Orthogonal almost complex structures of hypersurfaces of purely imaginary octonions

Hideya Hashimoto and Misa Ohashi
(Received November 10, 2009; Revised February 8, 2010)

Abstract

First we give the new elementary proof of the structure equations of G_{2} and the congruence theorem of hypersurfaces of the purely imaginary octonions $\operatorname{Im} \mathfrak{C}$ under the action of G_{2}. Next, we classify almost complex structures of homogeneous hypersurfaces of $\operatorname{Im} \mathfrak{C}$ into 4 -types.

Key words: octonions, almost complex structure, G_{2}-congruent, G_{2}-orbits decomposition.

1. Introduction

It is well known that the octonions \mathfrak{C} is a non-commutative, nonassociative, alternative division normed algebra ([5]). The automorphism group of the octonions is an exceptional simple Lie group G_{2}.

One of the purposes of this paper is to give the new elementary proof of the structure equations of G_{2} which are obtained by E. Calabi ([2]) and R. L. Bryant ([1]). Our method is basically the analogy of calculations of the formula of Frenet-Serre about a curve in a 3-dimensional Euclidean space.

Let $\varphi: M^{6} \rightarrow \operatorname{Im} \mathfrak{C}$ be an immersion from a 6 -dimensional orientable manifold M^{6} into the purely imaginary octonions $\operatorname{Im} \mathfrak{C}=\{x \in \mathfrak{C} \mid\langle x, 1\rangle=$ $0\} \cong \mathbf{R}^{7}$, where 1 is a unit element of \mathfrak{C}. Then we define the metric of M^{6} induced from the canonical metric of $\operatorname{Im} \mathfrak{C}\left(\cong \mathbf{R}^{7}\right)$.

Next we define the canonical orientation of the hypersurface M^{6}. The octonions is considered as a pair of the quaternions $\mathbf{H} \oplus \mathbf{H}$. We define the oriented basis (the orientation) of $\operatorname{Im} \mathfrak{C}$ as

$$
\operatorname{Im} \mathfrak{C}=\operatorname{span}_{\mathbf{R}}\{i, j, k, \varepsilon, i \varepsilon, j \varepsilon, k \varepsilon\}
$$

where $\{i, j, k\}$ is the basis of pure imaginary part of quaternions and $\varepsilon=$ $(0,1) \in \mathbf{H} \oplus \mathbf{H}$. Then M^{6} admits the orientation which is compatible with the above orientation of $\operatorname{Im} \mathfrak{C}$ such that

$$
\xi \wedge T_{p}(M)=\operatorname{Im} \mathfrak{C},
$$

where ξ is a unit normal vector field whole on M^{6}. By algebraic properties of \mathfrak{C}, we define the (induced) almost complex structure J of M^{6} by

$$
\varphi_{*}(J X)=\varphi_{*}(X) \xi\left(=\varphi_{*}(X) \times \xi\right)
$$

for any $X \in T_{p} M^{6},\left(p \in M^{6}\right)$, which is compatible with the induced metric, where \times is the exterior product of \mathfrak{C} (see Section 2). Then the orientation of M^{6} is compatible with the one which comes from the almost complex structure J.

Let $\varphi: M^{6} \rightarrow \operatorname{Im} \mathfrak{C}$ and $\varphi^{\prime}: N^{6} \rightarrow \operatorname{Im} \mathfrak{C}$ be two isometric immersions. We call φ and φ^{\prime} are G_{2} (resp. $S O(7)$)-congruent if there exist a $g \in G_{2}$ (resp. $\in S O(7)$) and an orientation preserving diffeomorphism $\psi: M^{6} \rightarrow N^{6}$ satisfying

$$
g \circ \varphi=\varphi^{\prime} \circ \psi
$$

up to a parallel displacement. We can easily see that, if φ and φ^{\prime} are $G_{2^{-}}$ congruent, then the two induced almost complex structures coincide.

In Section 3, we give the congruence theorem of hypersurfaces of $\operatorname{Im} \mathfrak{C}$ under the action of G_{2}. We note that this theorem is also related to the orbit decomposition (under the action of G_{2}), of the Grassmann manifold $G_{k}^{+}(\operatorname{Im} \mathfrak{C})$ of oriented k-planes in $\operatorname{Im} \mathfrak{C}$. This decomposition is also related to the double coset decomposition with respect to $G_{2} \backslash(S O(7) / S O(3) \times S O(4))$.

Let $\varphi: M^{6} \rightarrow \mathbf{R}^{7}$ be an orientable hypersurface of a 7 -dimensional Euclidean space. The main purpose of this paper is to describe the set of all induced almost complex structures of $g \circ \varphi$ for any $g \in S O(7)$. We restrict our attention to the Riemannian homogeneous hypersurfaces $S^{k} \times$ \mathbf{R}^{6-k} (generalized cylinders) for any $k \in\{0, \ldots, 6\}$. We will classify almost complex structures of $S^{k} \times \mathbf{R}^{6-k}$ into 4 -types. In particular, we can show that (for general $g \in S O(7)$) the induced almost complex structures of $g \circ \varphi$ are different from that of φ, in the case $S^{2} \times \mathbf{R}^{4}$ and $S^{3} \times \mathbf{R}^{3}$. We also describe the moduli space of imbeddings from $S^{2} \times \mathbf{R}^{4}$ and $S^{3} \times \mathbf{R}^{3}$, to Im \mathfrak{C} up to the action of G_{2}.

In the present paper, all manifolds and tensor fields are always assumed to be of class C^{∞}, unless otherwise specified.

2. Preliminaries

Let \mathbf{H} be the skew field of all quaternions with canonical basis $\{1, i, j, k\}$, which satisfies

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j
$$

The octonions (or Cayley algebra) \mathfrak{C} over \mathbf{R} can be considered as a direct sum $\mathbf{H} \oplus \mathbf{H}=\mathfrak{C}$ with the following multiplication

$$
(a+b \varepsilon)(c+d \varepsilon)=a c-\bar{d} b+(d a+b \bar{c}) \varepsilon
$$

where $\varepsilon=(0,1) \in \mathbf{H} \oplus \mathbf{H}$ and $a, b, c, d \in \mathbf{H}$, where the symbol "-" denotes the conjugation of the quaternions. For any $x, y \in \mathfrak{C}$, we have

$$
\langle x y, x y\rangle=\langle x, x\rangle\langle y, y\rangle,
$$

which is called "normed algebra" in ([5]). The octonions is a noncommutative, non-associative alternative division algebra. The group of automorphisms of the octonions is the exceptional simple Lie group

$$
G_{2}=\{g \in S O(8) \mid g(u v)=g(u) g(v) \text { for any } u, v \in \mathfrak{C}\} .
$$

The "exterior product" of \mathfrak{C} is defined by

$$
u \times v=(1 / 2)(\bar{v} u-\bar{u} v)
$$

where $\bar{v}=2\langle v, 1\rangle-v$ is the conjugation of $v \in \mathfrak{C}$. We note that $u \times v \in \operatorname{Im} \mathfrak{C}$, where

$$
\operatorname{Im} \mathfrak{C}=\{u \in \mathfrak{C} \mid\langle u, 1\rangle=0\} .
$$

2.1. $\quad G_{\mathbf{2}}$-structure equations

In this section, we shall recall the structure equation of G_{2} which was established by R. Bryant ([1]). To do this, we fix a basis of the complexification of the octonions $\mathbf{C} \otimes_{\mathbf{R}} \mathfrak{C}$ over \mathbf{C} given by

$$
\begin{array}{rlrl}
N & =(1 / 2)(1-\sqrt{-1} \varepsilon), & \bar{N}=(1 / 2)(1+\sqrt{-1} \varepsilon) \\
E_{1}=i N, & E_{2} & =j N, \quad E_{3}=-k N, & \bar{E}_{1}=i \bar{N}, \quad \bar{E}_{2}=j \bar{N}, \quad \bar{E}_{3}=-k \bar{N},
\end{array}
$$

where ${ }^{-}$denote the complex conjugation of $\mathbf{C} \otimes_{\mathbf{R}} \mathfrak{C}$. We use the same symbol of the conjugation in the three ways, but it is possible to distinguish the conjugation, if the element included in \mathbf{H} or \mathfrak{C} or $\mathbf{C} \otimes_{\mathbf{R}} \mathfrak{C}$. We extend the multiplication of the octonions complex linearly on $\mathbf{C} \otimes_{\mathbf{R}} \mathfrak{C}$ and denote by $A B$. Then we have the following multiplication table;

$A \backslash B$	ε	E_{1}	E_{2}	E_{3}	\bar{E}_{1}	\bar{E}_{2}	\bar{E}_{3}
ε	-1	$-\sqrt{-1} E_{1}$	$-\sqrt{-1} E_{2}$	$-\sqrt{-1} E_{3}$	$\sqrt{-1} \bar{E}_{1}$	$\sqrt{-1} \bar{E}_{2}$	$\sqrt{-1} \bar{E}_{3}$
E_{1}	$\sqrt{-1} E_{1}$	0	$-\bar{E}_{3}$	\bar{E}_{2}	$-\bar{N}$	0	0
E_{2}	$\sqrt{-1} E_{2}$	\bar{E}_{3}	0	$-\bar{E}_{1}$	0	$-\bar{N}$	0
E_{3}	$\sqrt{-1} E_{3}$	$-\bar{E}_{2}$	\bar{E}_{1}	0	0	0	$-\bar{N}$
\bar{E}_{1}	$-\sqrt{-1} \bar{E}_{1}$	$-N$	0	0	0	$-E_{3}$	E_{2}
\bar{E}_{2}	$-\sqrt{-1} \bar{E}_{2}$	0	$-N$	0	E_{3}	0	$-E_{1}$
\bar{E}_{3}	$-\sqrt{-1} \bar{E}_{3}$	0	0	$-N$	$-E_{2}$	E_{1}	0

The multiplication table of the exterior product $A \times B$ is given by

$A \backslash B$	ε	E_{1}	E_{2}	E_{3}	\bar{E}_{1}	\bar{E}_{2}	\bar{E}_{3}
ε	0	$-\sqrt{-1} E_{1}$	$-\sqrt{-1} E_{2}$	$-\sqrt{-1} E_{3}$	$\sqrt{-1} \bar{E}_{1}$	$\sqrt{-1} \bar{E}_{2}$	$\sqrt{-1} \bar{E}_{3}$
E_{1}	$\sqrt{-1} E_{1}$	0	$-\bar{E}_{3}$	\bar{E}_{2}	$-\sqrt{-1} \varepsilon / 2$	0	0
E_{2}	$\sqrt{-1} E_{2}$	\bar{E}_{3}	0	$-\bar{E}_{1}$	0	$-\sqrt{-1} \varepsilon / 2$	0
E_{3}	$\sqrt{-1} E_{3}$	$-\bar{E}_{2}$	\bar{E}_{1}	0	0	0	$-\sqrt{-1} \varepsilon / 2$
\bar{E}_{1}	$-\sqrt{-1} \bar{E}_{1}$	$\sqrt{-1} \varepsilon / 2$	0	0	0	$-E_{3}$	E_{2}
\bar{E}_{2}	$-\sqrt{-1} \bar{E}_{2}$	0	$\sqrt{-1} \varepsilon / 2$	0	E_{3}	0	$-E_{1}$
\bar{E}_{3}	$-\sqrt{-1} \bar{E}_{3}$	0	0	$\sqrt{-1} \varepsilon / 2$	$-E_{2}$	E_{1}	0

