ãQ′×[0,2−l) is a smooth atom satisfying
(4.3) and (4.4) in Rn. We will prove that {c′Q′×[0,2−l)} ∈ ḃs

pq

(
bs′
ζη

)
(Rn). We

see the following estimates: for a dyadic cube Q′ with l(Q′) = 2−l in Rn−1,

c′
bs′

ζη(Q′×[0,2−l))

=
{ ∑

j≥l

∥∥∥∥
∑

l(P ′)=2−j

2js′
∣∣c′P ′×[0,2−j)

∣∣χP ′×[0,2−j)

∥∥∥∥
η

Lζ(Q′×[0,2−l))

}1/η

≤ C

{ ∑

j≥l

( ∫

Q′

( ∑

l(P ′)=2−j

2j(s′− 1
ζ )|cP ′ |χP ′(x′)

)ζ

dx′
)η/ζ}1/η

≤ Cc
b

s′− 1
ζ

ζη (Q′)
.

Hence we have

‖c′‖ḃs
pq(bs′

ζη)(Rn) =
{ ∑

l

∥∥∥∥
∑

l(Q′)=2−l

2lsc′
bs′

ζη(Q′×[0,2−l))
χQ′×[0,2−l)

∥∥∥∥
q

Lp(Rn)

}1/q

≤ C

{ ∑

l

∥∥∥∥
∑

l(Q′)=2−l

2lsc
b

s′− 1
ζ

ζη (Q′)
χQ′×[0,2−l)

∥∥∥∥
q

Lp(Rn)

}1/q

≤ C

{ ∑

l

∥∥∥∥
∑

l(Q′)=2−l

2l(s− 1
p )c

b
s′− 1

ζ
ζη (Q′)

χQ′

∥∥∥∥
q

Lp(Rn−1)

}1/q

≤ C‖c‖
ḃ

s− 1
p

pq

(
b

s′− 1
ζ

ζη

)
(Rn−1)

.
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By Theorem 6, this implies that F ∈ Ḃs
pq

(
Bs′

ζη

)
(Rn), and Tr F = f , which

shows that the trace operator is onto.
(II) Proof of (2): The proof is similar to (I). We use the same notation

as in (I). In order to show that the trace operator is continuous, it suffices
to prove that for a dyadic cube Q′ with l(Q′) = 2−l in Rn−1,

c̃
f

s′− 1
ζ

ζζ (Q′)
≤ Ccfs′

ζη(Q′×[0,2−l))

if 0 < ζ < ∞. We see that

c̃
f

s′− 1
ζ

ζζ
(Q′)

=

‚‚‚‚
X

j≥l

„ X

l(P ′)=2−j

l(P ′)−(s′− 1
ζ
)|c̃P ′ |χP ′

«ζff1/ζ‚‚‚‚
Lζ(Q′)

≤ C

Z

Q′×[0,2−l)

X

j≥l

X

l(P ′)=2−j

2js′ζ |cP ′×[0,2−j)|ζχP ′×[2−(j+1),2−j)dx

ff1/ζ

.

Since {P ′ × [2−(j+1), 2−j)} forms a disjoint family, we have

c̃
f

s′− 1
ζ

ζζ
(Q′)

≤ C

Z

Q′×[0,2−l)

„X

j≥l

X

l(P ′)=2−j

2js′ |cP ′×[0,2−j)|χP ′×[2−(j+1),2−j)

«ζ

dx

ff1/ζ

≤ C

Z

Q′×[0,2−l)

„X

j≥l

X

l(P ′)=2−j

2js′ |cP ′×[0,2−j)|χP ′×[2−(j+1),2−j)

«η ζ
η

dx

ff1/ζ

≤ C

Z

Q′×[0,2−l)

„X

j≥l

„ X

l(P ′)=2−j

2js′ |cP ′×[0,2−j)|χP ′×[2−(j+1),2−j)

«η« ζ
η

dx

ff1/ζ

≤ C

Z

Q′×[0,2−l)

„X

j≥l

„ X

l(P ′)=2−j

2js′ |cP ′×[0,2−j)|χP ′×[0,2−j)

«η« ζ
η

dx

ff1/ζ

≤ C

‚‚‚‚
X

j≥l

„ X

l(P ′)=2−j

2js′ |cP ′×[0,2−j)|χP ′×[0,2−j)

«ηff 1
η
‚‚‚‚

Lζ(Q′×[0,2−l))

≤ Cc
fs′

ζη
(Q′×[0,2−l))

.

