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Abstract. In this paper, we study the Lp boundedness of a class of maximal op-

erators T
(γ)
{Ωj}

and a related class of rough singular integrals on product spaces. We

obtain appropriate Lp estimates for such maximal operators and singular integrals.

These estimates are used in an extrapolation argument and allow us to obtain some

new and improved results for certain maximal integral operators and singular integrals

on product spaces under certain sharp conditions on the kernel functions. Also, one

of our main results in this paper is a corrigendum of a result obtained by Ding-Lin.
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1. Introduction and statement of results

Throughout this paper, let Rn, n ≥ 2, be the n-dimensional Euclidean
space and Sn−1 be the unit sphere in Rn equipped with the normalized
Lebesgue surface measure dσ. Also, we let ξ′ denote ξ/|ξ| for ξ ∈ Rn\{0}
and p′ denote the exponent conjugate to p, that is, 1/p + 1/p′ = 1.

A problem that has attracted the attention of many authors in re-
cent years is finding a class of kernels M so that the maximal operator
supK∈M |TKf | is bounded on Lp for some p, where TK is the singular inte-
gral operator defined by

TKf(x) = p.v.
∫

Rn

f(x− y)K(y)dy.

Such maximal operators were studied initially in [11] and subsequently
by many other authors. See for example, [1], [2], [4], [5], [12], [13], [26].

L. K. Chen and H. Lin [11] studied the Lp boundedness of the maximal
operator supK∈M |TKf | whenever the class of kernels M is given for a fixed
function Ω ∈ L1(Sn−1) and a fixed number γ ≥ 1 by
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M =: M (γ)(Ω) =
{

K(x) =
Ω(x′)
|x|n h(|x|) :

h is a radial function such that ‖h‖Lγ(R+,dr/r) ≤ 1
}

.

They proved the following:

Theorem A Let Ω be an arbitrary but fixed function defined on Sn−1

with Ω ∈ C(Sn−1) and satisfies
∫
Sn−1 Ω(y)dσ(y) = 0. Then A(γ)

Ω (f) =
supK∈M(γ)(Ω) |TKf | is bounded on Lp(Rn) for (nγ)/(nγ − 1) < p < ∞ and
1 ≤ γ ≤ 2. Moreover, the range of p is the best possible.

In the case γ = 2, L. K. Chen and X. Wang in [12] investigated the Lp

boundedness of the more general class of maximal operators supK∈M |TKf |,
when M =: M (2)({Ωj}) where {Ωj} is an arbitrary but fixed countable
subset of L1(Sn−1) and

M (γ)({Ωj}) =
{

K(x) =
∑

j

Ωj(x′)
|x|n hj(|x|) :

( ∫ ∞

0

∑

j

|hj(t)|γ dt

t

)1/γ

≤ 1
}

for a given γ ≥ 1.

L. K. Chen and X. Wang [12] proved the following:

Theorem B Assume that 2n/(2n− 1) < p < ∞. If {Ωj} is a fixed count-
able subset of L2(Sn−1) with

∫
Sn−1 Ωj(y)dσ(y) = 0 and

∑
j ‖Ωj‖2L2(Sn−1)

< ∞, then H
(2)
{Ωj}(f) is bounded on Lp(Rn), where H

(γ)
{Ωj}(f) =

supK∈M(γ)({Ωj}) |TKf |. That is,
∥∥H

(2)
{Ωj}(f)

∥∥
Lp(Rn)

≤ Cp‖f‖Lp(Rn) for all
f in the Schwartz class. Moreover, the range of p is the best possible.

We notice that if we take in the definition of M (γ)({Ωj}) our countable
set {Ωj} to be the singleton Ω, where Ω is a fixed function defined on Sn−1

with Ω ∈ L2(Sn−1) and satisfies
∫
Sn−1 Ω(y)dσ(y) = 0 and if we take the

countable set {hj} to be the singleton h and letting h vary with h belongs
to the class L2(R+, dr/r), the maximal function H

(γ)
{Ωj}(f) will reduce to

the maximal function A(γ)
Ω (f). Thus, the maximal operator H

(γ)
{Ωj}(f) is a
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natural extension of the maximal operator A(γ)
Ω (f).

On the other hand, Ding and Lin [13] considered the analogue of The-
orem B in the product space setting. Let 1 ≤ γ < ∞ and {Ωj} be an
arbitrary but fixed countable subset of L1(Sn−1 × Sm−1) satisfying the fol-
lowing cancellation conditions for all j:

∫

Sn−1
Ωj(u, ·)dσ(u) =

∫

Sm−1
Ωj(·, v)dσ(v) = 0. (1.1)

Let E(γ)({Ωj}), 1 ≤ γ < ∞, denote the class of all kernels of the form

K(u, v) =
∑

j

hj(|u|, |v|)Ωj(u, v)
|u|n|v|m ,

where

( ∫ ∞

0

∫ ∞

0

∑

j

|hj(r, t)|γ drdt

rt

)1/γ

≤ 1.

Now define the singular integral TK by

TKf(x, y) = p.v.
∫

Rn×Rm

f(x− u, y − v)K(u, v)dudv

and T
(γ)
{Ωj}(f) = supK∈E(γ)({Ωj}) |TKf |.

The following can be found in Ding and Lin in [13]:

Theorem C Suppose γ = 2 and {Ωj} ⊆ Lq(Sn−1 × Sm−1) for some
1 < q ≤ ∞ and satisfies

∑
j ‖Ωj‖2Lq(Sn−1×Sm−1) < ∞. Suppose that p and q

satisfy one of the following conditions:

(a) 1 < q < 2 and max{2nq′/(2n + nq′ − 2), 2mq′/(2m + mq′ − 2)} < p <

2q′/(q′ − 2),
(b) 2 ≤ q < max{2(n− 1)/(n− 2), 2(m− 1)/(m− 2)} and max{2nq′/(2n +

nq′ − 2), 2mq′/(2m + mq′ − 2)} < p < ∞,
(c) q > max{2(n− 1)/(n− 2), 2(m− 1)/(m− 2)} and 1 < p < ∞.

Then the maximal operator T
(2)
{Ωj}(f) can be extended to a bounded op-
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erator on Lp(Rn ×Rm). That is,

∥∥T
(2)
{Ωj}(f)

∥∥
Lp(Rn×Rm)

≤ Cp‖f‖Lp(Rn×Rm)

for all f ∈ Lp(Rn ×Rm).

We should point out the range of p given in Theorem C is not true. In
fact, if we take for example, q = ∞, then we notice from Theorem C that
the range of p is 1 < p < ∞ which is impossible because the best range
of p for the maximal operator T

(2)
{Ωj}(f) to be bounded on Lp(Rn ×Rm) is

2n/(2n− 1) < p < ∞. So it is natural to ask what is the right range of p so
that T

(2)
{Ωj} is bounded on Lp(Rn ×Rm). One of the main purposes of this

paper is to determine the right range of p so that T
(2)
{Ωj}(f) is bounded on

Lp(Rn×Rm). In fact, we shall deal with the more general class of operators
T

(γ)
Φ,Ψ,{Ωj} (for γ ≥ 1) as described in the following theorems, where Φ and

Ψ are suitable functions defined on [0,∞),

T
(γ)
Φ,Ψ,{Ωj}(f) = sup

K∈E(γ)({Ωj})
|TK,Φ,Ψf | (1.2)

and

TK,Φ,Ψf(x, y) = p.v.
∫

Rn×Rm

f(x− Φ(|u|)u′, y −Ψ(|v|)v′)K(u, v)dudv.

Theorem 1.1 Let T
(γ)
Φ,Ψ,{Ωj} be given as in (1.2) with 1 ≤ γ ≤ 2. Assume

that Φ and Ψ are C2([0,∞)), convex, and increasing functions with Φ(0) =
Ψ(0) = 0. Suppose that {Ωj} is a fixed countable subset of Lq(Sn−1×Sm−1)
for some 1 < q ≤ ∞ with

∥∥‖Ωj‖Lq(Sn−1×Sm−1)

∥∥
lγ′ < ∞. Then the inequality

∥∥T
(γ)
Φ,Ψ,{Ωj}(f)

∥∥
Lp(Rn×Rm)

≤ Cp

(
q

q − 1

)2/γ′∥∥‖Ωj‖Lq(Sn−1×Sm−1)

∥∥
lγ′‖f‖Lp(Rn×Rm) (1.3)

holds for (αβγ′)/(γ′α + αβ − γ′) < p < ∞ and 1 ≤ γ ≤ 2, where α =
min(m,n) and β = max{2, q′}.