To calculate the Maurer-Cartan form of G_{2}, we define the representation $\rho: G_{2} \hookrightarrow \operatorname{End}_{\boldsymbol{R}}(\operatorname{Im} \mathfrak{C})$ of G_{2} by

$$
\begin{equation*}
\rho(g)(u)=g(u) \tag{2.1}
\end{equation*}
$$

for any $u \in \operatorname{Im} \mathfrak{C}$, where $\operatorname{End}_{\boldsymbol{R}}(\operatorname{Im} \mathfrak{C})$ is the set of all linear endomorphisms of $\operatorname{Im} \mathfrak{C}$. Extending the representation $\rho(g)$ complex linearly on $\mathbf{C} \otimes_{\boldsymbol{R}} \operatorname{Im} \mathfrak{C}$, we set

$$
(u f \bar{f})=(\rho(g)(\varepsilon) \rho(g)(E) \quad \rho(g)(\bar{E}))=\left(\begin{array}{lll}
\varepsilon & E
\end{array}\right) M
$$

where

$$
f=\left(f_{1}, f_{2}, f_{3}\right), \quad E=\left(E_{1}, E_{2}, E_{3}\right), \quad \bar{E}=\left(\bar{E}_{1}, \bar{E}_{2}, \bar{E}_{3}\right),
$$

and $M=M(g)$ is a $M_{7 \times 7}(\boldsymbol{C})$-valued function on G_{2}. Each components of (u, f, \bar{f}) can be considered as a vector valued function on G_{2}, that is, $u: G_{2} \rightarrow \operatorname{Im} \mathfrak{C}, f_{i}: G_{2} \rightarrow \boldsymbol{C} \otimes_{\boldsymbol{R}} \operatorname{Im} \mathfrak{C}, \bar{f}_{i}: G_{2} \rightarrow \boldsymbol{C} \otimes_{\boldsymbol{R}} \operatorname{Im} \mathfrak{C}$. The (local) section (u, f, \bar{f}) on G_{2} is called the G_{2}-frame field. It satisfies

$$
\left\langle u, f_{i}\right\rangle=0, \quad\left\langle f_{i}, f_{j}\right\rangle=\left\langle\bar{f}_{i}, \bar{f}_{j}\right\rangle=0, \quad\left\langle f_{i}, \bar{f}_{j}\right\rangle=\delta_{i j} / 2
$$

Also we extend the exterior product \times complex linearly, we have the following relations.

$$
f_{i} \times u=\sqrt{-1} f_{i}, \quad\left\langle f_{1} \times f_{2}, f_{3}\right\rangle=-1 / 2
$$

for any $i \in\{1,2,3\}$.
Proposition 2.1 ([1]) Let $(u f \bar{f})$ be the G_{2}-frame field. Then we have

$$
d\left(\begin{array}{lll}
u & f & \bar{f}
\end{array}\right)=\left(\begin{array}{lll}
u & f & \bar{f}
\end{array}\right)\left(\begin{array}{c|c|c}
0 & -\sqrt{-1}^{t} \bar{\theta} & \sqrt{-1}^{t} \theta \tag{2.2}\\
\hline-2 \sqrt{-1} \theta & \kappa & {[\bar{\theta}]} \\
\hline 2 \sqrt{-1} \bar{\theta} & {[\theta]} & \bar{\kappa}
\end{array}\right)=\left(\begin{array}{lll}
u & f & \bar{f}
\end{array}\right) \Phi
$$

where, $\theta={ }^{t}\left(\begin{array}{lll}\theta^{1} & \theta^{2} & \theta^{3}\end{array}\right)$ is an $M_{3 \times 1}(\boldsymbol{C})$ valued 1-form, κ is an $\mathfrak{s u}(3)$ valued 1-form, which satisfies

$$
\kappa+{ }^{t} \bar{\kappa}=0_{3 \times 3}, \quad \operatorname{tr} \kappa=0,
$$

and

$$
[\theta]=\left(\begin{array}{ccc}
0 & \theta^{3} & -\theta^{2} \\
-\theta^{3} & 0 & \theta^{1} \\
\theta^{2} & -\theta^{1} & 0
\end{array}\right)
$$

The integrability condition $d \circ d=0$ implies that

$$
\begin{align*}
d \theta & =-\kappa \wedge \theta+[\bar{\theta}] \wedge \bar{\theta} \tag{2.3}\\
d \kappa & =-\kappa \wedge \kappa+3 \theta \wedge{ }^{t} \bar{\theta}-\left({ }^{t} \theta \wedge \bar{\theta}\right) I_{3} \tag{2.4}
\end{align*}
$$

where I_{3} denote the 3×3 identity matrix.
We will give the direct proof of Proposition 2.1.
Proof. Taking a exterior derivative of G_{2}-frame field $\left(\begin{array}{ll}u & f\end{array}\right)$, then we get

$$
d\left(\begin{array}{lll}
u & f & \bar{f}
\end{array}\right)=\left(\begin{array}{lll}
\varepsilon & E & \bar{E}
\end{array}\right) d M=\left(\begin{array}{lll}
u & f & \bar{f}
\end{array}\right) M^{-1} d M
$$

where $M^{-1} d M$ is a \mathfrak{g}_{2}-valued left invariant 1 -from on G_{2}, that is, the Maurer-Cartan form of G_{2}, where $\mathfrak{g}_{2}\left(=\rho_{*}\left(T_{e} G_{2}\right)\right)$ is the Lie algebra of G_{2}. By (2.2), we will prove the following equality

$$
\begin{equation*}
M^{-1} d M=\Phi \tag{2.5}
\end{equation*}
$$

To do this, we set

$$
M^{-1} d M=\left(\begin{array}{c|c|c}
\psi_{00} & \psi_{01} & \psi_{02} \tag{2.6}\\
\hline \psi_{10} & \psi_{11} & \psi_{12} \\
\hline \psi_{20} & \psi_{21} & \psi_{22}
\end{array}\right)
$$

where ψ_{00} is a \boldsymbol{R}-valued 1-form, ψ_{01}, ψ_{02} are $M_{1 \times 3}(\boldsymbol{C})$-valued 1-forms, ψ_{10}, ψ_{20} are $M_{3 \times 1}(\boldsymbol{C})$-valued 1-forms, $\psi_{11}, \psi_{22}, \psi_{12}, \psi_{21}$ are $M_{3 \times 3}(\boldsymbol{C})$-valued 1-forms, respectively.
(1) Since $\langle u, u\rangle=1$, we get $\psi_{00}=0$.
(2) We show that $\psi_{20}=\overline{\psi_{10}}$. Since $d u=\overline{d u}$, we have

$$
\sum_{i=1}^{3} f_{i}\left(\psi_{10}\right)^{i}+\sum_{i=1}^{3} \bar{f}_{i}\left(\psi_{20}\right)^{i}=\sum_{i=1}^{3} \bar{f}_{i} \overline{\left(\psi_{10}\right)^{i}}+\sum_{i=1}^{3} f_{i} \overline{\left(\psi_{20}\right)^{i}}
$$

From which, we obtain

$$
\psi_{20}=\overline{\psi_{10}}
$$

(3) We show that $\psi_{01}=-\frac{1}{2} t \overline{\psi_{10}}$. Since $\left\langle u, f_{i}\right\rangle=0$, we have

$$
0=\left\langle d u, f_{i}\right\rangle+\left\langle u, d f_{i}\right\rangle=\frac{1}{2} \overline{\left(\psi_{10}\right)^{i}}+\left(\psi_{01}\right)^{i}
$$

Hence we obtain the desired result.
(4) We show that $\psi_{02}=\frac{1}{2}^{t} \psi_{10}, \psi_{12}=\overline{\psi_{21}}, \psi_{22}=\overline{\psi_{11}}$. In fact,

$$
d f_{i}=u\left(\psi_{01}\right)^{i}+\sum_{j=1}^{3} f_{j}\left(\psi_{11}\right)_{i}^{j}+\sum_{j=1}^{3} \bar{f}_{j}\left(\psi_{21}\right)_{i}^{j}
$$

Since $\overline{d f_{i}}=d \bar{f}_{i}$, we see that

$$
\left(\psi_{02}\right)^{i}=\overline{\left(\psi_{01}\right)^{i}}=-\frac{1}{2}\left(\psi_{10}\right)^{i}, \quad\left(\psi_{12}\right)_{i}^{j}=\overline{\left(\psi_{21}\right)_{i}^{j}}, \quad\left(\psi_{22}\right)_{i}^{j}=\overline{\left(\psi_{11}\right)_{i}^{j}},
$$

for any $i, j \in\{1,2,3\}$. We get the desired result.
(5) We will prove that $\psi_{21}=\frac{\sqrt{-1}}{2}\left(\begin{array}{ccc}0 & \left(\psi_{10}\right)^{3} & -\left(\psi_{10}\right)^{2} \\ -\left(\psi_{10}\right)^{3} & 0 & \left(\psi_{10}\right)^{1} \\ \left(\psi_{10}\right)^{2} & -\left(\psi_{10}\right)^{1} & 0\end{array}\right)$. Since, $f_{1} \times u=$ $\sqrt{-1} f_{1}$, we get

$$
\begin{equation*}
d f_{1} \times u+f_{1} \times d u=\sqrt{-1} d f_{1} \tag{2.7}
\end{equation*}
$$

By (2.6), we get
l. h. s. of (2.7)

$$
=d f_{1} \times u+f_{1} \times d u
$$

$$
\begin{align*}
= & \left\{u\left(\psi_{01}\right)^{1}+\sum_{i=1}^{3} f_{i}\left(\psi_{11}\right)_{1}^{i}+\sum_{i=1}^{3} \bar{f}_{i}\left(\psi_{21}\right)_{1}^{i}\right\} \times u \\
& +f_{1} \times\left\{\sum_{i=1}^{3} f_{i}\left(\psi_{10}\right)^{i}+\sum_{i=1}^{3} \bar{f}_{i} \overline{\left(\psi_{10}\right)^{i}}\right\} \\
= & \sqrt{-1}\left\{u\left(-\frac{1}{2} \overline{\left(\psi_{10}\right)^{1}}\right)+\sum_{i=1}^{3} f_{i}\left(\psi_{11}\right)_{1}^{i}+\bar{f}_{1}\left(-\left(\psi_{21}\right)_{1}^{1}\right)\right. \\
& \left.\quad+\bar{f}_{2}\left(-\left(\psi_{21}\right)_{1}^{2}-\sqrt{-1}\left(\psi_{10}\right)^{3}\right)+\bar{f}_{3}\left(-\left(\psi_{21}\right)_{1}^{3}+\sqrt{-1}\left(\psi_{10}\right)^{2}\right)\right\} \tag{2.8}
\end{align*}
$$

On the other hand,
r. h. s. of (2.7)

$$
\begin{equation*}
=\sqrt{-1}\left\{u\left(\psi_{01}\right)^{1}+\sum_{i=1}^{3} f_{i}\left(\psi_{11}\right)_{1}^{i}+\bar{f}_{1}\left(\psi_{21}\right)_{1}^{1}+\bar{f}_{2}\left(\psi_{21}\right)_{1}^{2}+\bar{f}_{3}\left(\psi_{21}\right)_{1}^{3}\right\} . \tag{2.9}
\end{equation*}
$$

Therefore, by (2.8), (2.9), we have

$$
\begin{gathered}
\left(\psi_{21}\right)_{1}^{1}=-\left(\psi_{21}\right)_{1}^{1} \\
\left(\psi_{21}\right)_{1}^{2}=-\left(\psi_{21}\right)_{1}^{2}-\sqrt{-1}\left(\psi_{10}\right)^{3}, \quad\left(\psi_{21}\right)_{1}^{3}=-\left(\psi_{21}\right)_{1}^{3}+\sqrt{-1}\left(\psi_{10}\right)^{2}
\end{gathered}
$$

Hence, we obtain

$$
\left(\psi_{21}\right)_{1}^{1}=0, \quad\left(\psi_{21}\right)_{1}^{2}=-\frac{\sqrt{-1}}{2}\left(\psi_{10}\right)^{3}, \quad\left(\psi_{21}\right)_{1}^{3}=\frac{\sqrt{-1}}{2}\left(\psi_{10}\right)^{2} .
$$

In the same way, since $f_{2} \times u=\sqrt{-1} f_{2}, f_{3} \times u=\sqrt{-1} f_{3}$. We get the desired result.
(6) Since $\left\langle f_{i}, \bar{f}_{j}\right\rangle=\frac{1}{2} \delta_{i j}$, we see that $\psi_{11}+{ }^{t} \psi_{11}=0_{3 \times 3}$.
(7) We will show that $\operatorname{tr}\left(\psi_{11}\right)=0$. Since $\left\langle f_{1} \times f_{2}, f_{3}\right\rangle=-\frac{1}{2}$, we get

$$
\begin{aligned}
0 & =\left\langle d f_{1} \times f_{2}, f_{3}\right\rangle+\left\langle f_{1} \times d f_{2}, f_{3}\right\rangle+\left\langle f_{1} \times f_{2}, d f_{3}\right\rangle \\
& =\left\langle\left(f_{1} \times f_{2}\right)\left(\psi_{11}\right)_{1}^{1}, f_{3}\right\rangle+\left\langle\left(f_{1} \times f_{2}\right)\left(\psi_{11}\right)_{2}^{2}, f_{3}\right\rangle+\left\langle-\bar{f}_{3}, f_{3}\left(\psi_{11}\right)_{3}^{3}\right\rangle \\
& =-\frac{1}{2}\left(\left(\psi_{11}\right)_{1}^{1}+\left(\psi_{11}\right)_{2}^{2}+\left(\psi_{11}\right)_{3}^{3}\right) .
\end{aligned}
$$

Therefore, we obtain

$$
\operatorname{tr}\left(\psi_{11}\right)=0
$$

Summing up the above arguments, if we set $\frac{\sqrt{-1}}{2} \psi_{10}={ }^{t}\left(\begin{array}{lll}\theta^{1} & \theta^{2} & \theta^{3}\end{array}\right)$, we have $[\theta]=\left(\begin{array}{ccc}0 & \theta^{3} & -\theta^{2} \\ -\theta^{3} & 0 & \theta^{1} \\ \theta^{2} & -\theta^{1} & 0\end{array}\right)$. Furthermore, if we put $\kappa=\psi_{11}$, then we obtain (2.5).
(8) Since $d \circ d=0$, we can easily see that

$$
d \psi=-\psi \wedge \psi
$$

From which we obtain $(2.3),(2.4)$.