Hence we obtain that the trace operator is continuous.
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In order to prove that the trace operator is onto, it is sufficient to show,
for a dyadic cube Q′ with l(Q′) = 2−l in Rn−1,

c′
fs′

ζη(Q′×[0,2−l))
≤ Cc

f
s′− 1

ζ
ζζ (Q′)

if 0 < ζ < ∞. For this we note that

c′
fs′

ζη(Q′×[0,2−l))

=
∥∥∥∥
{ ∑

j≥l

( ∑

l(P ′)=2−j

2js′
∣∣c′P ′×[0,2−j)

∣∣χP ′×[0,2−j)

)η}1/η∥∥∥∥
Lζ(Q′×[0,2−l))

.

From the proof of Theorem 1.4 in [8], it follows that for t > 0,

∑

l(P ′)=2−j

2js′ |cP ′ |χP ′×[0,2−j) ≤ CMt

( ∑

l(P ′)=2−j

2js′ |cP ′ |χP ′×[2−(j+1),2−j)

)
.

Hence we denote Mt(f) ≡ M(f t)1/t for the maximal operator M . Then
from the Fefferman-Stein inequality for 0 < t < min(ζ, η) and 0 < ζ < ∞,
we obtain

c′
fs′

ζη(Q′×[0,2−l))

≤ C

∥∥∥∥
{ ∑

j≥l

(
Mt

( ∑

l(P ′)=2−j

2js′ |cP ′ |χP ′×[2−(j+1),2−j)

))η}1/η∥∥∥∥
Lζ(Q′×[0,2−l))

≤ C

∥∥∥∥
{ ∑

j≥l

( ∑

l(P ′)=2−j

2js′ |cP ′ |χP ′×[2−(j+1),2−j)

)η}1/η∥∥∥∥
Lζ(Q′×[0,2−l))

≤ C

∥∥∥∥
∑

j≥l

∑

l(P ′)=2−j

2js′ |cP ′ |χP ′×[2−(j+1),2−j)

∥∥∥∥
Lζ(Q′×[0,2−l))

≤ C

{ ∫

Q′

∑

j≥l

( ∑

l(P ′)=2−j

2j(s′− 1
ζ )|cP ′ |χP ′

)ζ

dx′
}1/ζ

≤ Cc
f

s′− 1
ζ

ζζ (Q′)
,

which completes the proof of (2).
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6. Inhomogeneous cases

Since almost all of our methods and results of the previous sections
so far easily adapt to the inhomogeneous case, except for few notational
inconveniences, we restrict ourselves to highlighting the only differences.

In Section 1 the inhomogeneous version of sequence spaces will be in-
dexed by the set of dyadic cubes Q with l(Q) ≤ 1. We use notations as

pq

and as
pq

(
es′
ζη

)
replacing ȧs

pq and ȧs
pq

(
es′
ζη

)
. Then the inhomogeneous versions

of Theorem 1 hold except the argument of (4) and (6) which is replaced by

(4)′ es
pq ⊂ a0

∞∞(es
pq),

(6)′ When s < n
p ,

b
s′+ n

p−n
ζ

pp ⊂ bs
p∞

(
es′
ζη

) ⊂ b
s+s′−n

ζ
p∞ if 0 < p ≤ ζ ≤ η ≤ ∞.

The inhomogeneous versions of Lemma A, Lemma B and Theorem 2
with s ∈ R hold.

We assume that s, s′, p, q, ζ, η, r, L, are as in Section 3.
We will use a family of smooth wavelets {ψ0, ψ

(i)} for the inhomogeneous
case such that {ψ0(x−k) (k ∈ Zn), 2n(j−1)/2ψ(i)(2j−1x−k) (i = 1, . . . , 2n−
1, j ∈ N, k ∈ Zn)} forms an orthonormal basis of L2(Rn), and ψ(i) satisfies
(3.1), (3.2) and (3.3), and a scaling function ψ0 satisfies (3.1) and (3.2), but
does not satisfy the vanishing moment condition (3.3). We will forget to
write the index i of the wavelet, which is of no consequence.