On the boundedness of a class of rough maximal operators on product spaces 5

We notice that if we take in the definition of the maximal function
T

(γ)
Φ,Ψ,{Ωj}(f) our countable set {Ωj} to be the the singleton Ω, where Ω

is a fixed function defined on Sn−1 × Sm−1 with Ω ∈ L1(Sn−1 × Sm−1)
and satisfies (1.1) with Ωj replaced by Ω and if we take the countable set
{hj} to be the singleton h and letting h vary with h belongs to the class
Lγ(R+ × R+, drdt

rt ), the maximal function T
(γ)
Φ,Ψ,{Ωj}(f) will reduce to the

maximal function M(γ)
Φ,Ψ,Ωf(x, y), where M(γ)

Φ,Ψ,Ω is the maximal operator
defined by

M(γ)
Φ,Ψ,Ωf(x, y) = sup

h∈Lγ(R+×R+, drdt
rt )

∣∣SΦ,Ψ,Ω,hf(x, y)
∣∣ (1.4)

and SΦ,Ψ,Ω,h is the singular integral operator defined on the product space
Rn ×Rm by

SΦ,Ψ,Ω,hf(x, y)

= p.v.
∫

Rn×Rm

Ω(u, v)
|u|n|v|m h(|u|, |v|)f(

x− Φ(|u|)u′, y −Ψ(|v|)v′)dudv. (1.5)

Therefore, by Theorem 1.1 we immediately get the following:

Theorem 1.2 Let M(γ)
Φ,Ψ,Ω be given as in (1.4) with 1 ≤ γ ≤ 2. Assume

that Φ and Ψ are C2([0,∞)), convex, and increasing functions with Φ(0) =
Ψ(0) = 0. Suppose that Ω ∈ Lq(Sn−1 × Sm−1) for some 1 < q ≤ ∞. Then

∥∥M(γ)
Φ,Ψ,Ω(f)

∥∥
Lp(Rn×Rm)

≤ Cp

(
q

q − 1

)2/γ′

‖Ω‖Lq(Sn−1×Sm−1)‖f‖Lp(Rn×Rm) (1.6)

holds for (αβγ′)/(γ′α + αβ − γ′) < p < ∞ and 1 ≤ γ ≤ 2, where α =
min(m,n) and β = max{2, q′}.

Here we point out that if α = min(m,n), then we have

max
{
(γ′nβ)/(γ′n + nβ − γ′), (γ′mβ)/(γ′m + mβ − γ′)

}

= (αβγ′)/(γ′α + αβ − γ′).
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Theorem 1.3 Let SΦ,Ψ,Ω,h be given as in (1.5). Assume that Φ and Ψ are
C2([0,∞)), convex, and increasing functions with Φ(0) = Ψ(0) = 0. Suppose
that Ω ∈ Lq(Sn−1 × Sm−1) for some 1 < q ≤ 2 and h ∈ Lγ(R+ ×R+, drdt

rt )
for some 1 < γ ≤ ∞. Then

∥∥SΦ,Ψ,Ω,h(f)
∥∥

Lp(Rn×Rm)

≤ Cp(q − 1)−2/γ′‖Ω‖Lq(Sn−1×Sm−1)‖f‖Lp(Rn×Rm) (1.7)

holds for 1 < p < ∞.

By the conclusions in Theorems 1.2–1.3 and applying an extrapolation
method, we get the following results:

Theorem 1.4 Let 1 ≤ γ ≤ 2. Assume that Φ and Ψ are C2([0,∞)),
convex, and increasing functions with Φ(0) = Ψ(0) = 0.

(a) If Ω ∈ L(log L)2/γ′(Sn−1 × Sm−1) and 1 < γ ≤ 2, the operator M(γ)
Φ,Ψ,Ω

is bounded on Lp(Rn ×Rm) for 2 ≤ p < ∞;
(b) If Ω ∈ B

(0,2/γ′−1)
q (Sn−1 × Sm−1) and 1 < γ ≤ 2, the operator M(γ)

Φ,Ψ,Ω

is bounded on Lp(Rn ×Rm) for 2 ≤ p < ∞;
(c) If Ω ∈ L1(Sn−1 × Sm−1) and γ = 1, the operator M(γ)

Φ,Ψ,Ω is bounded
on L∞(Rn ×Rm).

Here, L(log L)
α

(Sn−1×Sm−1) (for α > 0) denotes the class of all mea-
surable functions Ω on Sn−1 × Sm−1 which satisfy

‖Ω‖L(log L)α(Sn−1×Sm−1)

=
∫

Sn−1×Sm−1
|Ω(x, y)| logα(2 + |Ω(x, y)|)dσ(x)dσ(y) < ∞

and B
(0,υ)
q (Sn−1 × Sm−1) denotes a special class of block spaces whose defi-

nition will be recalled in Section 2.

Theorem 1.5 Suppose that Φ and Ψ are C2([0,∞)), convex, and increas-
ing functions with Φ(0) = Ψ(0) = 0. Suppose that h ∈ Lγ(R+ ×R+, drdt

rt )
for some 1 ≤ γ ≤ ∞.

(a) If Ω ∈ L(log L)2/γ′(Sn−1×Sm−1) and 1 < γ ≤ ∞, the operator SΦ,Ψ,Ω,h

is bounded on Lp(Rn ×Rm) for 1 < p < ∞;
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(b) If B
(0,2/γ′−1)
q (Sn−1×Sm−1) for some q > 1 and 1 < γ ≤ ∞, the operator

SΦ,Ψ,Ω,h is bounded on Lp(Rn ×Rm) for 1 < p < ∞;
(c) If Ω ∈ L1(Sn−1 × Sm−1) and γ = 1, the operator SΦ,Ψ,Ω,h is bounded

on Lp(Rn ×Rm) for 1 ≤ p ≤ ∞.

Remarks

(1) Theorem 1.1 is a corrigendum of Theorem C in the sense that it provides
us with the right range of p.

(2) The Lp boundedness of M(γ)
Φ,Ψ,Ω under the same conditions on p, γ and

Ω as in Theorem 1.2 was proved in [1], but the main thrust of Theorem
1.2 is that it provides us with estimates which will be useful in employ-
ing an extrapolation argument and in turn allow us to obtain the Lp

boundedness of M(γ)
Φ,Ψ,Ω under optimal size conditions on Ω.

(3) For any q > 1, 0 < α < β and −1 < υ, the following inclusions hold and
are proper:

Lq(Sn−1 × Sm−1) ⊂ L(log L)β(Sn−1 × Sm−1)

⊂ L(log L)α(Sn−1 × Sm−1),
⋃
r>1

Lr(Sn−1 × Sm−1) ⊂ B(0,υ)
q (Sn−1 × Sm−1) for any − 1 < υ,

B(0,υ2)
q (Sn−1 × Sm−1) ⊂ B(0,υ1)

q (Sn−1 × Sm−1) for any − 1 < υ1 < υ2.

The question with regard to the relationship between B
(0,υ−1)
q (Sn−1 ×

Sm−1) and L(log L)υ(Sn−1 × Sm−1) (for υ > 0) remains open.
(4) Theorem 1.4 (a) was obtained in [5] only in the case γ = 2 and in [4] in

the case 1 < γ ≤ 2, but with p in the smaller range γ′ ≤ p < ∞. Thus,
Theorem 1.4 (a) improves the corresponding results in [26], [5] and [4].
Also, it is worth mentioning that the condition Ω ∈ L(log L)2/γ′(Sn−1×
Sm−1) was shown by Al-Qassem and Pan in [4] to be optimal in the case
γ = 2 in the sense that the exponent 2/γ′ in L(log L)2/γ′(Sn−1×Sm−1)
cannot be replaced by any smaller number.

(5) Theorem 1.4 (b) was obtained in [1] only in the case γ = 2. Thus,
Theorem 1.4 (b) improves the corresponding result in [1]. Also, we
point out that the condition Ω ∈ B

(0,2/γ′−1)
q (Sn−1 × Sm−1) for some

q > 1 was shown by Al-Qassem in [1] to be optimal in the case γ = 2 in
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the sense that the 2/γ′ in B
(0,2/γ′−1)
q cannot be replaced by any smaller

number.
(6) If Φ(t) ≡ t and Ψ(t) ≡ t, we denote SΦ,Ψ,Ω,h by SΩ,h. In [6], Al-Salman,

Al-Qassem and Pan were able to show that the Lp(Rn ×Rm) (1 < p <

∞) boundedness of SΩ,h holds if Ω ∈ L(log L)2(Sn−1 × Sm−1) and h ∈
L∞(R+×R+). Also, the condition that Ω ∈ L(log L)2(Sn−1×Sm−1) is
the most desirable size condition for the Lp boundedness of SΩ,1 in the
sense that the operator SΩ,1 mail fail to be bounded on Lp for any p if
the condition is replaced by the condition Ω ∈ L(log L)2−ε(Sn−1×Sm−1)
for any ε > 0. On the other hand, Theorem 1.5 (a) implies that if h ∈
Lγ(R+×R+, drdt

rt ) for some γ > 1, the singular operator SΩ,h is bounded
on Lp under the much weaker condition Ω ∈ L(log L)2/γ′(Sn−1×Sm−1).
The reason for this new phenomena on singular integrals is that the
singular operators SΩ,h (with h ∈ Lγ(R+ ×R+, drdt

rt ) for some 1 < γ <

∞) have weaker singularities than the singular operators SΩ,1 due to
the presence of the strong condition on h.