2.2. $\quad \operatorname{Im} \mathfrak{C} \rtimes G_{\mathbf{2}}$-structure equations

We obtain $\operatorname{Im} \mathfrak{C} \rtimes G_{2}$-structure equations from those of G_{2}. For $(x, g) \in$ $\operatorname{Im} \mathfrak{C} \rtimes G_{2}$, by (2.1), we define

$$
\tilde{\rho}: \operatorname{Im} \mathfrak{C} \rtimes G_{2} \hookrightarrow \operatorname{End}_{\boldsymbol{R}}(\operatorname{Im} \mathfrak{C}) .
$$

such that

$$
\tilde{\rho}(x, g)(v)=\rho(g)(v)+x=g(v)+x
$$

for any $v \in \operatorname{Im} \mathfrak{C}$. Since $g(0)=0$, we can easily see that

$$
\tilde{\rho}(x, g)(0)=g(0)+x=x \text {. }
$$

Extending the representation $\tilde{\rho}$ complex linearly on $\mathbf{C} \otimes_{\boldsymbol{R}} \operatorname{Im} \mathfrak{C}$, we set

$$
(x ; u f \bar{f})=(\tilde{\rho}(x, g)(0) ; \rho(g)(\varepsilon) \rho(g)(E) \quad \rho(g)(\bar{E})) .
$$

Then we obtain
Proposition 2.2 Let $(x ; u f \bar{f})$ be the $\operatorname{Im} \mathfrak{C} \rtimes G_{2}$-frame field. Then we have

$$
\begin{aligned}
d(x ; u f f & =\left(\begin{array}{llllll}
x ; u & f & \bar{f}
\end{array}\right)\left(\right) \\
& =\left(\begin{array}{lll}
x ; u f & f
\end{array}\right) \Psi
\end{aligned}
$$

where μ is a \boldsymbol{R}-valued 1-form, and ω is a $M_{3 \times 1}(\boldsymbol{C})$ valued 1-form, respectively. The integrability condition implies that

$$
\begin{aligned}
& d \mu-\sqrt{-1}^{t} \bar{\theta} \wedge \omega+\sqrt{-1}^{t} \theta \wedge \bar{\omega}=0 \\
& d \omega-2 \sqrt{-1} \theta \wedge \mu+\kappa \wedge \omega+[\theta] \wedge \bar{\omega}=0
\end{aligned}
$$

$$
\begin{aligned}
& d \theta=-\kappa \wedge \theta+[\bar{\theta}] \wedge \bar{\theta} \\
& d \kappa=-\kappa \wedge \kappa+3 \theta \wedge{ }^{t} \bar{\theta}-\left({ }^{t} \theta \wedge \bar{\theta}\right) I_{3}
\end{aligned}
$$

3. Almost complex structures of hypersurfaces of Im C

In this section we define the almost complex (Hermitian) structures on hypersurafces of $\operatorname{Im} \mathfrak{C}$, and give some its fundamaenatl properties.

Let M be a connected orientable 6-dimensional manifold and $\varphi: M \rightarrow$ $\operatorname{Im} \mathfrak{C}$ be an immersion from M to $\operatorname{Im} \mathfrak{C}$. Then M admits the induced metric g and the global unit normal vector field ξ. For any $X \in T_{p} M\left({ }^{\forall} p \in M\right)$, we define the linear transformation J_{p}

$$
J_{p}: T_{p} M \rightarrow T_{p} M, \quad\left(\varphi_{*}\left(J_{p} X\right)=\varphi_{*}(X) \xi\right)
$$

For any $X, Y \in T_{p} M$ the linear transformation J_{p} satisfies $J_{p}\left(J_{p} X\right)=-X$, $g\left(J_{p} X, J_{p} Y\right)=g(X, Y)$. Let $T M, T^{*} M$ be the tangent bundle, cotangent bundle of M, respectively. We denote $\Gamma\left(M, T^{*} M \otimes T M\right)$ the space of $T^{*} M \otimes T M$-valued global C^{∞} sections on M. We define the almost complex structure $J \in \Gamma\left(M, T^{*} M \otimes T M\right)$ as $J(p)=J_{p}$ for any $p \in M$.

3.1. $\quad G_{\mathbf{2}}$-congruence class of hypersurfaces

Let M, N be two 6 -dimensional orientable manifolds and $\varphi: M \hookrightarrow \operatorname{Im} \mathfrak{C}$, $\varphi^{\prime}: N \hookrightarrow \operatorname{Im} \mathfrak{C}$ be two isometric immersions. The two hypersurfaces (M, φ) and $\left(N, \varphi^{\prime}\right)$ are said to be G_{2}-congruent if there exist an element $(g, a) \in$ $G_{2} \times \operatorname{Im} \mathfrak{C}$ and an orientation preserving isometry $\psi: M \rightarrow N$ satisfying

$$
\varphi^{\prime}(\psi(p))=g(\varphi(p))+a
$$

for any $p \in M$, that is, the following diagram commutes

where $h_{(g, a)}(u)=g(u)+a$ for any $u \in \operatorname{Im} \mathfrak{C}$. We can easily see that the G_{2}-congruency of hypersurfaces in $\operatorname{Im} \mathfrak{C}$ is an equivalent relation. We will show that the almost complex structure J is an invariant up to the action
of G_{2} in the following sense.
Lemma 3.1 Let $\varphi: M \hookrightarrow \operatorname{Im} \mathfrak{C}, \varphi^{\prime}: N \hookrightarrow \operatorname{Im} \mathfrak{C}$ be two isometric immersions with same orientation. Suppose that they are G_{2}-congruent. Then we have

$$
J=\left(\psi_{*}\right)^{-1} \circ J^{\prime} \circ \psi_{*},
$$

where J and J^{\prime} are almost complex structures on M and N, respectively.
Proof. Since $g \in G_{2}$ and a 6 -sphere $S^{6}=G_{2} / S U(3)$, we have $\xi^{\prime}=g(\xi)$. Therefore we obtain

$$
\begin{aligned}
\varphi_{*}^{\prime}\left(J^{\prime} \psi_{*}(X)\right) & =\varphi_{*}^{\prime}\left(\psi_{*}(X)\right) \xi^{\prime}=g\left(\varphi_{*}(X)\right) g(\xi)=g\left(\varphi_{*}(X) \xi\right) \\
& =g\left(\varphi_{*}(J X)\right)=\varphi_{*}^{\prime}\left(\psi_{*}(J X)\right)
\end{aligned}
$$

and φ_{*}^{\prime} is injective, we obtain

$$
J^{\prime} \psi_{*}(X)=\psi_{*}(J X)
$$

for any $X \in T_{p} M$. We get the desired result.
We note that $\psi_{*}\left(T^{1,0} M\right)=T^{1,0} N$. If $g \in S O(7)$, then the induced almost complex structures do not necessarily coincide.

3.2. Construction of $\boldsymbol{G}_{\mathbf{2}}$-frame field on a hypersurface

Let $\varphi: M \hookrightarrow \operatorname{Im} \mathfrak{C}$ be an oriented hypersurface of $\operatorname{Im} \mathfrak{C}$ and ξ be the unit normal vector field on M. We construct the (local \mathfrak{C}-valued) G_{2}-frame field $\left(e_{1}, \ldots, e_{7}\right)$ on M, from ξ. For any $p \in M$, we set $e_{4}(p)=\xi(p)$. Next, we put $e_{1}(p) \in T_{\varphi(p)} \varphi(M),\left(\left|e_{1}(p)\right|=1\right)$. We define $e_{5}(p)$ as $e_{5}(p)=e_{1}(p) e_{4}(p)$. We take $e_{2}(p)$ satisfying $e_{2}(p) \in\left(\operatorname{span}_{\boldsymbol{R}}\left\{e_{1}(p), e_{4}(p), e_{5}(p)\right\}\right)^{\perp},\left(\left|e_{2}(p)\right|=1\right)$. Lastly, we set $e_{3}(p), e_{6}(p), e_{7}(p)$ as

$$
e_{3}(p)=e_{1}(p) e_{2}(p), \quad e_{6}(p)=e_{2}(p) e_{4}(p), \quad e_{7}(p)=e_{3}(p) e_{4}(p)
$$

Then the multiplication table of the product of $\left(e_{1}(p), \ldots, e_{7}(p)\right)$ coincides with that of $(i, j, k, \varepsilon, i \varepsilon, j \varepsilon k \varepsilon)$. Therefore, there exists an $A_{p} \in G_{2} \subset M_{7 \times 7}$ such that

$$
\left(e_{1}(p) \cdots e_{7}(p)\right)=\left(\begin{array}{lllll}
i & j & k & \varepsilon & i \varepsilon \\
j \varepsilon & k
\end{array}\right) A_{p}
$$

Let $U(\subset M)$ be a neighborhood of p. Then we can define the C^{∞} map A from U to $M_{7 \times 7}$ by $A(q)=A_{q}$ for any $q \in U$. Also, we obtain the local G_{2}-frame field $\left(\begin{array}{lll}e_{1} & \cdots & e_{7}\end{array}\right)$ on U.

3.3. Invariants of $\boldsymbol{G}_{\mathbf{2}}$-congruence class

The purpose of this section, we define the geometrical invariants of hypersurfaces under the action of G_{2}. Let $T_{p} M$ be the tangent space at $p \in M$ and $T_{p} M \otimes \boldsymbol{C}$ be the complexification of $T_{p} M$. We define the eigen-space of the almost complex structure J as

$$
\begin{aligned}
T_{p}^{1,0} M & =\left\{X \in T_{p} M \otimes \boldsymbol{C} \mid J_{p} X=\sqrt{-1} X\right\} \\
T_{p}^{0,1} M & =\left\{X \in T_{p} M \otimes \boldsymbol{C} \mid J_{p} X=-\sqrt{-1} X\right\}
\end{aligned}
$$

Then, we have

$$
T_{p} M \otimes \boldsymbol{C}=T_{p}^{1,0} M \oplus T_{p}^{0,1} M
$$

We represent the above spaces by using the G_{2} frame field. Let $\left(e_{1}, \ldots, e_{7}\right)$ be a local G_{2} frame field as above. We set

$$
f_{1}=\left(e_{1}-\sqrt{-1} e_{5}\right) / 2, \quad f_{2}=\left(e_{2}-\sqrt{-1} e_{6}\right) / 2, \quad f_{3}=-\left(e_{3}-\sqrt{-1} e_{7}\right) / 2
$$

Then we can easily see that $J f_{i}=\sqrt{-1} f_{i}$, for any $i \in\{1,2,3\}$. Therefore, we obtain

$$
T_{p}^{1,0} M=\operatorname{span}_{\boldsymbol{C}}\left\{f_{1}, f_{2}, f_{3}\right\}, \quad T_{p}^{0,1} M=\operatorname{span}_{\boldsymbol{C}}\left\{\bar{f}_{1}, \bar{f}_{2}, \bar{f}_{3}\right\} .
$$

We also note that $(\xi f \bar{f})$ is a local G_{2}-frame field on M. Next, we define the map $\tilde{\varphi}: U \rightarrow \operatorname{Im} \mathfrak{C} \rtimes G_{2}\left(\subset \operatorname{Im} \mathfrak{C} \rtimes M_{7 \times 7}(\boldsymbol{C})\right)$, (which is called the local lift of φ) by

$$
\tilde{\varphi}=\left(\begin{array}{lll}
\varphi & \xi & f
\end{array}\right)
$$