We put ψQ(x) = ψ0(x−k) if Q = [0, 1)n+k, k ∈ Zn, ψQ(x) = ψ(2l−1x−
k) if Q = [0, 2−l)n + 2−lk, l ∈ N, k ∈ Zn. We suppose that r and L satisfy
(3.4) and (3.5). We define the inhomogeneous version of the new function
spaces given by

As
pq

(
Es′

ζη

)
=

{
f =

∑

l(Q)≤1

cQψQ ∈ S ′ : (cQ) ∈ as
pq

(
es′
ζη

)}

with ‖f‖As
pq(Es′

ζη) = ‖c‖as
pq(es′

ζη).

From Lemma B, note that f =
∑

l(Q)≤1 cQψQ is convergent in S ′ for
(cQ) ∈ as

pq

(
es′
ζη

)
. Then we get the inhomogeneous version of Theorem 3.

We select a function φ0 ∈ S satisfying
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( i ) supp φ̂0 ⊂ {ξ ∈ Rn : |ξ| ≤ 2},
( ii ) |φ̂0(ξ)| ≥ C > 0 if |ξ| ≤ 5

3 .

Let φ ∈ S satisfying (4.1) and (4.2) and φj(x) = 2njφ(2jx), j ∈ N. We
put φQ(x) = φ0(x − k) if Q = [0, 1)n + k, k ∈ Zn, φQ(x) = φ(2lx − k) if
Q = [0, 2−l)n + 2−lk, l ∈ N, k ∈ Zn. Using {φQ}l(Q)≤1 and {φj}j∈N0 , we
define the inhomogeneous version of Das

pq

(
es′
ζη

)
and Tas

pq

(
es′
ζη

)
as in Section

4. Then we obtain the inhomogeneous analogues of Theorem 4 and Theorem
5.

In the inhomogeneous case we define a family of smooth molecules mQ

with (r1, r2, L) satisfying (4.3), (4.4) and (4.5) as in Section 4 if l(Q) < 1.
If l(Q) = 1, we assume

∣∣∂γmQ(x)
∣∣ ≤ l(Q)−|γ|

(
1 + l(Q)−1|x− xQ|

)−L
, |γ| ≤ r1

with (r1, L) satisfying (4.3) and (4.5), but we do not assume the vanish-
ing moment conditions if l(Q) = 1. For the smooth atom we also do not
assume the vanishing moment conditions if l(Q) = 1. Then we obtain the
inhomogeneous analogue of Theorem 6.

Theorem 8 of the trace theorem with s ∈ R also carries over to the
inhomogeneous case under some appropriate inhomogeneous modifications.

In the inhomogeneous case we have the following characterization of
local polynomial approximation (cf. S. Jaffard [5]).

Theorem 9
( i ) Let s, s′ ∈ R and let 1 ≤ p ≤ ∞, 0 < q ≤ ∞ in the B-type case

or 1 ≤ p < ∞, 1 ≤ q ≤ ∞ in the F-type case. We assume s′ > 0,
s + s′ − n

p > 0 and s + s′ − n
p /∈ N. If f ∈ As

∞∞
(
Es′

pq

)
, then

sup
l(Q)≤1

l(Q)−s inf
degP<s+s′−n

p

‖f − P‖Es′
pq(Q) < ∞

where the infimum is taken over all polynomials P of degree < s+s′−n
p

and Es′
pq(Q) denotes either Besov spaces or Triebel-Lizorkin spaces on

Q.
( ii ) Conversely, let s, s′ ∈ R and 0 < p, q ≤ ∞ and r > max(s′, J−n−s′)

with J as in Theorem 2. We assume that f ∈ A0
∞∞

(
Es′

pq

)
and for each

c > 1,
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sup
l(Q)≤c−1

l(Q)−s inf
degP<r

‖f − P‖Es′
pq(cQ) < ∞

where the infimum is taken over all polynomials P of degree < r.
Then we have f ∈ As

∞∞
(
Es′

pq

)
.