(7) In [3], Al-Qassem and Pan proved that SΩ,h is bounded on Lp(Rn×Rm)
for 1 < p < ∞ if Ω ∈ B

(0,1)
q (Sn−1 × Sm−1) for some q > 1 and h ∈

L∞(R+ × R+). Again, as in Remark 6 above, under the condition
h ∈ Lγ(R+×R+, drdt

rt ) for some γ > 1 we obtain from Theorem 1.5 (b)
that SΩ,h is bounded on on Lp(Rn ×Rm) for 1 < p < ∞ if Ω satisfies
the weaker condition Ω ∈ B

(0,2/γ′−1)
q (Sn−1 × Sm−1) for some q > 1.

(8) Theorem 1.5 (b) implies that the operator SΩ,h when h ∈ L1(R+ ×
R+, drdt

rt ) is bounded on L1(Rn×Rm) and L∞(Rn×Rm), while SΩ,1 is
not. Also, when h ∈ L1(R+×R+, drdt

rt ) the operator SΩ,h is bounded on
Lp if Ω ∈ L1(Sn−1×Sm−1), while SΩ,1 is not bounded on Lp for any p if
Ω ∈ L1(Sn−1×Sm−1) unless Ω(u, v) is an odd function in each one of the
variables u and v, i.e., Ω(u, v) = −Ω(−u, v) = −Ω(u,−v) = Ω(−u,−v).

Throughout the rest of the paper the letter C will stand for a constant
but not necessarily the same one in each occurrence.

2. Some definitions and lemmas

The block spaces originated in the work of M. H. Taibleson and G. Weiss
on the convergence of the Fourier series in connection with the developments
of the real Hardy spaces. Below we shall recall the definition of block spaces
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on Sn−1 × Sm−1. For further background information about the theory of
spaces generated by blocks and its applications to harmonic analysis one can
consult the book [20]. The special class of block spaces B

(0,υ)
q (Sn−1×Sm−1)

(for υ > −1 and q > 1) was introduced by Jiang and Lu with respect to the
study of singular integral operators on product domains [18].

Definition 2.1 A q-block on Sn−1×Sm−1 is an Lq (1 < q ≤ ∞) function
b(x, y) that satisfies (i) supp(b) ⊂ I; (ii) ‖b‖Lq ≤ |I|−1/q′ , where | · | denotes
the product measure on Sn−1×Sm−1, and I is an interval on Sn−1×Sm−1,
i.e., I = {x ∈ Sn−1 : |x − x0| < α} × {y ∈ Sm−1 : |y − y0| < β} for
some α, β > 0 and (x0, y0) ∈ Sn−1 × Sm−1. The block space B

(0,υ)
q =

B
(0,υ)
q (Sn−1 × Sm−1) is defined by B

(0,υ)
q = {Ω ∈ L1(Sn−1 × Sm−1) : Ω =∑∞

µ=1 λµbµ, M
(0,υ)
q ({λµ}) < ∞}, where each λµ is a complex number; each

bµ is a q-block supported on an interval Iµ on Sn−1 × Sm−1, υ > −1 and
M

(0,υ)
q ({λµ}) =

∑∞
µ=1 |λµ|{1 + log(υ+1)(|Iµ|−1)}. Let ‖Ω‖

B
(0,υ)
q (Sn−1×Sm−1)

= N
(0,υ)
q (Ω) = inf{M (0,υ)

q ({λµ})}, where the infimum is taken over all q-
block decompositions of Ω.

Definition 2.2 For arbitrary functions Φ(·) and Ψ(·) on R+, θ ≥ 2 and
Ω : Sn−1 × Sm−1 → R, we define the sequence of measures {σΩ,h,θ,k,d :
k, d ∈ Z} and the corresponding maximal operator σ∗Ω,h,θ on Rn ×Rm by

∫

Rn×Rm

f dσΩ,h,θ,k,d =
∫

θd+1≤|v|<θd+1

∫

θk≤|u|<θk+1
h(|u|, |v|)

× Ω(u′, v′)
|u|n|v|m f

(
Φ(|u|),Ψ(|v|))dudv;

σ∗Ω,h,θ(f) = sup
k,j∈Z

||σΩ,h,θ,k,d| ∗ f |.

Lemma 2.3 Let θ ≥ 2 and Ω ∈ Lq(Sn−1 × Sm−1) for some 1 < q ≤
2 and satisfies the cancellation conditions in (1.1) with Ωj replaced by Ω.
Assume that Φ,Ψ are C2([0,∞)), convex, and increasing functions with
Φ(0) = Ψ(0) = 0. Let
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Jk,d(ξ, η) =
( ∫ θd+1

θd

∫ θk+1

θk

∣∣∣∣
∫

Sn−1×Sm−1
Ω(x, y)

× e−i(Φ(t)ξ·x+Ψ(s)η·y)dσ(x)dσ(y)
∣∣∣∣
2
dtds

ts

)1/2

.

Then there exist positive constants C and λ such that

|Jk,d(ξ, η)| ≤ C log(θ)‖Ω‖q





(Φ(θk)|ξ|)− λ
q′ (Ψ(θd)|η|)− λ

q′ ;

(Φ(θk+1)|ξ|) λ
q′ (Ψ(θd+1)|η|) λ

q′ ;

(Φ(θk+1)|ξ|) λ
q′ (Ψ(θd)|η|)− λ

q′ ;

(Φ(θk)|ξ|)− λ
q′ (Ψ(θd+1)|η|) λ

q′ ,

(2.1)

where C is a constant independent of k, d, ξ, η, q and θ.

Proof. By Schwarz’s inequality we have

∣∣∣∣
∫

Sn−1×Sm−1
Ω(x, y)e−i(Φ(θkt)ξ·x+Ψ(θds)η·y)dσ(x)dσ(y)

∣∣∣∣
2

≤
∫

Sm−1

∣∣∣∣
∫

Sn−1
Ω(x, y)e−iΦ(θkt)ξ·xdσ(x)

∣∣∣∣
2

dσ(y)

=
∫

Sm−1

( ∫

Sn−1×Sn−1
Ω(x, y)Ω(u, y)e−iΦ(θkt)ξ·(x−u)dσ(x)dσ(u)

)
dσ(y)

and hence we have

|Jk,d(ξ, η)|2 ≤ (log θ)
∫

Sm−1

( ∫

Sn−1×Sn−1
Ω(x, y)Ω(u, y)

×
( ∫ θ

1

e−iΦ(θkt)ξ·(x−u) dt

t

)
dσ(x)dσ(u)

)
dσ(y). (2.2)

Write

∫ θ

1

e−iΦ(θkt)ξ·(x−u) dt

t
=

∫ θ

1

H ′(t)
dt

t
,
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where H(t) =
∫ t

1

e−iΦ(θkw)ξ·(x−u)dw, 1 ≤ t ≤ θ.

By the assumptions on Φ and the mean value theorem we have

d

dw

(
Φ(θkw)

)
= θkΦ′(θkw) ≥ Φ(θkw)

w
≥ Φ(θk)

t
for 1 ≤ w ≤ t ≤ θ.

By van der Corput’s lemma we get |H(t)| ≤ |Φ(θk)ξ|−1|ξ′ · (x − u)|−1t, for
1 ≤ t ≤ θ. Hence by integration by parts,

∣∣∣∣
∫ θ

1

e−iΦ(θkt)ξ·(x−u) dt

t

∣∣∣∣ ≤ C(log θ)|Φ(θk)ξ|−1|ξ′ · (x− u)|−1.

By combining this estimate with the trivial estimate
∣∣∫ θ

1
e−iΦ(θkt)ξ·(x−u) dt

t

∣∣
≤ (log θ) we get

∣∣∣∣
∫ θ

1

e−iΦ(θkt)ξ·(x−u) dt

t

∣∣∣∣ ≤ C(log θ)|Φ(θk)ξ|−α|ξ′ · (x− u)|−α

for any 0 < α ≤ 1. (2.3)

By Hölder’s inequality and (2.2)–(2.3) we get

|Jk,d(ξ, η)| ≤ C(log θ)‖Ω‖q|Φ(θk)ξ|− α
2q′

×
( ∫

Sn−1×Sn−1
|ξ′ · (x− u)|−αq′dσ(x)dσ(u)

) 1
2q′

.