By Proposition 2.2, we have

$$
d \tilde{\varphi}=\tilde{\varphi} \cdot \tilde{\varphi}^{*} \Psi
$$

In this case, we see that $\tilde{\varphi}^{*} \mu=0$, and that

$$
d \varphi=\sum_{i=1}^{3}\left(f_{i} \omega^{i}+\bar{f}_{i} \bar{\omega}^{i}\right)=\left(\begin{array}{ll}
f & \bar{f}
\end{array}\right)\binom{\omega}{\bar{\omega}}
$$

where $\omega^{i}(i \in\{1,2,3\})$ are \boldsymbol{C}-valued 1-forms, $\omega={ }^{t}\left(\omega^{1} \omega^{2} \omega^{3}\right)$. Also, we have

$$
d \xi=\sum_{j=1}^{3} f_{j}\left(-2 \sqrt{-1} \theta^{j}\right)+\bar{f}_{j}\left(2 \sqrt{-1} \bar{\theta}^{j}\right)=\left(\begin{array}{ll}
f & \bar{f}
\end{array}\right)\binom{-2 \sqrt{-1} \theta}{2 \sqrt{-1} \bar{\theta}}
$$

where θ^{j} is a \boldsymbol{C}-valued 1-form and $\theta={ }^{t}\left(\begin{array}{lll}\theta^{1} & \theta^{2} & \theta^{3}\end{array}\right)$. By Cartan's Lemma, there exist $M_{3 \times 3}(\boldsymbol{C})$-valued (local) functions $\mathfrak{A}, \mathfrak{B}$ such that

$$
\sqrt{-1} \theta=\left(\begin{array}{ll}
{ }^{t} \mathfrak{B} & \overline{\mathfrak{A}} \tag{3.1}
\end{array}\right)\binom{\omega}{\bar{\omega}}
$$

where the each component of $\mathfrak{B}, \mathfrak{A}$ is given by

$$
\mathfrak{B}_{i j}=\left\langle\operatorname{II}\left(f_{i}, \bar{f}_{j}\right), \xi\right\rangle, \quad \mathfrak{A}_{i j}=\left\langle\operatorname{II}\left(f_{i}, f_{j}\right), \xi\right\rangle .
$$

We can easily see that
Lemma 3.2 The functions on a hypersurface of $\operatorname{Im} \mathfrak{C}$
$\operatorname{tr} \mathfrak{B}, \quad \operatorname{tr}\left({ }^{t} \overline{\mathfrak{B}} \mathfrak{B}\right), \quad \operatorname{det} \mathfrak{B}, \quad \operatorname{tr}\left({ }^{(} \overline{\mathfrak{A}} \mathfrak{A}\right), \quad \operatorname{tr}\left\{\left({ }^{t} \overline{\mathfrak{A}} \mathfrak{A}\right)^{2}\right\}, \quad \operatorname{det}\left({ }^{t} \overline{\mathfrak{A}} \mathfrak{A}\right)$, are invariants up to the action of G_{2}.

We note that $\operatorname{tr} \mathfrak{B}$ is independent of the almost complex structure, which corresponds to the norm of a mean curvature vector field.

3.4. $\quad G_{2}$-congruence theorem of hypersurfaces of $\operatorname{Im} \mathfrak{C}$

The purpose of this section is to prove the following
Theorem 3.1 Let M, N be two 6-dimensional orientable manifolds and $\varphi: M \hookrightarrow \operatorname{Im} \mathfrak{C}, \varphi^{\prime}: N \hookrightarrow \operatorname{Im} \mathfrak{C}$ be two isometric immersions. Suppose that there exists an orientation preserving diffeomorphism $\psi: M \rightarrow N$ which satisfies
$d \psi \circ J_{M}=J_{N} \circ d \psi, \quad \psi^{*} g_{N}=g_{M}, \quad \psi^{*}\left(\omega_{N}^{1} \wedge \omega_{N}^{2} \wedge \omega_{N}^{3}\right)=\omega_{M}^{1} \wedge \omega_{M}^{2} \wedge \omega_{M}^{3}$,
where $g_{M}, g_{N}\left(\right.$ resp. J_{M}, J_{N}, and $\left.\omega_{M}^{i}, \omega_{N}^{i}\right)$ are the induced metrics (resp. induced almost complex structures and the dual1-forms) on M, N, rspecyively. Then there exits an $(a, g) \in \operatorname{Im} \mathfrak{C} \times G_{2}$ satisfying

$$
g \circ \varphi+a=\varphi^{\prime} \circ \psi,
$$

that is, $\varphi, \varphi^{\prime}$ are G_{2}-congruent.
Proof. Let (ξ, f, \bar{f}) be the (local) G_{2}-frame fields on $\varphi(M)$. We set the (complexified) vector field v_{i} on M such that

$$
d \varphi\left(v_{i}\right)=f_{i},
$$

for any $i \in\{1,2,3\}$. From the assumption, we see that $d \psi\left(v_{i}\right)$, is also the local $(1,0)$ vector fields on N, for any $i \in\{1,2,3\}$, and $\left(d \psi\left(v_{1}\right), d \psi\left(v_{2}\right)\right.$, $\left.d \psi\left(v_{3}\right)\right)$ is an $S U(3)$-frame field on N. If we identify $d\left(\varphi^{\prime} \circ \psi\right)\left(v_{i}\right)$ with f_{i}^{\prime}, then the corresponding dual 1-forms ω_{N}, ω_{M} satisfy

$$
\begin{equation*}
\psi^{*} \omega_{N}=\omega_{M} \tag{3.2}
\end{equation*}
$$

Since ψ is an isometry from M to N, the corresponding Levi-Civita connections ∇^{M}, ∇^{N} satisfy

$$
\begin{equation*}
d \psi\left(\nabla^{M}{ }_{X}(Y)\right)=\nabla^{N}{ }_{d \psi(X)}(d \psi(Y)), \tag{3.3}
\end{equation*}
$$

for any vector fields X, Y on M. From which, we show that

$$
\begin{equation*}
\psi^{*} \kappa^{N}=\kappa^{M}, \quad \psi^{*} \theta^{N}=\theta^{M} \tag{3.4}
\end{equation*}
$$

where κ^{M}, κ^{N}, (resp. θ^{M}, θ^{N}) are the $\mathfrak{s u}(3)$ (resp. $M_{3 \times 1}(\boldsymbol{C})$)-valued 1forms of M, N, respectively. In fact,

$$
\begin{align*}
2\left(\psi^{*} \kappa^{N}\right)_{i}^{j} & =g_{N}\left(\nabla^{N}\left(d \psi\left(v_{i}\right)\right), d \psi\left(\overline{v_{j}}\right)\right) \\
& =g_{N}\left(d \psi\left(\nabla^{M}\left(v_{i}\right)\right), d \psi\left(\overline{v_{j}}\right)\right) \\
& =g_{N}\left(d \psi\left(\sum_{k=1}^{3}\left(v_{k}\left(\kappa^{M}\right)_{i}^{k}+\overline{v_{k}}\left(\left[\theta^{M}\right]\right)_{i}^{k}\right)\right), d \psi\left(\overline{v_{j}}\right)\right) \\
& =2\left(\kappa^{M}\right)_{i}^{j}, \tag{3.5}
\end{align*}
$$

therefore, we get the first equality of (3.4). Similary, we have the second equality of (3.4).

Since $\operatorname{Im} \mathfrak{C} \rtimes G_{2}$ is a Lie group, there exists a $\operatorname{Im} \mathfrak{C} \rtimes G_{2}$-valued function \tilde{g} on M such that

$$
\begin{equation*}
\tilde{\varphi}^{\prime} \circ \psi(p)=\tilde{g}(p) \cdot \tilde{\varphi}(p), \tag{3.6}
\end{equation*}
$$

for any $p \in M$, where $\tilde{\varphi^{\prime}}, \tilde{\varphi}$ are $\operatorname{Im} \mathfrak{C} \rtimes G_{2}$-valued functions (the lift of $\varphi^{\prime}, \varphi$) on N, M, respectively. To prove Theorem 3.1, we will show that the function \tilde{g} is constant on M. Hence we may show that

$$
\begin{equation*}
d \tilde{g}=d\left(\tilde{\varphi^{\prime}} \circ \psi \cdot(\tilde{\varphi})^{-1}\right)=0 \tag{3.7}
\end{equation*}
$$

In fact, by Proposition 2.2, we have

$$
\begin{align*}
d\left(\tilde{\varphi^{\prime}} \circ \psi \cdot(\tilde{\varphi})^{-1}\right) & =d\left(\tilde{\varphi^{\prime}} \circ \psi\right) \cdot(\tilde{\varphi})^{-1}+\left(\tilde{\varphi^{\prime}} \circ \psi\right) \cdot d(\tilde{\varphi})^{-1} \\
& =\left(\tilde{\varphi^{\prime}} \circ \psi\right) \cdot\left(\left(\tilde{\varphi^{\prime}} \circ \psi\right)^{*} \Psi-\tilde{\varphi}^{*} \Psi\right) \cdot(\tilde{\varphi})^{-1} \tag{3.8}
\end{align*}
$$

By Proposition 2.2, (3.2) and (3.4), we see that

$$
\left(\tilde{\varphi^{\prime}} \circ \psi\right)^{*} \Psi=\tilde{\varphi}^{*} \Psi
$$

Therefore, we get the desired result.

3.5. G_{2}-orbits

3.5.1 $\quad S^{6}, S^{5}, V_{2}^{+}(\operatorname{Im} \mathfrak{C})$ and $G_{2}^{+}(\operatorname{Im} \mathfrak{C})$

Let S^{6} and S^{5} be a 6 -dimensional unit sphere in Im \mathfrak{C} and a 5 dimensional unit sphere in $\mathbf{R}^{6} \subset \operatorname{Im} \mathfrak{C}$ where $\mathbf{R}^{6}=\{u \in \operatorname{Im} \mathfrak{C} \mid\langle u, \varepsilon\rangle=0\}$, respectively. It is well known that

$$
\begin{equation*}
S^{6} \cong G_{2} / S U(3), \quad S^{5} \cong S U(3) / S U(2) \tag{3.9}
\end{equation*}
$$

Let $V_{2}^{+}(\operatorname{Im} \mathfrak{C})$ be a Stiefel manifold of oriented 2-frames in $\operatorname{Im} \mathfrak{C}$. It is well known that

$$
V_{2}^{+}(\operatorname{Im} \mathfrak{C})=\left\{(u, v) \in S^{6} \times S^{6} \mid\langle u, v\rangle=0\right\}
$$

We shall prove the following

Proposition 3.1

$$
V_{2}^{+}(\operatorname{Im} \mathfrak{C}) \cong G_{2} / S U(2)
$$

Proof. First, we prove that G_{2} acts transitively on $V_{2}^{+}(\operatorname{Im} \mathfrak{C})$. For any $(u, v) \in V_{2}^{+}(\operatorname{Im} \mathfrak{C})$, by (3.9), there exists a $g \in G_{2}$ such that $u=g(\varepsilon)$. Then we get $\langle u, g(i)\rangle=\langle g(\varepsilon), g(i)\rangle=\langle\varepsilon, i\rangle=0$, and, since $\langle u, v\rangle=0$

$$
g(i), \quad v \in T_{u}^{1} S^{6}
$$

where $T_{u}^{1} S^{6}=\left\{X \in T_{u} S^{6}| | X \mid=1\right\}$. Here, we will identify $T_{u} S^{6}$ with \boldsymbol{R}^{6}, then we have

$$
i, \quad g^{-1}(v) \in T_{\varepsilon}^{1} S^{6} \cong S^{5}
$$

Since $S^{5} \cong S U(3) / S U(2)$, there exists an $h \in S U(3) \subset G_{2}$ such that

$$
g^{-1}(v)=h(i)
$$

where, $S U(3)=\left\{g \in G_{2} \mid g(\varepsilon)=\varepsilon\right\}$. Therefore

$$
\begin{equation*}
g(h(i))=v \tag{3.10}
\end{equation*}
$$

Moreover, since $h(\varepsilon)=\varepsilon$, we get

$$
\begin{equation*}
g(h(\varepsilon))=g(\varepsilon)=u \tag{3.11}
\end{equation*}
$$

By (3.10), (3.11), we have

$$
(g(h(i)), g(h(\varepsilon)))=(u, v)
$$

Hence the G_{2} acts on $V_{2}^{+}(\operatorname{Im} \mathfrak{C})$ transitively, and its isotropy subgroup is $S U(2)$.

By Proposition 3.1, we can see that

Corollary 3.1

$$
G_{2}^{+}(\operatorname{Im} \mathfrak{C}) \cong G_{2} / U(2),
$$

where $G_{2}^{+}(\operatorname{Im} \mathfrak{C})$ be a Grassmann manifold of oriented 2-planes in $\operatorname{Im} \mathfrak{C}$.