Proof. We may assume that the smooth wavelets are compactly supported
because of independence of wavelet basis choice by Remark 1 (2). Therefore,
we assume that there exists c > 1 such that supp ψQ ⊂ cQ for any dyadic
cube Q.

(i) Let f ∈ As
∞∞

(
Bs′

pq

)
and the wavelet expansion f =

∑
j≥0

∑
l(Q)=2−j

·cQψQ with (cQ) ∈ as
∞∞

(
bs′
pq

)
. Let 4hf(x) = f(x + h)− f(x).

We recall that for k > s′ > 0 and 0 < q ≤ ∞, 1 ≤ p ≤ ∞,

‖f‖Bs′
pq(Q) = ‖f‖Lp(Q) +

{ ∑

j≥0

(
2js′ sup

|h|≤2−j

∥∥4k
hf

∥∥
Lp(Q(kh))

)q
}1/q

where Q is a dyadic cube with l(Q) = 2−l ≤ 1, and

Q(kh) = {x ∈ Rn : [x, x + kh] ⊂ Q}.

Let r′ ∈ N such that r′−1 < s+s′−n
p < r′. Let Pj(x) =

∑
|α|<r′

∂αgj(x0)
α! (x−

x0)α denote the Taylor polynomial of gj =
∑

l(R)=2−j cRψR of degree r′−1 at
some point x0 ∈ Q. We put P(x) =

∑
j≥0 Pj(x). Notice that |∂αψR(x)| ≤

Cl(R)−|α| and |cR| ≤ Cl(R)s+s′−n
p . Hence, it follows that |∂αgj(x)| ≤

C2−j(s+s′−n
p−|α|) for |α| < r′. Therefore the series P(x) converges and it is

a polynomial of degree r′ − 1. We put

f − P =
∑

j≥0

(gj − Pj) =
∑

0≤j≤l

(gj − Pj) +
∑

j>l

gj −
∑

j>l

Pj ≡ f1 + f2 − f3.

Then we claim that ‖fi‖Bs′
pq(Q) ≤ Cl(Q)s, i = 1, 2, 3. Since

gj(x)− Pj(x) =
∑

|α|=r′

∫ 1

0

r′

α!
∂αgj(x0 + (x− x0)t)(1− t)r′−1(x− x0)αdt,

and
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4k
h(gj − Pj)(x) =

∫ ∞

−∞
Nk(t)

∑

|α|=k

k!
α!

∂α(gj − Pj)(x + th)hαdt

where Nk is the B-spline of order k, we see that

∣∣4k
h(gj − Pj)(x)

∣∣ ≤ C
∑

0≤|α|≤min(k,r′)

|h|k2−l(r′−|α|)2(k+r′−|α|)j2−j(s+s′−n
p )

≤ C
∑

0≤|α|≤min(k,r′)

2−νk2−l(r′−|α|)2(k+r′−|α|)j2−j(s+s′−n
p )

if |h| ≤ 2−ν and x ∈ Q(kh). Therefore we have

{ ∑

l≤ν

(
2νs′ sup

|h|≤2−ν

∥∥4k
hf1

∥∥
Lp(Q(kh))

)q}1/q

≤ C

{ ∑

l≤ν

(
2νs′

∑

0≤j≤l

sup
|h|≤2−ν

∥∥4k
h(gj − Pj)

∥∥
Lp(Q(kh))

)q}1/q

≤ C

{ ∑

l≤ν

(
2νs′

∑

0≤j≤l

∑

0≤|α|≤min(k,r′)

· 2−νk2−l(r′−|α|)2−j(s+s′−n
p )2j(r′+k−|α|)

)q}1/q

2−nl/p

≤ C

{ ∑

l≤ν

2ν(s′−k)q

( ∑

0≤|α|≤min(k,r′)

2−l(r′−|α|)

·
∑

0≤j≤l

2j(r′−s−s′+ n
p )2j(k−|α|)

)q}1/q

2−nl/p

≤ C2−nl/p2−(k−s′)l2l(r′−s−s′+ n
p ) ∑

0≤|α|≤min(k,r′)

2−l(r′−|α|)2l(k−|α|)

≤ C2−ls

if k > s′ > 0 and r′ > s + s′ − n
p .