By choosing α so that αq′ < 1 we obtain that the last integral is finite and
hence

|Jk,d(ξ, η)| ≤ C(log θ)‖Ω‖q|Φ(θk)ξ|− α
2q′ . (2.4)

Similarly,

|Jk,d(ξ, η)| ≤ C(log θ)‖Ω‖q|Ψ(θd)η|− α
2q′ . (2.5)

Also, by the cancellation conditions on Ω and by a change of variables we
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obtain

|Jk,d(ξ, η)|2 ≤
∫ θ

1

∫ θ

1

( ∫

Sn−1×Sm−1
|Ω(x, y)|

×
∣∣e−iΦ(θkt)ξ·x − 1

∣∣dσ(x)dσ(y)
)2

dtds

ts
.

Since Φ is an increasing function we get

|Jk,d(ξ, η)| ≤ C log(θ)‖Ω‖1|Φ(θk+1)ξ|.

By combining the last estimate with the trivial estimate |Jk,d(ξ, η)| ≤
C log(θ)‖Ω‖1 we get

|Jk,d(ξ, η)| ≤ C log(θ)‖Ω‖1|Φ(θk+1)ξ| α
2q′ . (2.6)

Similarly,

|Jk,d(ξ, η)| ≤ C log(θ)‖Ω‖1|Ψ(θd+1)η| α
2q′ . (2.7)

By combining the estimates (2.4)–(2.7) we obtain the estimates in (2.1).
Lemma 2.3 is proved.

Lemma 2.4 Let θ, Φ,Ψ and Ω be as in Lemma 2.3 and let h ∈ Lγ(R+ ×
R+, drdt

rt ) for some 1 < γ < ∞. Then there exist positive constants C and
λ such that

∣∣σ̂Ω,h,θ,k,d(ξ, η)
∣∣

≤ C(log θ)2/γ′‖Ω‖q





(Φ(θk)|ξ|)− λ
γ′q′ (Ψ(θd)|η|)− λ

γ′q′ ;

(Φ(θk+1)|ξ|) λ
γ′q′ (Ψ(θd+1)|η|) λ

γ′q′ ;

(Φ(θk+1)|ξ|) λ
γ′q′ (Ψ(θd)|η|)− λ

γ′q′ ;

(Φ(θk)|ξ|)− λ
γ′q′ (Ψ(θd+1)|η|) λ

γ′q′ ,

(2.8)

where C is a constant independent of k, d, ξ, η, q and θ.

Proof. By Hölder’s inequality we get
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∣∣σ̂Ω,h,θ,k,d(ξ, η)
∣∣ ≤ ‖h‖Lγ(R+×R+, drdt

rt )

×
( ∫ θd+1

θd

∫ θk+1

θk

∣∣∣∣
∫

Sn−1×Sm−1
Ω(x, y)e−i(Φ(t)ξ·x+Ψ(s)η·y)

× dσ(x)dσ(y)
∣∣∣∣
γ′

dtds

ts

)1/γ′

.

Now, if 2 ≤ γ′ < ∞, by noticing that
∣∣∫

Sn−1×Sm−1 Ω(x, y)e−i(Φ(t)ξ·x+Ψ(s)η·y)

dσ(x)dσ(y)
∣∣ ≤ ‖Ω‖1 we get

∣∣σ̂Ω,h,θ,k,d(ξ, η)
∣∣ ≤ ‖Ω‖(1−2/γ′)

1 ‖h‖Lγ(R+×R+, drdt
rt )

×
( ∫ θd+1

θd

∫ θk+1

θk

∣∣∣∣
∫

Sn−1×Sm−1
Ω(x, y)e−i(Φ(t)ξ·x+Ψ(s)η·y)

× dσ(x)dσ(y)
∣∣∣∣
2
dtds

ts

)1/γ′

By the last estimate and Lemma 2.3 we easily get the estimates in (2.8).
On the other hand, if 1 < γ′ < 2, the estimates in (2.8) follow by Lemma
2.3 and Hölder’s inequality. This completes the proof of Lemma 2.4.

We shall need the following lemma which has its roots in [14] and [3].
A proof of this lemma can be obtained by the same proof (with only minor
modifications) as that of Theorem 15 in [3]. We omit the details.

Lemma 2.5 Let {ak}k∈Z and {bj}j∈Z be any two arbitrary lacunary
sequences of positive numbers with infk∈Z(ak+1/ak) ≥ a > 1 and
infj∈Z(bj+1/bj) ≥ b > 1. Let {σk,j : k, j ∈ Z} be a sequence of Borel
measures on Rn × Rm. Suppose that for some α, β, C > 0, B > 1 and
po ∈ (2,∞) the following hold for k, j ∈ Z, (ξ, η) ∈ Rn × Rm and for
arbitrary functions {gk,j} on Rn ×Rm:

(i)
∣∣σ̂k,j(ξ, η)

∣∣ ≤ CB





|ak+1ξ|
α

log(a) |bj+1η|
β

log(b) ;

|ak+1ξ|
α

log(a) |bjη|−
β

log(b) ;

|akξ|− α
log(a) |bj+1η|

β
log(b) ;

|akξ|− α
log(a) |bjη|−

β
log(b) ,
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(ii)
∥∥∥∥
( ∑

k,j∈Z

|σk,j ∗ gk,j |2
)1/2∥∥∥∥

p0

≤ CB

∥∥∥∥
( ∑

k,j∈Z

|gk,j |2
)1/2∥∥∥∥

p0

.

Then for p′0 < p < p0, there exists a positive constant Cp independent of B

such that
∥∥∥∥

∑

k,j∈Z

σk,j ∗ f

∥∥∥∥
p

≤ CpB‖f‖p

holds for all f in Lp(Rn ×Rm).

By the same argument as in ([24, p. 57]) we get

Lemma 2.6 Let ϕ be a nonnegative, decreasing function on [0,∞) with∫∞
0

ϕ(t)dt = 1. Then

∣∣∣∣
∫ ∞

0

f(x− ty)ϕ(t)dt

∣∣∣∣ ≤ Myf(x),

where Myf(x) = supR∈R
1
R

∫ R

0
|f(x − sy)|ds is the Hardy-Littlewood maxi-

mal function of f in the direction of y.

For θ ≥ 2 and y ∈ Sn−1, let MΦ,θ,y(f) denote the maximal function
defined by

MΦ,θ,yf(x) = sup
k∈Z

∣∣∣∣
∫ θk+1

θk

f(x− Φ(t)y)
dt

t

∣∣∣∣.

Lemma 2.7 Assume that Φ is as in Lemma 2.3. Then
∥∥MΦ,θ,y(f)

∥∥
p
≤ Cp(log θ)‖f‖p (2.9)

for some constant Cp > 0 independent of y, all 1 < p ≤ ∞ and f ∈ Lp.

Proof. By a change of variable we have

MΦ,θ,yf(x) ≤ sup
k∈Z

( ∫ Φ(θk+1)

Φ(θk)

|f(x− ty)| dt

Φ−1(t)Φ′(Φ−1(t))

)
.
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Without loss of generality, we may assume that Φ(t) > 0 for all t > 0. By
Lemma 2.6 and since the function 1

Φ−1(t)Φ′(Φ−1(t)) is non-negative, decreasing
and its integral over [Φ(θk), Φ(θk+1)] is equal to log θ, we obtain

MΦ,θ,yf(x) ≤ C(log θ)Myf(x). (2.10)

Since My(f) is bounded Lp(Rn) with bound independent of y, we immedi-
ately get (2.9). This completes the proof of Lemma 2.7.

Lemma 2.8 Let θ, Φ and Ψ be as in Lemma 2.3 and σ∗Ω,h,θ be given as
in Definition 2.2. Assume that h ∈ Lγ(R+×R+, drdt

rt ) for some 1 < γ < ∞
and Ω ∈ L1(Sn−1×Sm−1). Then

∥∥σ∗Ω,h,θ(f)
∥∥

p
≤ Cp(log θ)2/γ′‖h‖Lγ(R+×R+, drdt

rt )‖Ω‖L1(Sn−1×Sm−1)‖f‖p

(2.11)

for 1 < p ≤ ∞ and f ∈ Lp(Rn ×Rm), where Cp is independent of Ω, θ and
f .

Proof. By Hölder’s inequality we have

∣∣σΩ,h,θ,k,d ∗ f(x, y)
∣∣ ≤ ‖h‖Lγ(R+×R+, drdt

rt )‖Ω‖1/γ
L1(Sn−1×Sm−1)

×
( ∫ θd+1

θd

∫ θk+1

θk

∫

Sn−1×Sm−1

× |Ω(u, v)|∣∣f(x− Φ(t)u, y −Ψ(s)v)
∣∣γ′dσ(u)dσ(v)

dtds

ts

)1/γ′

.