3.6. $V_{3}^{+}\left(R^{7}\right)$ and $G_{3}^{+}\left(R^{7}\right)\left(G_{2}\right.$-orbit decomposition)

Let $V_{3}^{+}\left(\boldsymbol{R}^{7}\right)$ and $G_{3}^{+}\left(\boldsymbol{R}^{7}\right)$ be a Stiefel manifold of oriented 3 -frames in \boldsymbol{R}^{7} and a Grassmann manifold of oriented 3-planes in \boldsymbol{R}^{7}, respectively. For any $\left(e_{1}, e_{2}, e_{3}\right) \in V_{3}^{+}\left(\boldsymbol{R}^{7}\right)$, by Proposition 3.1, there exits a $g \in G_{2}$ such that $g(i)=e_{1}, g(j)=e_{2}$. Since $g \in G_{2}$ we have $g(i) g(j)=g(k)$. In general, the following equality does not hold $e_{1} e_{2}=e_{3}$. Therefore we see that two manifolds $V_{3}^{+}\left(\boldsymbol{R}^{7}\right), G_{3}^{+}\left(\boldsymbol{R}^{7}\right)$ can not be represented as orbits of G_{2}.

Next we consider the canonical form of the each element of $G_{3}^{+}\left(\boldsymbol{R}^{7}\right) \ni V$ by G_{2}. Let $V=\operatorname{span}_{\boldsymbol{R}}\left\{e_{1}, e_{2}, e_{3}\right\} \in G_{3}^{+}\left(\boldsymbol{R}^{7}\right)$.
(1) If we assume that $e_{1} e_{2}=e_{3}$, then there exists a $g \in G_{2}$ satisfying

$$
V=\operatorname{span}_{\boldsymbol{R}}\{g(i), g(j), g(k)\}
$$

In this case V is called an associative 3-plane.
(2) Suppose that $e_{1} e_{2} \neq e_{3}$. We note that there exists a $g \in G_{2}$ such that $g(i)=e_{1}, g(j)=e_{2}$. By the assumption, we may assume that $g(k) \neq e_{3}$, then we have

$$
\operatorname{dim}\left(\operatorname{span}_{\boldsymbol{R}}\left\{g(k), e_{3}\right\}\right)=2
$$

We can take $u \in \operatorname{span}_{\boldsymbol{R}}\left\{g(k), e_{3}\right\}$ so that

$$
|u|=1, \quad\langle u, g(k)\rangle=0
$$

If we put $\left\langle e_{3}, g(k)\right\rangle=\cos \theta(0 \leq \theta \leq \pi)$, then

$$
e_{3}=\cos \theta g(k)+\sin \theta u
$$

Since $u \in\left(\operatorname{span}_{\boldsymbol{R}}\{g(i), g(j), g(k)\}\right)^{\perp}$, we may put $u=g(\varepsilon)$. Hence we have

$$
V=\operatorname{span}_{\boldsymbol{R}}\{g(i), g(j), g(\cos \theta k+\sin \theta \varepsilon)\}
$$

Summing up the above arguments, we obtain
Proposition 3.2 For any $V \in G_{3}^{+}\left(\boldsymbol{R}^{\boldsymbol{7}}\right)$, there exist a $g \in G_{2}$ and $a \theta \in \boldsymbol{R}$ $(0 \leq \theta \leq \pi)$ satisfying

$$
V=\operatorname{span}_{\boldsymbol{R}}\{g(i), g(j), g(\cos \theta k+\sin \theta \varepsilon)\}
$$

A 3-dimensional vector space V in $\operatorname{Im} \mathbb{C}$ is called associative if $\operatorname{span}_{\mathbf{R}}\{u, v, u v\}=V$, where $\{u, v\}$ is an oriented orthonormal pair of V. We also note that the Grassmann manifold $G_{\text {ass }}(\operatorname{Im} \mathfrak{C})$ of associative 3-planes are given by

$$
G_{a s s}(\operatorname{Im} \mathfrak{C}) \simeq G_{2} / S O(4)
$$

We note that the representation

$$
\rho_{S O(4)}: S O(4)\left(\simeq S p(1) \times S p(1) / Z_{2}\right) \rightarrow G_{2}
$$

is given by

$$
\rho_{S O(4)}\left(q_{1}, q_{2}\right)(a+b \varepsilon)=q_{1} a \overline{q_{1}}+\left(q_{2} b \overline{q_{1}}\right) \varepsilon,
$$

where $\left(q_{1}, q_{2}\right) \in S p(1) \times S p(1)$ and $a+b \varepsilon \in \operatorname{Im} \mathfrak{C}$.

4. Second fundamental forms of the generalized cylinder of $\operatorname{Im} \mathfrak{C}$

4.1. Homogeneous hypersurfaces of $\operatorname{Im} \mathfrak{C}$ with unique homogeneous almost complex structure

In this section, we shall give the invariants of $\boldsymbol{R}^{6}, S^{1} \times \boldsymbol{R}^{5}, \boldsymbol{R} \times S^{5}, S^{6}$ and proof of the uniqueness of the induced almost complex structure up to the action of G_{2}.

4.1.1 $\quad R^{6}$

Proposition 4.1 Let $\psi_{0}: \boldsymbol{R}^{6} \hookrightarrow \operatorname{Im} \mathfrak{C}$ be an isometric imbedding defined by

$$
\psi_{0}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=x_{1} i+x_{2} j+x_{3} k+x_{4} i \varepsilon+x_{5} j \varepsilon+x_{6} k \varepsilon
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in \boldsymbol{R}^{6}$. Then we have

$$
t r^{t} \overline{\mathfrak{B}} \mathfrak{B}=0, \quad \operatorname{tr}^{t} \overline{\mathfrak{A}} \mathfrak{A}=0 .
$$

The automorphism group of the induced almost Hermitian structure coincides with $\boldsymbol{R}^{6} \rtimes S U(3)\left(\subset \boldsymbol{R}^{6} \rtimes S O(6)\right)$ and it acts transitively on \boldsymbol{R}^{6}. The induced almost Hermitian structure is also unique under the action of G_{2}.

Proof. Since the isotropy subgroup of G_{2} at ε is $S U(3)$, we observe that
the automorphism group of \boldsymbol{R}^{6} coincides with $\boldsymbol{R}^{6} \rtimes S U(3)$.
4.1.2 $\quad S^{1} \times R^{5}$

Proposition 4.2 Let $\psi_{1}: S^{1} \times \boldsymbol{R}^{5} \hookrightarrow \operatorname{Im} \mathfrak{C}$ be the mapping defined by

$$
\psi_{1}\left(\theta, x_{0}, q\right)=e^{i \theta} j e^{-i \theta}+x_{0} i+q \varepsilon
$$

where $[\theta] \in S^{1},\left(x_{0}, q\right) \in \boldsymbol{R} \times \boldsymbol{H}\left(\cong \boldsymbol{R}^{5}\right)$. Then we obtain

$$
t r^{t} \overline{\mathfrak{B}} \mathfrak{B}=\frac{1}{16}, \quad t r^{t} \overline{\mathfrak{A}} \mathfrak{A}=\frac{1}{16} .
$$

The automorphism group of the induced almost Hermitian structure coincides with $U(2) \ltimes \boldsymbol{R}^{5}\left(\subset S O(2) \times\left(S O(5) \ltimes \boldsymbol{R}^{5}\right)\right)$, and it acts transitively on $S^{1} \times \boldsymbol{R}^{5}$. The representation $\rho_{U(2)}: U(2)\left(\simeq S^{1} \times S^{3}\right) \rightarrow \operatorname{Im} \mathfrak{C}$, is given by

$$
\rho_{U(2)}\left(\theta, q^{\prime}\right)(a+b \varepsilon)=e^{i \theta} a e^{-i \theta}+\left(q^{\prime} b e^{-i \theta}\right) \varepsilon,
$$

where $a+b \varepsilon \in \operatorname{Im} \mathfrak{C}$, and $\left([\theta], q^{\prime}\right) \in S^{1} \times S^{3}$.
Proof. First, we construct the G_{2}-frame field along the map ψ_{1}. Let ξ be the unit normal vector field, given by $e_{4}=\xi=e^{i \theta} j e^{-i \theta}=e^{2 i \theta} j=$ $\cos 2 \theta j+\sin 2 \theta k$. Next, we take a tangent vector $e_{1}=i$ of $S^{1} \times \boldsymbol{R}^{5}$, then we have $\left\langle e_{1}, e_{4}\right\rangle=0$. We set e_{5} by

$$
e_{5}=e_{1} e_{4}=i(\cos 2 \theta j+\sin 2 \theta k)=-\sin 2 \theta j+\cos 2 \theta k
$$

Also we take the vector field $e_{2}=\varepsilon$ on $S^{1} \times \boldsymbol{R}^{5}$, then e_{2} is orthogonal to the associative 3 -plane $\operatorname{span}_{R}\left\{e_{1}, e_{4}, e_{5}\right\}$. Lastly we put $\left\{e_{3}, e_{6}, e_{7}\right\}$ as $e_{3}=e_{1} e_{2}=i \varepsilon, e_{6}=e_{2} e_{4}=-\cos 2 \theta j \varepsilon-\sin 2 \theta k \varepsilon, e_{7}=e_{3} e_{4}=\sin 2 \theta j \varepsilon-$ $\cos 2 \theta k \varepsilon$. Then the frame field $\left(e_{1}, \ldots, e_{7}\right)$ is a G_{2}-valued function on $S^{1} \times$ \boldsymbol{R}^{5}. Therefore we have

$$
\left\{\begin{array}{l}
f_{1}=\frac{1}{2}(i-\sqrt{-1}(-\sin 2 \theta j+\cos 2 \theta k)) \\
f_{2}=\frac{1}{2}(\varepsilon+\sqrt{-1}(\cos 2 \theta j \varepsilon+\sin 2 \theta k \varepsilon)) \\
f_{3}=-\frac{1}{2}(i \varepsilon-\sqrt{-1}(\sin 2 \theta j \varepsilon-\cos 2 \theta k \varepsilon))
\end{array}\right.
$$

We note that $J f_{i}=\sqrt{-1} f_{i}$. Therefore

$$
d \psi_{1}=i d x_{0}-2(\sin 2 \theta j-\cos 2 \theta k) d \theta+(d q) \varepsilon
$$

From which, we have

$$
\begin{aligned}
& \omega^{1}=d x_{0}+\sqrt{-1} d \theta \\
& \omega^{2}=\langle d q, 1\rangle-\sqrt{-1}(\cos 2 \theta\langle d q, j\rangle+\sin 2 \theta\langle d q, k\rangle) \\
& \omega^{3}=-\langle d q, i\rangle-\sqrt{-1}(\sin 2 \theta\langle d q, j\rangle-\cos 2 \theta\langle d q, k\rangle)
\end{aligned}
$$

In the same way, since

$$
d \xi=-2(\sin 2 \theta j-\cos 2 \theta k) d \theta
$$

we have

$$
\sqrt{-1} \theta^{1}=-\frac{\sqrt{-1}}{2} d \theta, \quad \sqrt{-1} \theta^{2}=\sqrt{-1} \theta^{3}=0
$$

Hence, we obtain

$$
\sqrt{-1} \theta=-\frac{1}{4}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\binom{\omega}{\bar{\omega}}
$$

The 2nd fundamental form of ψ_{1} is given by

$$
\mathfrak{B}=-\frac{1}{4}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \mathfrak{A}=\frac{1}{4}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

From which, we get the desired result. From the definition of ψ_{1} and the representation $\rho_{u(2)}$, we see that the automorphism group of $S^{1} \times \boldsymbol{R}^{5}$ is $U(2) \ltimes \boldsymbol{R}^{5}$.
Proposition 4.3 The almost complex structure on $S^{1} \times \boldsymbol{R}^{5}$ induced from $\operatorname{Im} \mathfrak{C}$ is unique up to the action of G_{2}.