On the other hand we have
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‖f1‖Lp(Q) ≤
∥∥∥∥

∑

0≤j≤l

(gj − Pj)
∥∥∥∥

Lp(Q)

≤ C

∥∥∥∥
∑

0≤j≤l

2−j(s+s′−n
p−r′)2−lr′

∥∥∥∥
Lp(Q)

≤ C
∑

0≤j≤l

2j(r′−s−s′+ n
p )2−lr′2−ln/p ≤ C2l(r′−s−s′+ n

p )2−lr′2−ln/p

≤ C2−(s+s′)l ≤ C2−ls

if s′ > 0 and r′ > s + s′ − n
p . Hence we get ‖f1‖Bs′

pq(Q) ≤ Cl(Q)s.
We will next give estimates of f2.

f2(x) =
∑

j>l

gj(x) =
∑

j>l

∑

l(R)=2−j

cRψR(x)

=
∑

j>l

∑

l(R)=2−j ,R∩cQ6=∅
cRψR(x) ≡ g̃l(x)

for x ∈ Q. Then we have

‖g̃l‖Bs′
pq(Rn) ≤

{ ∑

j>l

∥∥∥∥
∑

l(R)=2−j ,R∩cQ6=∅
l(R)−s′ |cR|χR

∥∥∥∥
q

Lp(Rn)

}1/q

≤
{ ∑

j>l

∥∥∥∥
∑

l(R)=2−j

l(R)−s′ |cR|χR

∥∥∥∥
q

Lp(cQ)

}1/q

≤ C
∑

l(Q̄)=2−l,cQ∩Q̄6=∅

{ ∑

j>l

∥∥∥∥
∑

l(R)=2−j

l(R)−s′ |cR|χR

∥∥∥∥
q

Lp(Q̄)

}1/q

From the above we obtain

‖f2‖Bs′
pq(Q) = inf

f2=g|Q
‖g‖Bs′

pq(Rn) ≤ ‖g̃l‖Bs′
pq(Rn)

≤ C
∑

l(Q̄)=2−l,cQ∩Q̄6=∅

{ ∑

j>l

∥∥∥∥
∑

l(R)=2−j

l(R)−s′ |cR|χR

∥∥∥∥
q

Lp(Q̄)

}1/q

≤ C2−ls
∑

l(Q̄)=2−l,cQ∩Q̄6=∅
l(Q̄)−s

{ ∑

j>l

∥∥∥∥
∑

l(R)=2−j

l(R)−s′ |cR|χR

∥∥∥∥
q

Lp(Q̄)

}1/q

≤ C2−ls‖c‖as∞∞(bs′
pq) ≤ C2−ls.
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On the other hand we have

‖f2‖Lp(Q) ≤
∥∥∥∥

∑

j>l

gj

∥∥∥∥
Lp(Q)

≤ C

∥∥∥∥
∑

j>l

2−j(s+s′−n
p )

∥∥∥∥
Lp(Q)

≤ C2−l(s+s′−n
p )2−ln/p ≤ C2−l(s+s′) ≤ C2−ls

if s + s′ − n
p > 0 and s′ > 0. Hence we get ‖f2‖Bs′

pq(Q) ≤ Cl(Q)s.

Since for k ≥ r′ we have 4k
hf3 = 0, we may assume that k < r′. Since

∣∣4k
hPj(x)

∣∣ ≤
∣∣∣∣
∫ ∞

−∞
Nk(t)

∑

|α|=k

k!
α!