Therefore,

σ∗Ω,h,θf(x, y) ≤ ‖h‖Lγ(R+×R+, drdt
rt )‖Ω‖1/γ

L1(Sn−1×Sm−1)

×
( ∫

Sn−1×Sm−1
|Ω(u, v)|

× (MΨ,θ,v ◦MΦ,θ,u)(|f |γ′)(x, y)dσ(u)dσ(v)
)1/γ′

.

and hence by Minkowski’s inequality for integrals we get
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∥∥σ∗Ω,h,θ(f)
∥∥

p
≤ ‖h‖Lγ(R+×R+, drdt

rt )‖Ω‖1/γ
L1(Sn−1×Sm−1)

×
( ∫

Sn−1×Sm−1
|Ω(u, v)|

× ∥∥(MΨ,θ,v ◦MΦ,θ,u)(|f |γ′)∥∥
p/γ′dσ(u)dσ(v)

)1/γ′

.

Thus, the last inequality and Lemma 2.7 imply (2.11) which completes the
proof of the Lemma 2.8.

By following a similar argument as in [16] and [2] we obtain the following:

Lemma 2.9 Let θ, Φ,Ψ, h and Ω be as in Lemma 2.3. Then for γ′ < p <

∞, there exists a positive constant Cp which is independent of θ such that

∥∥∥∥
( ∑

k,d∈Z

|σΩ,h,θ,k,d ∗ gk,d|2
)1/2∥∥∥∥

p

≤ Cp(log θ)2/γ′‖h‖Lγ(R+×R+, drdt
rt )

× ‖Ω‖L1(Sn−1×Sm−1)

∥∥∥∥
( ∑

k,d∈Z

|gk,d|2
)1/2∥∥∥∥

p

(2.12)

holds for arbitrary measurable functions {gk,d} on Rn ×Rm.

Let MS be the spherical maximal operator defined by

MSf(x) = sup
r>0

∫

Sn−1
|f(x− rθ)|dσ(θ).

By the results of E. M. Stein [22] and J. Bourgain [10] we have

Lemma 2.10 Suppose that n ≥ 2 and p > n/(n − 1). Then MS(f) is
bounded on Lp(Rn).

We shall need the spherical maximal operatorMSP defined on functions
f(x, y) on Rn ×Rm by

MSP f(x, y) = sup
r,s>0

∫

Sn−1×Sm−1
|f(x− rθ, y − sυ)|dσ(θ)dσ(υ). (2.13)
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Let M(1)
S and M(2)

S denote the operators defined on functions f on
Rn × Rm by (M(1)

S f)(x, y) = (M(1)
S )f(·, y))(x) and (M(2)

S f)(x, y) =
(M(2)

S )f(x, ·))(y). By using Lemma 2.10 and the inequality MSP f(x, y) ≤
(M(2)

S ◦M(1)
S )f(x, y) we get the following:

Lemma 2.11 Suppose that n,m ≥ 2 and p > max{n/(n−1),m/(m−1)}.
Then MSP (f) is bounded on Lp(Rn ×Rm).

Now, we need the following simple lemma.

Lemma 2.12 Let q > 1 and β = max{2, q′}. Suppose that Ω ∈ Lq(Sn−1×
Sm−1). Then for some positive constant C, we have

∣∣∣∣
∫

Sn−1×Sm−1
Ω(ξ, η)f(ξ, η)dσ(ξ)dσ(η)

∣∣∣∣
2

≤ C‖Ω‖min{2,q}
q

∫

Sn−1×Sm−1
|Ω(ξ, η)|max{0,2−q}|f(ξ, η)|2dσ(ξ)dσ(η)

(2.14)

and
∫

Sn−1×Sm−1
|Ω(ξ, η)|max{0,2−q}|f(x− tξ, y − rη)|dσ(ξ)dσ(η)

≤ C‖Ω‖max{0,2−q}
q

(MSP (|f |β/2)(x, y)
)2/β (2.15)

for all positive real numbers t and r, (x, y) ∈ Rn ×Rm and arbitrary func-
tions f .

Proof. First, we prove (2.14). If q ≥ 2, by Hölder’s inequality we have

∣∣∣∣
∫

Sn−1×Sm−1
Ω(ξ, η)f(ξ, η)dσ(ξ)dσ(η)

∣∣∣∣
2

≤ ‖Ω‖2q
( ∫

Sn−1×Sm−1
|f(ξ, η)|q′dσ(ξ)dσ(η)

)2/q′

≤ ‖Ω‖2q
∫

Sn−1×Sm−1
|f(ξ, η)|2dσ(ξ)dσ(η),
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which is the inequality (2.14) in the case q ≥ 2. Next, if 1 < q < 2, (2.14)
follows from Schwarz’s inequality.

Now, we prove (2.15). If q ≥ 2, the inequality (2.15) is obvious. How-
ever, if 1 < q < 2, (2.15) follows easily from Hölder’s inequality and noticing
that ( q

2−q )′ = q′/2. The lemma is proved.

3. Proof of main results

Proof of Theorem 1.1. Since Lq(Sn−1 × Sm−1) ⊆ L2(Sn−1 × Sm−1) for
q ≥ 2, Theorem 1.1 is proved once we establish that

∥∥T
(γ)
Φ,Ψ,{Ωj}(f)

∥∥
Lp(Rn×Rm)

≤ Cp(q − 1)−2/γ′
∥∥∥∥

∑

j

‖Ωj‖Lq(Sn−1×Sm−1)

∥∥∥∥
lγ′
‖f‖Lp(Rn×Rm) (3.1)

holds for 1 < q ≤ 2, (αq′γ′)/(γ′α+αq′− γ′) < p < ∞ and 1 ≤ γ ≤ 2, where
α = min(m,n).

To prove (3.1), we consider three cases.

Case 1. γ = 2. By Hölder’s inequality we obtain

T
(2)
Φ,Ψ,{Ωj}f(x, y)

≤
( ∫ ∞

0

∫ ∞

0

∑

j

∣∣∣∣
∫

Sn−1×Sm−1
Ωj(u, v)

× f(x− Φ(r)u, y −Ψ(t)v)dσ(u)dσ(v)
∣∣∣∣
2
drdt

rt

)1/2

. (3.2)

Let θ = 2q′ . Since Φ is convex and increasing in (0,∞), we have Φ(t)/t

is also increasing for t > 0. Therefore, the sequence {Φ(θk) : k ∈ Z} is a
lacunary sequence with Φ(θk+1)/Φ(θk) ≥ θ > 1. Let {Γk,Φ}∞−∞ be a smooth
partition of unity in (0,∞) adapted to the interval Ik,Φ = [(Φ(θk+1))−1,
(Φ(θk−1))−1]. To be precise, we require the following:

Γk,Φ ∈ C∞, 0 ≤ Γk,Φ ≤ 1,
∑

k

Γk,Φ(t) = 1,
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suppΓk,Φ ⊆ Ik,Φ,

∣∣∣∣
dsΓk,Φ(t)

dts

∣∣∣∣ ≤
Cs

ts
,

where Cs is independent of the lacunary sequence {Φ(θk) : k ∈ Z}.
Define the multiplier operators Mk,d in Rn × Rm by (M̂k,df)(ξ, η) =
Γk,Φ(|ξ|)Γd,Ψ(|η|)f̂(ξ, η). Then for any f ∈ S(Rn × Rm) and k, d ∈ Z
we have f(x, y) =

∑
l,s∈Z(Mk+l,d+sf)(x, y). Therefore, by Minkowski’s in-

equality we have

T
(2)
Φ,Ψ,{Ωj}f(x, y) ≤

( ∑

k,d,j

∫ θd+1

θd

∫ θk+1

θk

∣∣∣∣
∑

l,s

Aj,k,d,l,s,r,t

∣∣∣∣
2
drdt

rt

)1/2

≤
∑

l,s

Hl,sf(x, y),

where

Hl,sf(x, y) =
( ∑

k,d,j

∫ θd+1

θd

∫ θk+1

θk

∣∣Aj,k,d,l,s,r,tf(x, y)
∣∣2 drdt

rt

)1/2

,

Aj,k,d,l,s,r,tf(x, y) =
∫

Sn−1×Sm−1
Ωj(u, v)(Mk+l,d+sf)

× (x− Φ(r)u, y −Ψ(t)v)dσ(u)dσ(v).