Proof. Let φ_{0} be a fixed imbedding from $S^{1} \times \boldsymbol{R}^{5}$ to $\operatorname{Im} \mathfrak{C}$ by

$$
\varphi_{0}\left(u_{0}, u_{1}, v_{1}, \ldots, v_{5}\right)=i u_{0}+j u_{1}+k v_{1}+\cdots+k \varepsilon v_{5}
$$

where $u_{0}^{2}+u_{1}^{2}=1$. Next, let φ be a homogeneous isometric imbedding from $S^{1} \times \boldsymbol{R}^{5}$ to \boldsymbol{R}^{7}. Then there exists an orthonormal basis $\left(\begin{array}{lllll}e_{1} & e_{2} & e_{3} & \ldots & e_{7}\end{array}\right)$ of \boldsymbol{R}^{7} such that

$$
\varphi\left(x_{0}, x_{1}, y_{1}, \ldots, y_{5}\right)=e_{1} x_{0}+e_{2} x_{1}+e_{3} y_{1}+\cdots+e_{7} y_{5}
$$

where $x_{0}^{2}+x_{1}^{2}=1$. By Proposition 3.1, there exists a $g \in G_{2}$ such that $g(i)=e_{1}, g(j)=e_{2}$. From this, we have

$$
\operatorname{span}_{\boldsymbol{R}}\{g(k), \ldots, g(k \varepsilon)\}=\operatorname{span}_{\boldsymbol{R}}\left\{e_{3}, \ldots, e_{7}\right\} .
$$

Therefore there exists an $A \in S O(5)$ such that

$$
(g(k), \ldots, g(k \varepsilon))=\left(e_{3}, \ldots, e_{7}\right) A
$$

We set the diffeomorphism $\psi: S^{1} \times \boldsymbol{R}^{5} \rightarrow S^{1} \times \boldsymbol{R}^{5}$ by

$$
\psi\left(u_{0}, u_{1}, v_{1}, \ldots, v_{5}\right)=\left(u_{0}, u_{1},\left(v_{1}, \ldots, v_{5}\right)^{t} A\right)
$$

Then we have

$$
g\left(\varphi_{0}\left(u_{0}, u_{1}, v_{1}, \ldots, v_{5}\right)\right)=\varphi\left(\psi\left(u_{0}, u_{1}, v_{1}, \ldots, v_{5}\right)\right)
$$

Therefore the induced almost complex structure of φ_{0} coincides with that of φ.

4.1.3 $\quad R^{1} \times S^{5}$

Proposition 4.4 Let $\psi_{5}: \boldsymbol{R}^{1} \times S^{5} \hookrightarrow \operatorname{Im} \mathfrak{C}$ be an imbedding given by

$$
\psi_{5}\left(x, z_{0}, z_{1}, z_{2}\right)=\varepsilon x+E\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right)+\bar{E}\left(\begin{array}{c}
\overline{z_{0}} \\
\overline{z_{1}} \\
\overline{z_{2}}
\end{array}\right) .
$$

where $x \in \boldsymbol{R}^{1}, z_{0}, z_{1}, z_{2} \in \boldsymbol{C},\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1$, and $E=\left(E_{1}, E_{2}, E_{3}\right)$. Then, we have

$$
\operatorname{tr}^{t} \overline{\mathfrak{B}} \mathfrak{B}=\frac{9}{16}, \quad \operatorname{tr}^{t} \overline{\mathfrak{A}} \mathfrak{A}=\frac{1}{16} .
$$

The automorphism group of the induced almost Hermitian structure coincide with $\boldsymbol{R}^{1} \times S U(3)\left(\subset \boldsymbol{R}^{1} \times S O(6)\right)$ and it acts transitively on $\boldsymbol{R}^{1} \times S^{5}$. The induced almost Hermitian structure is unique up to the action of G_{2}.

Proof. Let $\rho_{S U(3)}$ be the representation of $S U(3)$ to $E n d_{\boldsymbol{R}}\left(\boldsymbol{C} \otimes_{\boldsymbol{R}} \operatorname{Im} \mathfrak{C}\right)$ defined by

$$
\rho_{S U(3)}(U)(v)=\left(\begin{array}{lll}
\varepsilon & E & \bar{E}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0_{1 \times 3} & 0_{1 \times 3} \\
0_{3 \times 1} & U & 0_{3 \times 3} \\
0_{3 \times 1} & 0_{3 \times 3} & \bar{U}
\end{array}\right)\left(\begin{array}{c}
v_{0} \\
\vdots \\
v_{6}
\end{array}\right),
$$

for any $v=v_{0} \varepsilon+\sum_{i=1}^{3} v_{i} E_{i}+\sum_{i=1}^{3} v_{i+3} \overline{E_{i}} \in \boldsymbol{C} \otimes_{\boldsymbol{R}} \operatorname{Im} \mathfrak{C}$. We represent the imbedding ψ_{5} by using $\rho_{S U(3)}$. For any $U \in S U(3)$ we set $\tilde{\psi}_{5}: \boldsymbol{R} \times S U(3) \hookrightarrow$ $\operatorname{End}\left(\boldsymbol{C} \otimes_{\boldsymbol{R}} \operatorname{Im} \mathfrak{C}\right)$ as

$$
\tilde{\psi}_{5}(x, U)=(0 ; \varepsilon, E, \bar{E})\left(\begin{array}{c|c|c|c}
1 & 0 & 0_{1 \times 3} & 0_{1 \times 3} \\
\hline x & 1 & 0_{1 \times 3} & 0_{1 \times 3} \\
\hline 0_{3 \times 1} & 0_{3 \times 1} & U & 0_{3 \times 3} \\
\hline 0_{3 \times 1} & 0_{3 \times 1} & 0_{3 \times 3} & \bar{U}
\end{array}\right) .
$$

where $x \in \boldsymbol{R}$. Then we see that

$$
\psi_{5}\left(x, z_{0}, z_{1}, z_{2}\right)=\tilde{\psi}_{5}(x, U)\left(p_{0}\right)
$$

where $p_{0}={ }^{t}\left(\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}\right)$. We note that $S^{5}=\left\{\rho_{S U(3)}(U)(i) \mid U \in\right.$ $\left.S U(3) \subset M_{3 \times 3}(\mathbf{C})\right\}$. Therefore we have

$$
\left.\left.\begin{array}{rl}
T_{\rho_{S U(3)}(U)(i)} S^{5}= & \operatorname{span}_{\boldsymbol{R}}\left\{\rho_{S U(3)}(U)(j),\right.
\end{array} \quad \rho_{S U(3)}(U)(k), \rho_{S U(3)}(U)(i \varepsilon), ~(U \varepsilon)\right\}, \rho_{S U(3)}(U)(k \varepsilon)\right\}
$$

The unit normal vector field ξ is given by $\rho_{S U(3)}(U)(i)$, and we set $e_{4}=\xi=$ $\rho_{S U(3)}(U)(i)$. We put the orthonormal frame field of $T_{e_{4}}\left(\boldsymbol{R}^{1} \times S^{5}\right)$ by

$$
\begin{array}{lll}
e_{1}=\rho_{S U(3)}(U)(i \varepsilon), & e_{2}=\rho_{S U(3)}(U)(j), & e_{3}=-\rho_{S U(3)}(U)(k \varepsilon), \\
e_{5}=\rho_{S U(3)}(U)(\varepsilon), & e_{6}=-\rho_{S U(3)}(U)(k), & e_{7}=\rho_{S U(3)}(U)(j \varepsilon) .
\end{array}
$$

Then $\left(e_{1}, \ldots, e_{7}\right)$ is a G_{2}-frame field. In Section 3.2, we set

$$
f_{1}=\frac{1}{2}\left(e_{1}-\sqrt{-1} e_{5}\right), \quad f_{2}=\frac{1}{2}\left(e_{2}-\sqrt{-1} e_{6}\right), \quad f_{3}=-\frac{1}{2}\left(e_{3}-\sqrt{-1} e_{7}\right)
$$

To calculate the second fundamental form, we note that

$$
d \psi_{5}=\varepsilon d x+d \xi, \quad d \xi=e_{1} \otimes \mu^{1}+e_{2} \otimes \mu^{2}+e_{7} \otimes \mu^{3}-e_{6} \otimes \mu^{4}-e_{3} \otimes \mu^{5}
$$

where μ^{1}, \ldots, μ^{5} are \boldsymbol{R}-valued 1-forms of S^{5}. The dual 1-forms $\omega^{i}(i \in$ $\{1,2,3\}$) are given by

$$
\omega^{1}=\mu^{1}-\sqrt{-1} d x, \quad \omega^{2}=\mu^{2}-\sqrt{-1} \mu^{4}, \quad \omega^{3}=\mu^{5}+\sqrt{-1} \mu^{3}
$$

Also the 1 -forms $\theta^{i}(i \in\{1,2,3\})$ which satisfy $d \xi=\sum_{i=1}^{3} f_{i}\left(-2 \sqrt{-1} \theta^{i}\right)+$ $\overline{f_{i}}\left(2 \sqrt{-1} \bar{\theta}^{i}\right)$ are obtained by

$$
\begin{gathered}
\sqrt{-1} \theta^{1}=-\frac{1}{2} \mu^{1}, \quad \sqrt{-1} \theta^{2}=-\frac{1}{2}\left(\mu^{2}-\sqrt{-1} \mu^{4}\right) \\
\sqrt{-1} \theta^{3}=-\frac{1}{2}\left(\mu^{5}+\sqrt{-1} \mu^{3}\right)
\end{gathered}
$$

Hence we get

$$
\sqrt{-1} \theta=-\frac{1}{4}\left(\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0
\end{array}\right)\binom{\omega}{\bar{\omega}} .
$$

Lastly we obtain the second fundamental form by

$$
\mathfrak{B}=-\frac{1}{4}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad \mathfrak{A}=-\frac{1}{4}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

From the above arguments and the definition of ψ_{5}, the automorphism group of $\boldsymbol{R}^{1} \times S^{5}$ is $\boldsymbol{R}^{1} \rtimes S U(3)$. By the similar arguments of the proof of Proposition 4.3 , we obtain the uniqueness of the almost complex structre of $\boldsymbol{R}^{1} \times S^{5}$.

4.1.4 S^{6}

Proposition 4.5 Let $\psi_{6}: S^{6} \hookrightarrow \operatorname{Im} \mathfrak{C}$ be the mapping from S^{6} to $\operatorname{Im} \mathfrak{C}$, defined by

$$
\psi_{6}\left(\theta, q_{1}, q_{2}\right)=\cos \theta\left(q_{1} i \overline{q_{1}}\right)+\sin \theta\left(q_{2} i \overline{q_{1}}\right) \varepsilon
$$

where $\left(\theta, q_{1}, q_{2}\right) \in S^{1} \times S^{3} \times S^{3}$. Then we have

$$
\operatorname{tr}^{t} \overline{\mathcal{B}} \mathfrak{B}=\frac{3}{4}, \quad \operatorname{tr}^{t} \overline{\mathfrak{A}} \mathfrak{A}=0 .
$$

The automorphism group of the induced almost complex structure coincides with G_{2}, and it acts transitively on S^{6}. The induced almost complex structure is unique up to the action of G_{2}.

Proof. Since the immersion ψ_{6} is totally umbilic, we get $d \psi_{6}=d \xi$. Then we have

$$
\sqrt{-1} \theta=\left(\left.-\frac{1}{2} I_{3} \right\rvert\, 0_{3 \times 3}\right)\binom{\omega}{\bar{\omega}} .
$$

Hence we obtain

$$
\mathfrak{B}=-\frac{1}{2} I_{3}, \quad \mathfrak{A}=0_{3 \times 3} .
$$

It is well known that the automorphism group of the induced almost complex structure coincides with $G_{2}([4])$.

4.2. Non-homogeneous induced almost complex structure on $R^{2} \times S^{4}$

4.2.1 $\quad R^{2} \times S^{4}$

Theorem 4.1 Let $\psi_{4}: \boldsymbol{R}^{2} \times S^{4} \hookrightarrow \operatorname{Im} \mathfrak{C}$ be the mapping from $\boldsymbol{R}^{2} \times S^{4}$ to Im \mathfrak{C}, defined by

$$
\psi_{4}\left(x_{1}, x_{2}, y_{0}, y_{1} q\right)=y_{0} i+x_{1} j+x_{2} k+y_{1} q \varepsilon
$$

where $\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2}, y_{0}^{2}+y_{1}^{2}=1$, and $q \in S^{3} \subset \boldsymbol{H}$, where S^{3} is a 3dimensional unit sphere in \boldsymbol{H}. Then we have

$$
\operatorname{tr}^{t} \overline{\mathfrak{B}} \mathfrak{B}=\frac{1}{8}\left(3+y_{0}^{2}\right), \quad \operatorname{tr}^{t} \overline{\mathfrak{A}} \mathfrak{A}=\frac{1}{8} y_{1}^{2}
$$

The automorphism group of the induced almost complex structure is $\boldsymbol{R}^{2} \rtimes$ $U(2)\left(\subset\left(\boldsymbol{R}^{2} \rtimes S O(2)\right) \times S O(5)\right)$. Therefore, it does not act transitively on $\boldsymbol{R}^{2} \times S^{4}$.