∂αPj(x + th)hαdt

∣∣∣∣

≤ C
∑

k≤|α|<r′
2j|α|2−j(s+s′−n

p )2−l(|α|−k)|h|k

if x ∈ Q(kh), we have

{ ∑

ν≥l

(
2νs′ sup

|h|≤2−ν

∥∥4k
hf3

∥∥
Lp(Q(kh))

)q}1/q

≤ C

{ ∑

ν≥l

(
2νs′

∑

j>l

∑

k≤|α|<r′
2j|α|2−j(s+s′−n

p )2−l(|α|−k)2−νk2−ln/p

)q}1/q

≤ C

{ ∑

ν≥l

2−ν(k−s′)q
( ∑

k≤|α|<r′
2−l(|α|−k)

∑

j>l

2−j(s+s′−n
p−|α|)

)q}1/q

2−ln/p

≤ C2−l(k−s′)
∑

k≤|α|<r′
2−l(|α|−k)2−l(s+s′−n

p−|α|)2−ln/p ≤ C2−ls

if s + s′ − n
p > r′ − 1 and k > s′. On the other hand we have

‖f3‖Lp(Q) ≤
∥∥∥∥

∑

j>l

Pj

∥∥∥∥
Lp(Q)

≤ C

∥∥∥∥
∑

j>l

∑

|α|<r′
2−j(s+s′−n

p−|α|)2−l|α|‖Lp(Q)
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≤ C
∑

|α|<r′

∑

j>l

2−j(s+s′−n
p−|α|)2−l|α|2−nl/p

≤ C
∑

|α|<r′
2−l(s+s′−n

p−|α|)2−l|α|2−nl/p ≤ C2−l(s+s′) ≤ C2−ls

if s′ > 0 and s + s′ − n
p > r′ − 1. Hence we get ‖f3‖Bs′

pq(Q) ≤ Cl(Q)s. For
the F-type case the above argument also holds.

(ii) We shall treat only the case of the B-type. For the case of the
F-type, the result follows similarly. We assume that f ∈ A0

∞∞
(
Bs′

pq

)
and

the wavelet expansion f =
∑

l(Q)≤1 cR(f)ψR with (cR(f)) ∈ a0
∞∞

(
bs′
pq

)
for

an inhomogeneous (r, L)-smooth compactly supported wavelet ψQ where
cR(f) = l(R)−n〈f, ψR〉. Let supp ψQ ⊂ cQ for any dyadic cube Q. Let
P be any polynomial of degree < r and Q a dyadic cube with l(Q) =
2−l < 1. We choose g ∈ Bs′

pq(Rn) such that g = f − P on cQ. Since
cR(f) = l(R)−n〈f, ψR〉 = l(R)−n〈f − P, ψR〉 = l(R)−n〈g, ψR〉 = cR(g) for
R ⊂ Q, we have, for 0 < p ≤ ∞,

cbs′
pq(Q) =

{ ∑

j≥l

∥∥∥∥
∑

l(R)=2−j

l(R)−s′ |cR(f)|χR

∥∥∥∥
q

Lp(Q)

}1/q

=
{ ∑

j≥l

∥∥∥∥
∑

l(R)=2−j

l(R)−s′ |cR(g)|χR

∥∥∥∥
q

Lp(Q)

}1/q

≤
{ ∑

j≥0

∥∥∥∥
∑

l(R)=2−j

l(R)−s′ |cR(g)|χR

∥∥∥∥
q

Lp(Rn)

}1/q

= ‖g‖Bs′
pq(Rn).

Hence we see cbs′
pq(Q) ≤ ‖f −P‖Bs′

pq(cQ) for any polynomial P of degree < r,
that is, cbs′

pq(Q) ≤ infdegP<r ‖f − P‖Bs′
pq(cQ). When s > 0, we have

‖c‖as∞∞(bs′
pq) = sup

l(Q)≤1

l(Q)−scbs′
pq(Q)

≤ sup
l(Q)≤c−1

l(Q)−scbs′
pq(Q) + sup

c−1<l(Q)≤1

l(Q)−scbs′
pq(Q)

≤ sup
l(Q)≤c−1

l(Q)−s inf
degP<r

‖f − P‖Bs′
pq(cQ) + cs‖c‖a0∞∞(bs′

pq) < ∞.
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This implies f ∈ As
∞∞

(
Bs′

pq

)
. When s ≤ 0, it is obvious that f ∈ As

∞∞
(
Bs′

pq

)

because A0
∞∞

(
Bs′

pq

) ⊂ As
∞∞

(
Bs′

pq

)
. This concludes the proof.
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