Therefore, to prove (3.1) for the case γ = 2, it suffices to prove the inequality

‖Hl,s(f)‖p ≤ Cp(q − 1)−1

( ∑

j

‖Ωj‖2q
)1/2

2−δp(|l|+|s|)‖f‖p (3.3)

holds for 1 < q ≤ 2, (αq′γ′)/(γ′α +αq′− γ′) < p < ∞ and for some positive
constants Cp and δp.

We start proving (3.3) for the case p = 2. By Plancherel’s theorem and
Lemma 2.3 we obtain

‖Hl,s(f)‖22 =
∫

Rn×Rm

∑

k,d,j

∫ θd+1

θd

∫ θk+1

θk

∣∣Aj,k,d,l,s,r,tf(x, y)
∣∣2 drdt

rt
dxdy
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=
∫

∆k+l,d+s

∑

k,d,j

∫ θd+1

θd

∫ θk+1

θk

∣∣∣∣
∫

Sn−1×Sm−1
Ωj(x, y)

× e−i(Φ(r)ξ·x+Ψ(t)η·y)dσ(x)dσ(y)
∣∣∣∣
2

× ∣∣f̂(ξ, η)
∣∣2 drdt

rt
dξdη

≤ C2−2λ(|l|+|s|)(q − 1)−2

×
( ∑

j

‖Ωj‖2q
)( ∑

k,d

∫

∆k+l,d+s

∣∣f̂(ξ, η)
∣∣2dξdη

)

≤ C2−2λ(|l|+|s|)(q − 1)−2

( ∑

j

‖Ωj‖2q
)
‖f‖22,

where ∆k,d = {(ξ, η) ∈ Rn × Rm : (|ξ|, |η|) ∈ Ik,Φ × Id,Ψ}. Therefore we
have

‖Hl,s(f)‖2 ≤ C2−λ(|l|+|s|)(q − 1)−1

( ∑

j

‖Ωj‖2q
)1/2

‖f‖2. (3.4)

Next, we compute the Lp-norm of Hl,s(f) for p > 2. By duality, there is a
nonnegative function g in L(p/2)′(Rn ×Rm) with ‖g‖(p/2)′ ≤ 1 such that

‖Hl,s(f)‖2p =
∫

Rn×Rm

∑

k,d,j

∫ θd+1

θd

∫ θk+1

θk

∣∣Aj,k,d,l,s,r,tf(x, y)
∣∣2 drdt

rt
g(x, y)dxdy

≤
∫

Rn×Rm

∑

k,d,j

‖Ωj‖1
∫ θd+1

θd

∫ θk+1

θk

∫

Sn−1×Sm−1

× |Ωj(u, v)|∣∣Mk+l,d+sf(x, y)
∣∣2

× g(x + Φ(r)u, y + Ψ(t)v)dσ(u)dσ(v)
drdt

rt
dxdy

≤ C

( ∑

j

‖Ωj‖1
) ∫

Rn×Rm

( ∑

k,d

|Mk+l,d+sf(x, y)|2
)

× σ∗Ωj ,1,θ(g̃)(−x,−y)dxdy
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≤ C

( ∑

j

‖Ωj‖1
)∥∥σ∗Ωj ,1,θ(g̃)

∥∥
(p/2)′

∥∥∥∥
∑

k,d

∣∣Mk+l,d+sf
∣∣2

∥∥∥∥
(p/2)

≤ Cp

( ∑

j

‖Ωj‖21
)

(log θ)2‖f‖2p,

where g̃(x, y) = g(−x,−y) and the last inequality follows from Lemma 2.8
and using Littlewood-Paley theory ([23, p. 96]). Thus we have

‖Hl,s(f)‖p ≤ Cp(q − 1)−1

( ∑

j∈Z

‖Ωj‖2q
)1/2

‖f‖p for 2 ≤ p < ∞. (3.5)

By interpolation between (3.4) and (3.5) we get (3.3) for the case p ≥ 2.
Finally, we compute the Lp-norm of Hl,s(f) for (2αq′)/(2α+αq′− 2) <

p < 2. By changing variables and using the properties of Φ and Ψ we get

Hl,sf(x, y) =
( ∑

k,d,j

∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

∣∣Xj,k,l,d,sf(x, y)
∣∣drdt

rt

)1/2

,

where

Xj,k,l,d,sf(x, y)

=
∫

Sn−1×Sm−1
Ωj(u, v)(Mk+l,d+sf)(x− θkru, y − θdtv)dσ(u)dσ(v).

By duality there is a function h = hk,d,l,s,j(x, y, r, t) satisfying ‖h‖ ≤ 1 and

hk,d,l,s,j(x, y, r, t)

∈ Lp′
(

l2
(

l2
[
L2

(
[Φ(1),Φ(θ)]× [Ψ(1),Ψ(θ)],

drdt

rt

)
, k, d

]
, j

)
, dxdy

)

such that
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‖Hl,s(f)‖p =
∫

Rn×Rm

∑

k,d,j

∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

∫

Sn−1×Sm−1
Ωj(u, v)

× (Mk+l,d+sf)(x− θkru, y − θdtv)hk,d,l,s,j(x, y, r, t)

× dσ(u)dσ(v)
drdt

rt
dxdy

=
∫

Rn×Rm

∑

j

∑

k,d

∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

∫

Sn−1×Sm−1
Ωj(u, v)

× (Mk+l,d+sf)(x, y)hk,d,l,s,j(x + θkru, y + θdtv, r, t)

× dσ(u)dσ(v)
drdt

rt
dxdy

≤ ∥∥(Y (h))1/2
∥∥

p′

∥∥∥∥
( ∑

k,d

|Mk+l,d+sf |2
)1/2∥∥∥∥

p

,

where

Y (h) =
∑

k,d

( ∑

j

∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

∫

Sn−1×Sm−1
Ωj(u, v)

× hk,d,l,s,j

(
x + θkru, y + θdtv, r, t

)
dσ(u)dσ(v)

drdt

rt

)2

.

By the Littlewood-Paley theory we get

‖Hl,s(f)‖p ≤ Cp‖f‖p

∥∥(Y (h))1/2
∥∥

p′ . (3.6)

Since p′ > 2 and ‖(Y (h))1/2‖p′ = ‖Y (h)‖1/2
p′/2, there is a function b ∈ L(p′/2)′

(Rn ×Rm) such that ‖b‖(p′/2)′ ≤ 1 and

‖Y (h)‖p′/2 =
∫

Rn×Rm

∑

k,d

( ∑

j

∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

∫

Sn−1×Sm−1
Ωj(u, v)

× hk,d,l,s,j

(
x + θkru, y + θdtv, r, t

)
dσ(u)dσ(v)

drdt

rt

)2

× b(x, y)dxdy.
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By Schwarz inequality and Lemma 2.12, we get

( ∑

j

∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

∫

Sn−1×Sm−1
Ωj(u, v)

× hk,d,l,s,j

(
x + θkru, y + θdtv, r, t

)
dσ(u)dσ(v)

drdt

rt

)2

≤ C(log θ)2
∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

( ∑

j

∫

Sn−1×Sm−1
Ωj(u, v)

× hk,d,l,s,j

(
x + θkru, y + θdtv, r, t

)
dσ(u)dσ(v)

)2
drdt

rt

≤ C(log θ)2
∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

( ∑

j

‖Ωj‖
1
2 min{2,q}
Lq(Sn−1×Sm−1)

×
( ∫

Sn−1×Sm−1
|Ωj(u, v)|max{0,2−q}

× ∣∣hk,d,l,s,j(x + θkru, y + θdtv, r, t)
∣∣2dσ(u)dσ(v)

)1/2)2
drdt

rt

≤ C(log θ)2
( ∑

j

‖Ωj‖min{2,q}
Lq(Sn−1×Sm−1)

) ∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

×
∑

j

∫

Sn−1×Sm−1
|Ωj(u, v)|max{0,2−q}

× ∣∣hk,d,l,s,j(x + θkru, y + θdtv, r, t)
∣∣2dσ(u)dσ(v)

drdt

rt
.

Therefore, by a change of variable, Fubini’s theorem, Hölder’s inequality,
and invoking Lemma 2.12 we get

‖Y (h)‖p′/2 ≤ C(log θ)2
( ∑

j

‖Ωj‖min{2,q}
Lq(Sn−1×Sm−1)‖Ωj‖max{0,2−q}

Lq(Sn−1×Sm−1)

)

×
∫

Rn×Rm

( ∑

j

∑

k,d

∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

∣∣hk,d,l,s,j(x, y, r, t)
∣∣2 drdt

rt

)
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≤ (MSP (|b̃|q′/2
)
(−x,−y)

)2/q′
dxdy

≤ C(log θ)2
( ∑

j

‖Ωj‖2Lq(Sn−1×Sm−1)

)

×
∥∥∥∥

∑

j

∑

k,d

∫ Φ(θ)

Φ(1)

∫ Ψ(θ)

Ψ(1)

∣∣hk,d,l,s,j(x, y, r, t)
∣∣2 drdt

rt

∥∥∥∥
p′/2

×
∥∥∥
(MSP

(|b̃|q′/2
))2/q′

∥∥∥
(p′/2)′

.