Proof. We construct the G_{2}-frame filed on $\boldsymbol{R}^{2} \times S^{4}$. Let $e_{4}=\xi=y_{0} i+y_{1} q \varepsilon$ be a unit normal vector field on $\boldsymbol{R}^{2} \times S^{4}$. Next we put $e_{1}=j$, then, we have $e_{5}=e_{1} e_{4}=-y_{0} k+y_{1}(q j) \varepsilon$. Moreover, we put $e_{2}=(q i) \varepsilon$. Then we obtain $\left\{e_{3}, e_{6}, e_{7}\right\}$ as $e_{3}=e_{1} e_{2}=(q k) \varepsilon, e_{6}=e_{2} e_{4}=-y_{1} i+y_{0} q \varepsilon$, $e_{7}=e_{2} e_{5}=-y_{1} k-y_{0}(q j) \varepsilon$. From which, $\left(e_{1}, \ldots, e_{7}\right)$ is a G_{2}-valued function on $\boldsymbol{R}^{2} \times S^{4}$. Next, we set the complex-valued G_{2}-frame field on $\boldsymbol{R}^{2} \times S^{4}$ as

$$
\left\{\begin{array}{l}
f_{1}=\frac{1}{2}\left(j-\sqrt{-1}\left(-y_{0} k+y_{1}(q j) \varepsilon\right)\right) \\
f_{2}=\frac{1}{2}\left((q i) \varepsilon-\sqrt{-1}\left(-y_{1} i+y_{0} q \varepsilon\right)\right) \\
f_{3}=-\frac{1}{2}\left((q k) \varepsilon+\sqrt{-1}\left(y_{1} k+y_{0}(q j) \varepsilon\right)\right)
\end{array}\right.
$$

Then we have, $J f_{i}=\sqrt{-1} f_{i}$. To calculate the forms ω^{i} for any $i \in\{1,2,3\}$. Since

$$
d \psi_{4}=i d y_{0}+j d x_{1}+k d x_{2}+(q \varepsilon) d y_{1}+y_{1}(d q) \varepsilon
$$

we see that

$$
\begin{aligned}
& \omega^{1}=d x_{1}+\sqrt{-1}\left(-y_{0} d x_{2}+y_{1}^{2}\langle\bar{q} d q, j\rangle\right) \\
& \omega^{2}=y_{1}\langle\bar{q} d q, i\rangle+\sqrt{-1}\left(-y_{1} d y_{0}+y_{0} d y_{1}\right) \\
& \omega^{3}=-y_{1}\langle\bar{q} d q, k\rangle+\sqrt{-1}\left(y_{1} d x_{2}+y_{0} y_{1}\langle\bar{q} d q, j\rangle\right)
\end{aligned}
$$

In the same way, we get

$$
d \xi=i d y_{0}+(q \varepsilon) d y_{1}+y_{1}(d q) \varepsilon
$$

Therefore

$$
\sqrt{-1} \theta^{1}=-\frac{\sqrt{-1}}{2} y_{1}^{2}\langle\bar{q} d q, j\rangle,
$$

$$
\begin{aligned}
& \sqrt{-1} \theta^{2}=-\frac{1}{2} y_{1}\langle\bar{q} d q, i\rangle-\frac{\sqrt{-1}}{2}\left(-y_{1} d y_{0}+y_{0} d y_{1}\right), \\
& \sqrt{-1} \theta^{3}=\frac{1}{2} y_{1}\langle\bar{q} d q, k\rangle-\frac{\sqrt{-1}}{2} y_{0} y_{1}\langle\bar{q} d q, j\rangle .
\end{aligned}
$$

Hence, we have

$$
\sqrt{-1} \theta=-\frac{1}{4}\left(\begin{array}{ccc|ccc}
y_{1}^{2} & 0 & y_{0} y_{1} & -y_{1}^{2} & 0 & -y_{0} y_{1} \\
0 & 2 & 0 & 0 & 0 & 0 \\
y_{0} y_{1} & 0 & 1+y_{0}^{2} & -y_{0} y_{1} & 0 & y_{1}^{2}
\end{array}\right)\binom{\omega}{\bar{\omega}} .
$$

We obtain lastly

$$
\mathfrak{B}=-\frac{1}{4}\left(\begin{array}{ccc}
y_{1}^{2} & 0 & y_{0} y_{1} \\
0 & 2 & 0 \\
y_{0} y_{1} & 0 & 1+y_{0}^{2}
\end{array}\right), \quad \mathfrak{A}=-\frac{1}{4}\left(\begin{array}{ccc}
-y_{1}^{2} & 0 & -y_{0} y_{1} \\
0 & 0 & 0 \\
-y_{0} y_{1} & 0 & y_{1}^{2}
\end{array}\right) .
$$

From above arguments and the results, the induced almost complex structure is not homogeneous. Next, we shall prove
Proposition 4.6 The induced almost complex structure on $\boldsymbol{R}^{2} \times S^{4}$ is unique up to the action of G_{2}.

Proof. Let φ_{0} be the fixed immersion from $\boldsymbol{R}^{2} \times S^{4}$ to $\operatorname{Im} \mathfrak{C}$ by

$$
\varphi_{0}\left(u_{1}, u_{2}, v_{0}, \ldots, v_{4}\right)=i u_{1}+j u_{2}+k v_{0}+\cdots+k \varepsilon v_{4}
$$

where $\left(u_{1}, u_{2}\right) \in \boldsymbol{R}^{2}$ and $\sum_{i=0}^{4} v_{i}^{2}=1$. Next we take an isometric immersion φ from $\boldsymbol{R}^{2} \times S^{4}$ to \boldsymbol{R}^{7}. Then there exists an orthonormal basis $\left(e_{1} e_{2} e_{3} \ldots e_{7}\right)$ of \boldsymbol{R}^{7} such that

$$
\varphi\left(x_{1}, x_{2}, y_{0}, \ldots, y_{4}\right)=e_{1} x_{1}+e_{2} x_{2}+e_{3} y_{0}+\cdots+e_{7} y_{4}
$$

where $\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2}$ and $\sum_{i=0}^{4} y_{i}^{2}=1$. By Proposition 3.1, there exists a $g \in G_{2}$ satisfying

$$
g(i)=e_{1}, \quad g(j)=e_{2} .
$$

Also, we have

$$
\operatorname{span}_{\boldsymbol{R}}\{g(k), \ldots, g(k \varepsilon)\}=\operatorname{span}_{\boldsymbol{R}}\left\{e_{3}, \ldots, e_{7}\right\} .
$$

Therefore, there exists an $A \in S O(5)$ such that

$$
(g(k), \ldots, g(k \varepsilon))=\left(e_{3}, \ldots, e_{7}\right) A
$$

We define the diffeommorphism ψ of $\boldsymbol{R}^{2} \times S^{4}$ as follows

$$
\psi\left(u_{1}, u_{2}, v_{0}, \ldots, v_{4}\right)=\left(u_{1}, u_{2},\left(v_{0}, \ldots, v_{4}\right)^{t} A\right)
$$

Then we have

$$
g\left(\varphi_{0}\left(u_{1}, u_{2}, v_{0}, \ldots, v_{4}\right)\right)=\varphi\left(\psi\left(u_{1}, u_{2}, v_{0}, \ldots, v_{4}\right)\right)
$$

Therefore the induce almost complex structure of φ_{0} coincides with that of φ.

4.3. 1-parameter family of homogeneous almost complex structures on $S^{2} \times R^{4}$

4.3.1 $\quad S^{2} \times \mathrm{R}^{4}$

In this section, we give the explicit representation of G_{2}-frame fields on $S^{2} \times \mathbf{R}^{4} \subset \operatorname{ImC}$, and the G_{2}-invariants. Let $q \in S^{3}(\subset \mathbf{H})$ be the unit quaternion. We define the map $\pi: S^{3} \rightarrow S^{2}$ such that $\pi(q)=q i \bar{q}$, which is called the Hopf map.

Proposition 4.7 Let $\varphi_{2, \alpha}$ be the 1-parameter family of imbeddings from $S^{2} \times \mathbf{R}^{4}$ to Im \mathfrak{C}, as follows

$$
\begin{align*}
\varphi_{2, \alpha}(q i \bar{q}, \tilde{y})= & \cos (\alpha) q i \bar{q}+\sin (\alpha)(q i \bar{q}) \varepsilon+y_{0} \varepsilon+y_{1}(-\sin (\alpha) i+\cos (\alpha) i \varepsilon) \\
& +y_{2}(-\sin (\alpha) j+\cos (\alpha) j \varepsilon)+y_{3}(-\sin (\alpha) k+\cos (\alpha) k \varepsilon) \tag{4.1}
\end{align*}
$$

where $q i \bar{q} \in S^{2}$ and $\tilde{y}=\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \in \mathbf{R}^{4}$, for some fixed $\alpha \in[0, \pi / 3]$. Then, we have

$$
\operatorname{tr}\left({ }^{t} \overline{\mathfrak{B}} \mathfrak{B}\right)=\frac{1}{8}\left(1+\cos ^{2}(3 \alpha)\right), \quad \operatorname{tr}\left({ }^{t} \overline{\mathfrak{A}} \mathfrak{A}\right)=\frac{1}{8}\left(1-\cos ^{2}(3 \alpha)\right) .
$$

The automorphism group of the induced almost Hermitian structure coincides with $S U(2) \ltimes \boldsymbol{R}^{4}\left(\subset S O(3) \times\left(S O(4) \ltimes \boldsymbol{R}^{4}\right)\right)$ and it acts transitively on
$S^{2} \times \boldsymbol{R}^{4}$ for any $\alpha \in[0, \pi / 3]$.
From which, we have
Theorem 4.2 For $\alpha \in \mathbf{R}(0 \leq \alpha \leq \pi / 3)$, let $\left(S^{2} \times \mathbf{R}^{4}, \varphi_{2, \alpha}\right)$ be defined as in Proposition 4.7. The family of the imbeddings $\varphi_{2, \alpha}$ induce the 1 parameter family of the almost complex structures J_{α} on $S^{2} \times \mathbf{R}^{4}$, which are not G_{2}-congruent to each other. Moreover the induced almost Hermitian structure $\left(J_{\alpha},\langle\rangle,\right)$ is (1,2)-symplectic iff $\alpha=0$ or $\pi / 3$.

We here note that $\varphi_{2, \alpha}$ and $\varphi_{2, \alpha+\pi / 3}$ are G_{2}-congruent. The almost Hermitian manifold $(M, J,\langle\rangle$,$) is said to be (1,2)-symplectic if (d \omega)^{(1,2)}=0$, where $\omega=\langle J$,$\rangle is the canonical 2-form (or Kähler form) on M$. In our situation, $(d \omega)^{(1,2)}=0$, is equivalent to $\mathfrak{A}=0$.