By the condition on p we have (2/q′)(p′/2)′ > α′. Thus by the choice of b

and invoking Lemma 2.11 we get

‖Y (h)‖p′/2 ≤ C(q − 1)−2

( ∑

j

‖Ωj‖2Lq(Sn−1×Sm−1)

)

which when combined with (3.6) and then interpolating with (3.4) we get
(3.3). This completes the proof of (3.3).

Case 2. γ = 1. Write TK,Φ,Ψf(x, y) =
∫∞
0

∫∞
0

∑
j hj(r, t)Fr,t,j(x, y)drdt

rt ,
where

Fr,t,j(x, y) =
∫

Sn−1×Sm−1
f(x− Φ(r)u, y −Ψ(t)v)Ωj(u, v)dσ(u)dσ(v).

By duality we have

T
(γ)
Φ,Ψ,{Ωj}f(x, y)

=
∥∥Fr,t,j(·, ·)

∥∥
l∞(L∞(R+×R+, dtdr

tr ),j)

=
∥∥Fr,t,j(·, ·)

∥∥
l∞(L∞(R+×R+,drdt),j)

≤ sup
j,t,r>0

∫

Sn−1×Sm−1
f(x− Φ(r)u, y −Ψ(t)v)Ωj(u, v)dσ(u)dσ(v).

Now, by Hölder’s inequality, we have

Fr,t,j(x, y) ≤ sup
j
‖Ωj‖q

(MSP

(|f |q′)(x, y)
)1/q′
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and hence we have

T
(γ)
Φ,Ψ,{Ωj}f(x, y) ≤ ∥∥‖Ωj‖Lq(Sn−1×Sm−1)

∥∥
l∞

(MSP

(|f |q′)(x, y)
)1/q′

By the last inequality and Lemma 2.11 we obtain (3.1) for the case γ = 1.

Case 3. 1 < γ < 2. For 1 ≤ p, q, ω < ∞, let Lp(lω(Lq(R+ ×R+, drdt
rt ), j),

Rn×Rm) denote the space of all measurable functions Gj(x, y, r, t) defined
on Rn × Rm × R+ × R+ with the mixed norm
‖G‖Lp(lω(Lq(R+×R+, drdt

rt ),j),Rn×Rm), where

‖G‖Lp(lω(Lq(R+×R+, drdt
rt ),j),Rn×Rm)

=
∥∥∥∥‖G(·)(·, ·, ·)‖Lq(R+×R+, drdt

rt )

∥∥
lω

∥∥
Lp(Rn×Rm)

=
( ∫

Rn×Rm

( ∑

j

( ∫

R+×R+

|Gj(x, y, r, t)|q drdt

rt

)ω/q)p/ω

dxdy

)1/p

.

If p = ∞, q = ∞ or ω = ∞, we can define Lp(lω(Lq(R+×R+, drdt
rt ), j),Rn×

Rm) by the usual modification.
By duality we have

∥∥T
(γ)
Φ,Ψ,{Ωj}(f)

∥∥
Lp(Rn×Rm)

= ‖F (f)‖Lp(lγ′ (Lγ′ (R+×R+, drdt
rt ),j),Rn×Rm,dxdy),

where F : Lp(Rn ×Rm) → Lp(lγ
′
(Lγ′(R+ ×R+, drdt

rt ), j),Rn ×Rm) is a
linear operator defined by

F (f)(x, y; r, t; j) =
∫

Sn−1×Sm−1
f(x− Φ(r)u, y −Ψ(t)v)Ωj(u, v)dσ(u)dσ(v).

From the inequalities (3.1) (for the case γ = 2) and (3.1) (for the case γ = 1),
we interpret that

‖F (f)‖Lp(l2(L2(R+×R+, drdt
rt ),j),Rn×Rm)

≤ C(q − 1)−1
∥∥‖Ωj‖Lq(Sn−1×Sm−1)

∥∥
l2
‖f‖Lp(Rn×Rm) (3.7)

for (2αq′)/(2α + αq′ − 2) < p < ∞ and
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‖F (f)‖Lp(l∞(L∞(R+×R+, drdt
rt ),j),Rn×Rm)

≤ C
∥∥‖Ωj‖Lq(Sn−1×Sm−1)

∥∥
l∞‖f‖Lp(Rn×Rm) (3.8)

for q′α′ ≤ p < ∞. Applying the real interpolation theorem for Lebesgue
mixed normed spaces to the above results (see [9]), we conclude that

‖F (f)‖Lp(lγ′ (Lγ′ (R+×R+, drdt
rt ),j),Rn×Rm)

≤ Cp(q − 1)−2/γ′
∥∥‖Ωj‖Lq(Sn−1×Sm−1)

∥∥
lγ′‖f‖Lp(Rn×Rm) (3.9)

holds for 1 < q ≤ 2, (αq′γ′)/(γ′α+αq′− γ′) < p < ∞ and 1 ≤ γ ≤ 2, where
α = min(m,n). This completes the proof of Theorem 1.1.

Proof of Theorem 1.3 (a). To prove Theorem 1.3 we need to consider two
cases.

Case 1. 1 < γ ≤ 2. First, we notice that SΦ,Ψ,Ω,hf(x, y) = limε1→0,ε2→0

·S(ε1,ε2)
Φ,Ψ,Ω,hf(x, y) for f ∈ S(Rn ×Rm), where S

(ε1,ε2)
Φ,Ψ,Ω,h is the truncated sin-

gular integral operator given by

S
(ε1,ε2)
Φ,Ψ,Ω,hf(x, y) =

∫

|v|>ε2

∫

|u|>ε1

Ω(u, v)
|u|n|v|m

× h(|u|, |v|)f(x− Φ(|u|)u′, y −Ψ(|v|)v′)dudv. (3.10)

We may assume without loss of generality that ‖h‖Lγ(R+×R+, drdt
rt ) = 1. By

Hölder’s inequality and duality we have

∣∣S(ε1,ε2)
Φ,Ψ,Ω,hf(x, y)

∣∣ ≤
∫ ∞

ε2

∫ ∞

ε1

|h(r, t)|
∣∣∣∣
∫

Sn−1×Sm−1
f(x− Φ(r)u, y −Ψ(t)v)

× Ω(u, v)dσ(u)dσ(v)
∣∣∣∣
drdt

rt

≤
( ∫ ∞

0

∫ ∞

0

∣∣∣∣
∫

Sn−1×Sm−1
f(x− Φ(r)u, y −Ψ(t)v)

× Ω(u, v)dσ(u)dσ(v)
∣∣∣∣
γ′

drdt

rt

)1/γ′

= M(γ)
Φ,Ψ,Ωf(x, y).



On the boundedness of a class of rough maximal operators on product spaces 27

Thus, by Theorem 1.2 we have

∥∥S
(ε1,ε2)
Φ,Ψ,Ω,h(f)

∥∥
p
≤ Cp(q − 1)−2/γ′‖Ω‖Lq(Sn−1×Sm−1)‖f‖p (3.11)

for (αq′γ′)/(γ′α+αq′−γ′) < p < ∞ with α = min(m,n) and 1 < γ ≤ 2 and
for some positive constant Cp is independent of ε1 and ε2. In particular,
(3.11) holds for 2 ≤ p < ∞ and 1 < γ ≤ 2. By a routine duality argument,
(3.11) also holds for 1 < p ≤ 2 and 1 < γ ≤ 2. By Fatou’s lemma and (3.11)
we get (1.7) for 1 < p < ∞ and 1 < γ ≤ 2.

Case 2. 2 < γ ≤ ∞. As above, we deal with S
(ε1,ε2)
Φ,Ψ,Ω,h. Write S

(ε1,ε2)
Φ,Ψ,Ω,h(f) =∑

k,d∈Z σΩ,h,θ,k,d ∗ f . By invoking Lemmas 2.4, 2.5 and 2.9 with θ = 2q′ ,
ak = Φ(θk) and bd = Ψ(θd) we obtain the inequality (3.11) for γ′ < p < ∞
with Cp independent of ε1 and ε2. Since γ′ < 2, we get (3.11) for 2 ≤ p < ∞
and 2 < γ ≤ ∞. As above, by duality and Fatou’s lemma we get (1.7) for
1 < p < ∞ and 2 < γ ≤ ∞. This completes the proof of Theorem 1.3.

Proof of Theorem 1.4 (a). We employ the extrapolation method of Yano
(see [27] or [28, Chap. XII, pp. 119–120]). Assume 1 < γ ≤ 2 and Ω ∈
L(log L)2/γ′(Sn−1 × Sm−1) are fixed and Ω satisfies (1.1). Fix p with 2 ≤
p < ∞ and a function f with ‖f‖p ≤ 1. Let R(Ω) = ‖M(γ)

Φ,Ψ,Ω(f)‖p.
Decompose Ω as follows: For κ ∈ N, let Jκ(Ω) = {(x, y) ∈ Sn−1 × Sm−1:
2κ ≤ |Ω(x, y)| < 2κ+1}. For κ ∈ N, set ãκ = ΩχJκ(Ω), where χA is the
characteristic function of a set A. Set I(Ω) = {κ ∈ N : ‖ãκ‖1 ≥ 2−4κ} and
define the sequence of functions {Ω(κ)}κ∈I(Ω)∪{0} by

Ω(κ)(x, y) =
∥∥ãκ

∥∥−1

1

(
ãκ(x, y)−

∫

Sn−1
κ

ãκ(u, y)dσ(u)−
∫

Sm−1
ãκ(x, v)dσ(v)

+
∫

Sn−1×Sm−1
ãκ(u, v)dσ(u)dσ(v)

)
; (3.12)

Ω(0)(x, y) = Ω(x, y)−
∑

κ∈I(Ω)

∥∥ãκ

∥∥
1
Ω(κ)(x, y). (3.13)

It is easy to verify that the following hold for all κ ∈ I(Ω) ∪ {0} and for
some positive constant C:
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∑

κ∈I(Ω)

κ2/γ′‖ãκ‖1 ≤ 1√
log 2

‖Ω‖L(log L)2/γ′ (Sn−1×Sm−1); (3.14)

∫

Sn−1
Ω(κ)(u, ·)dσ(u) =

∫

Sm−1
Ω(κ)(·, v)dσ(v) = 0; (3.15)

Ω(x, y) = Ω(0)(x, y) +
∑

κ∈I(Ω)

‖ãκ‖1Ω(κ)(x, y); (3.16)

‖Ω(κ)‖1+ 1
κ
≤ 27 for κ ∈ I(Ω) and ‖Ω(0)‖2 ≤ 22. (3.17)

Thus, by (3.14)–(3.17), Minkowski’s inequality and applying Theorem 1.2
we get

∥∥M(γ)
Φ,Ψ,Ω(f)

∥∥
Lp(Rn×Rm)

=
∥∥∥∥M

(γ)

Φ,Ψ,Ω(0)(f) +
∑

κ∈I(Ω)

‖ãκ‖1M(γ)

Φ,Ψ,Ω(κ)(f)
∥∥∥∥

Lp(Rn×Rm)

≤ R(Ω(0)) +
∑

κ∈I(Ω)

‖ãκ‖1R(Ω(κ))

≤ C‖Ω(0)‖2 +
∑

κ∈I(Ω)

κ
2/γ′‖ãκ‖1‖Ω(κ)‖1+ 1

κ

≤ C
(
1 + ‖Ω‖L(log L)2/γ′ (Sn−1×Sm−1)

)
.

Proof of Theorem 1.4 (b). Assume 1 < γ ≤ 2 and Ω ∈ B
(0,2/γ′−1)
q (Sn−1 ×

Sm−1) for some q > 1 are fixed and Ω satisfies (1.1). We may assume without
loss of generality that 1 < q ≤ 2. Fix p with 2 ≤ p < ∞ and a function f

with ‖f‖p ≤ 1 and let A(Ω) = ‖M(γ)
Φ,Ψ,Ω(f)‖p. Since Ω ∈ B

(0,2/γ′−1)
q (Sn−1×

Sm−1), we can write Ω as Ω =
∑∞

µ=1 λµbµ, where λµ ∈ C, bµ is a q-block

supported on an interval Iµ on Sn−1 × Sm−1 and M
(0,2/γ′−1)
q ({λµ}) < ∞.

To each block function bµ(·, ·), let Ω̃µ(·, ·) be a function defined by

Ω̃µ(x, y) = bµ(x, y)−
∫

Sn−1
bµ(u, y)dσ(u)−

∫

Sm−1
bµ(x, v)dσ(v)

+
∫

Sn−1×Sm−1
bµ(u, v)dσ(u)dσ(v).
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Let D = {µ ∈ N :|Iµ| < e−
q′
q }, δ = (

∑∞
µ=1 |λµ|) and let Ω̃0 = Ω −∑∞

µ∈D λµΩ̃µ. Also, for µ ∈ D we let ωµ = log(|Iµ|−1). Then one can
easily verify the following:

Ω = Ω̃0 +
∞∑

µ∈D

λµΩ̃µ; (3.18)

∫

Sn−1
Ω̃µ(u, ·)dσ(u) =

∫

Sm−1
Ω̃µ(·, v)dσ(v) = 0 for all µ ∈ D ∪ {0}; (3.19)

∥∥Ω̃0

∥∥
q
≤ δe

1
q . (3.20)

Also, for µ ∈ D we have 1 + 1
ωµ

< q and hence by Hölder’s inequality we
have

∥∥Ω̃µ

∥∥
1+ 1

ωµ

≤ 4‖bµ‖q|Iµ|
q−1− 1

ωµ

q(1+ 1
ωµ

)

≤ 4
(|Iµ|−

1
q′

)|Iµ|
q−1− 1

ωµ

q(1+ 1
ωµ

) = 4|Iµ|−
1

ωµ+1 ≤ 8. (3.21)

By (3.18)–(3.21) and invoking Theorem 2.1 we get

A(Ω) ≤ A
(
Ω̃0

)
+

∑

µ∈D

|λµ|A
(
Ω̃µ

)

≤ Cp

(
(q − 1)−2/γ′

∥∥Ω̃0

∥∥
q
+

∑

µ∈D

|λµ|
(
log |Iµ|−1

)2/γ′∥∥Ω̃µ

∥∥
1+ 1

ωµ

)

≤ Cp

(
δe

1
q (q − 1)−2/γ′ + 8

∑

µ∈D

(|λµ|
(
log |Iµ|−1

)2/γ′))

≤ Cp

(
1 + ‖Ω‖

B
(0,2/γ′−1)
q (Sn−1×Sm−1)

)
.

Proof of Theorem 1.5 (a) and (b). A proof of Theorem 1.5 (a) can be con-
structed by Theorem 1.3, using an extrapolation argument and using a sim-
ilar argument employed in the proof of Theorem 1.4 (a). Details will be
omitted. Also, a proof of Theorem 1.5 (b) can be obtained by Theorem
1.3, extrapolation and following a similar argument employed in the proof
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of Theorem 1.4 (b). Again details will be omitted.

Theorem 1.5 (c). Assume γ = 1. It is easy to see that the inequality

∣∣S(ε1,ε2)
Φ,Ψ,Ω,hf(x, y)

∣∣

≤ ‖h‖Lγ(R+×R+, drdt
rt )‖Ω‖L1(Sn−1×Sm−1)‖f‖L∞(Rn×Rm)

holds for all f ∈ L∞(Rn×Rm) and for almost every (x, y) ∈ Rn×Rm. By
(3.22) we get

∥∥S
(ε1,ε2)
Φ,Ψ,Ω,h(f)

∥∥
L∞(Rn×Rm)

≤ ‖h‖Lγ(R+×R+, drdt
rt )‖Ω‖L1(Sn−1×Sm−1)‖f‖L∞(Rn×Rm)

for all f ∈ S(Rn ×Rm). By duality, we have

∥∥S
(ε1,ε2)
Φ,Ψ,Ω,h(f)

∥∥
L1(Rn×Rm)

≤ ‖h‖Lγ(R+×R+, drdt
rt )‖Ω‖L1(Sn−1×Sm−1)‖f‖L1(Rn×Rm)

for all f ∈ S(Rn ×Rm). Thus by interpolation between the last two esti-
mates we get

∥∥S
(ε1,ε2)
Φ,Ψ,Ω,h(f)

∥∥
Lp(Rn×Rm)

≤ ‖h‖Lγ(R+×R+, drdt
rt )‖Ω‖L1(Sn−1×Sm−1)‖f‖Lp(Rn×Rm)

for 1 < p < ∞ and all f ∈ S(Rn ×Rm). Finally, using density argument
we get

∥∥S
(ε1,ε2)
Φ,Ψ,Ω,h(f)

∥∥
Lp(Rn×Rm)

≤ ‖h‖Lγ(R+×R+, drdt
rt )‖Ω‖L1(Sn−1×Sm−1)‖f‖Lp(Rn×Rm)

for 1 ≤ p ≤ ∞ and for all f ∈ Lp(Rn ×Rm).
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