Proof. First we note that the imbeddings are equivariant in the following sense. Let $\rho_{I I I}: S p(1) \rightarrow G_{2}$ be the representation of the Lie subgroup $S p(1)$ of G_{2}, which is defined by

$$
\begin{equation*}
\rho_{I I I}(q)(a+b \varepsilon)=q a \bar{q}+(q b \bar{q}) \varepsilon, \tag{4.2}
\end{equation*}
$$

where $a, b \in \mathbf{H}$ (see [7]). In fact, we see that $\rho_{I I I}$ satisfies

$$
\rho_{I I I}(q)(a+b \varepsilon) \rho_{I I I}(q)(c+d \varepsilon)=\rho_{I I I}(q)(a c-\bar{d} b+(d a+b \bar{c}) \varepsilon)
$$

for any $a, b, c, d \in \mathbf{H}$. From (4.1) and (4.2), it follows immediately that the imbedding $\varphi_{2, \alpha}$ is rewritten as

$$
\begin{align*}
\varphi_{2, \alpha}(q i \bar{q}, \tilde{y})= & \rho_{I I I}(q)(\cos (\alpha) i+\sin (\alpha) i \varepsilon)+y_{0} \varepsilon+y_{1}(-\sin (\alpha) i+\cos (\alpha) i \varepsilon) \\
& +y_{2}(-\sin (\alpha) j+\cos (\alpha) j \varepsilon)+y_{3}(-\sin (\alpha) k+\cos (\alpha) k \varepsilon) \tag{4.3}
\end{align*}
$$

Therefore, we see that the imbeddings are equivariant and the induced almost Hermitian structures are homogeneous for all $\alpha \in[0, \pi / 3]$. In fact, we define the G_{2}-frame field by

$$
\begin{aligned}
\xi & =\left\{\rho_{I I I}(q)(\cos (\alpha) i+\sin (\alpha) i \varepsilon)\right\} \\
f_{1} & =\frac{1}{2}\left\{\rho_{I I I}(q)(-\sin (\alpha) i+\cos (\alpha) i \varepsilon-\sqrt{-1}(\varepsilon))\right\}
\end{aligned}
$$

$$
\begin{aligned}
& f_{2}=\frac{1}{2}\left\{\rho_{I I I}(q)(j-\sqrt{-1}(-\cos (\alpha) k+\sin (\alpha) k \varepsilon))\right\} \\
& f_{3}=-\frac{1}{2}\left\{\rho_{I I I}(q)(-\sin (\alpha) k-\cos (\alpha) k \varepsilon-\sqrt{-1} j \varepsilon)\right\}
\end{aligned}
$$

Then we see that $\left(f_{1}, f_{2}, f_{3}\right)$ is a $S U(3)$-frame field on $\varphi_{2, \alpha}\left(S^{2} \times \mathbf{R}^{4}\right)$.
To calculate the G_{2} invariants, we define the local 1-forms μ_{1}, μ_{2} on S^{2} by

$$
\mu_{1}=\langle d(q i \bar{q}), q j \bar{q}\rangle, \quad \mu_{2}=\langle d(q i \bar{q}), q k \bar{q}\rangle
$$

Then, we obtain

$$
\begin{aligned}
& \omega^{1}=d y_{1}-\sqrt{-1} d y_{0} \\
& \omega^{2}=\cos (\alpha) \mu_{1}-\sin (\alpha) d y_{2}+\sqrt{-1}\left(-\cos (2 \alpha) \mu_{2}+\sin (2 \alpha) d y_{3}\right) \\
& \omega^{3}=\sin (2 \alpha) \mu_{2}+\cos (2 \alpha) d y_{3}-\sqrt{-1}\left(\sin (\alpha) \mu_{1}+\cos (\alpha) d y_{2}\right)
\end{aligned}
$$

at $q=1$. Since

$$
d \xi=\cos (\alpha)\left(j \otimes \mu_{1}+k \otimes \mu_{2}\right)+\sin (\alpha)\left(j \varepsilon \otimes \mu_{1}+k \varepsilon \otimes \mu_{2}\right)
$$

at $q=1$. Hence we have

$$
\begin{align*}
\mathfrak{B} & =-\frac{1}{4}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \cos ^{2}(\alpha)+\cos ^{2}(2 \alpha) & \frac{\sqrt{-1}}{2}(\sin (2 \alpha)-\sin (4 \alpha)) \\
0 & -\frac{\sqrt{-1}}{2}(\sin (2 \alpha)-\sin (4 \alpha)) & \sin ^{2}(\alpha)+\sin ^{2}(2 \alpha)
\end{array}\right), \tag{4.4}\\
\mathfrak{A} & =-\frac{1}{4}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \cos ^{2}(\alpha)-\cos ^{2}(2 \alpha) & -\frac{\sqrt{-1}}{2}(\sin (2 \alpha)+\sin (4 \alpha)) \\
0 & -\frac{\sqrt{-1}}{2}(\sin (2 \alpha)+\sin (4 \alpha)) & -\sin ^{2}(\alpha)+\sin ^{2}(2 \alpha)
\end{array}\right) .
\end{align*}
$$

Therefore from (4.4), we get the G_{2} invariants on $S^{2} \times \mathbf{R}^{4}$ given by

$$
\operatorname{tr}\left({ }^{t} \overline{\mathfrak{B} \mathfrak{B}}\right)=\frac{1}{8}\left(1+\cos ^{2}(3 \alpha)\right), \quad \operatorname{tr}\left({ }^{t} \overline{\mathfrak{A}} \mathfrak{A}\right)=\frac{1}{8}\left(1-\cos ^{2}(3 \alpha)\right) .
$$

Proposition 4.8 Let φ be any isometric imbedding from $S^{2} \times \mathbf{R}^{4}$ to ImC. Then there exist a $g \in G_{2}$ and $\alpha \in[0, \pi / 3]$ such that $g \circ \varphi=\varphi_{2, \alpha}$. Hence the
moduli space (up to the action of G_{2}) of isometric imbedddings from $S^{2} \times \mathbf{R}^{4}$ to ImC coincides with $\left\{\varphi_{2, \alpha} \mid \alpha \in[0, \pi / 3]\right\}$.

Proof. If S^{2} is included in an associative 3-plane, then the imbedding from $S^{2} \times \mathbf{R}^{4}$ to ImC is G_{2}-congruent to $\varphi_{0}\left(S^{2} \times \mathbf{R}^{4}\right)$. By Proposition 3.2, we may assume that S^{2} is included in the 3 -dimensional vector space

$$
\operatorname{span}_{\mathbf{R}}\{g(i), g(j), g(\cos \theta k+\sin \theta \varepsilon)\}
$$

for some $\theta \in[0, \pi / 2]$. By changing the basis of the 3 -dimensional subspace in ImC suitably, we may assume that

$$
S^{2} \subset \operatorname{span}_{\mathbf{R}}\{\cos \alpha i+\sin \alpha i \varepsilon, \quad \cos \alpha j+\sin \alpha j \varepsilon, \quad \cos \alpha k+\sin \alpha k \varepsilon\}
$$

for some $\alpha \in[0, \pi / 3]$. Hence we get the desired result.

4.4. Deformation of almost complex structures on $S^{3} \times R^{3}$

4.4.1 $\quad S^{3} \times R^{3}$

The purpose of this section is to prove the following
Theorem 4.3 Let $\varphi_{3, \alpha}: S^{3} \times \boldsymbol{R}^{3} \rightarrow \operatorname{Im} \mathfrak{C}$ be a 1-parameter family of imbeddings defined by

$$
\begin{aligned}
& \varphi_{3, \alpha}\left(q_{0}, q_{1}, q_{2}, q_{3}, x_{1}, x_{2}, x_{3}\right) \\
& \quad=x_{1}(\cos \alpha i+\sin \alpha \varepsilon)+x_{2} j+x_{3} k+q_{0}(-\sin \alpha i+\cos \alpha \varepsilon)+\mathfrak{q} \varepsilon
\end{aligned}
$$

where $\mathfrak{q}=q_{1} i+q_{2} j+q_{3} k, \sum_{i=0}^{3} q_{i}{ }^{2}=1,\left(x_{1}, x_{2}, x_{3}\right) \in \boldsymbol{R}^{3}$ and $\alpha(0 \leq \alpha \leq$ $\pi / 2)$ is a parameter of the deformation. Then we have

$$
\begin{aligned}
\operatorname{tr}\left({ }^{t} \overline{\mathfrak{B}} \mathfrak{B}\right) & =\frac{1}{16}\left(2\left(1-q_{1}{ }^{2}\right) \sin ^{2} \alpha+3\right) \\
\operatorname{tr}\left({ }^{(} \overline{\mathfrak{A}} \mathfrak{A}\right) & =\frac{1}{16}\left(-2\left(1-q_{1}{ }^{2}\right) \sin ^{2} \alpha+3\right)
\end{aligned}
$$

From which, we can easily see that
Corollary 4.1 There exists a 1-parameter family of induced almost complex structures J_{α} on $S^{3} \times \boldsymbol{R}^{3}$, for any $\alpha(0 \leq \alpha \leq \pi / 2)$, which are not G_{2} equivalent. Moreover, the induced almost complex structures $J_{\alpha}(0<\alpha \leq$ $\pi / 2)$ are not homogeneous.

Proof. First we construct the G_{2}-frame field on $\varphi_{3, \alpha}\left(S^{3} \times \boldsymbol{R}^{3}\right)$. We put $\mu=q_{0} \cos \alpha+\mathfrak{q}$. Moreover, we set $e_{4}=\xi=-q_{0} \sin \alpha i+\left(q_{0} \cos \alpha+\mathfrak{q}\right) \varepsilon=$ $-q_{0} \sin \alpha i+\mu \varepsilon$, and we take $e_{1}=j$, and put $e_{5}=e_{1} e_{4}=q_{0} \sin \alpha k+(\mu j) \varepsilon$. Next, we set $e_{2}=\frac{1}{A}(\mu i) \varepsilon$, where $A=\sqrt{1-q_{0}^{2} \sin ^{2} \alpha}$. Then e_{2} is orthogonal to the associated 3 -plane $\operatorname{span}_{\boldsymbol{R}}\left\{e_{1}, e_{4}, e_{5}\right\}$. Also we put $\left\{e_{3}, e_{6}, e_{7}\right\}$ as

$$
\begin{gathered}
e_{3}=e_{1} e_{2}=\frac{1}{A}(\mu k) \varepsilon, \quad e_{6}=e_{2} e_{4}=-\frac{1}{A}\left(A^{2} i+q_{0} \sin \alpha \mu \varepsilon\right), \\
e_{7}=e_{3} e_{4}=-\frac{1}{A}\left(A^{2} k-q_{0} \sin \alpha(\mu j) \varepsilon\right),
\end{gathered}
$$

then we obtain the G_{2}-frame field $\left\{e_{1}, e_{2}, \ldots, e_{7}\right\}$. We now set

$$
\left\{\begin{aligned}
f_{1} & =\frac{1}{2}\left(j-\sqrt{-1}\left(q_{0} \sin \alpha k+(\mu j) \varepsilon\right)\right) \\
f_{2} & =\frac{1}{2 A}\left\{(\mu i) \varepsilon+\sqrt{-1}\left(A^{2} i+q_{0} \sin \alpha \mu \varepsilon\right\}\right. \\
f_{3} & =-\frac{1}{2 A}\left\{(\mu k) \varepsilon+\sqrt{-1}\left(A^{2} k-q_{0} \sin \alpha(\mu j) \varepsilon\right)\right\}
\end{aligned}\right.
$$

We calculate the second fundamental forms of $\varphi_{3, \alpha}$. Since we have

$$
\begin{aligned}
d \varphi_{3, \alpha}= & (\cos \alpha i+\sin \alpha \varepsilon) d x_{0}+j d x_{1}+k d x_{2} \\
& +(-\sin \alpha i+\cos \alpha \varepsilon) d q_{0}+(d \mathfrak{q}) \varepsilon
\end{aligned}
$$

we get

$$
\begin{aligned}
& \omega^{1}=d x_{1}-\sqrt{-1}\left(\sin \alpha\left(q_{2} d x_{0}-q_{0} d x_{2}\right)+\cos \alpha\left(q_{2} d q_{0}-q_{0} d q_{2}\right)-\langle\overline{\mathfrak{q}} d \mathfrak{q}, j\rangle\right), \\
& \omega^{2}=-\frac{1}{A}\left\{\left(q_{1} \sin \alpha d x_{0}+\cos \alpha\left(q_{1} d q_{0}-q_{0} d q_{1}\right)-\langle\overline{\mathfrak{q}} d \mathfrak{q}, i\rangle\right)\right. \\
& \left.+\sqrt{-1}\left(\cos \alpha d x_{0}-\sin \alpha\left(|\mathfrak{q}|^{2} d q_{0}-q_{0}\langle\overline{\mathfrak{q}} d \mathfrak{q}, 1\rangle\right)\right)\right\}, \\
& \omega^{3}=\frac{1}{A}\left\{\left(q_{3} \sin \alpha d x_{0}+\cos \alpha\left(q_{3} d q_{0}-q_{0} d q_{3}\right)-\langle\overline{\mathfrak{q}} d \mathfrak{q}, k\rangle\right)\right. \\
& +\sqrt{-1}\left(q_{0} q_{2} \sin ^{2} \alpha d x_{0}+A^{2} d x_{2}\right. \\
& \left.+q_{0} \sin \alpha\left(\cos \alpha\left(q_{2} d q_{0}-q_{0} d q_{2}\right)-\langle\overline{\mathfrak{q}} d \mathfrak{q}, j\rangle\right)\right\} .
\end{aligned}
$$

On the other hand, we take exterior derivative of the unit normal vector field ξ, then we get

$$
d \xi=(-\sin \alpha i+\cos \alpha \varepsilon) d q_{0}+(d \mathfrak{q}) \varepsilon
$$

Therefore, we have

$$
\begin{aligned}
& \sqrt{-1} \theta^{1}= \frac{\sqrt{-1}}{2}\left(\cos \alpha\left(q_{2} d q_{0}-q_{0} d q_{2}\right)-\langle\overline{\mathfrak{q}} d \mathfrak{q}, j\rangle\right) \\
& \sqrt{-1} \theta^{2}= \frac{1}{2 A}\left\{\left(\cos \alpha\left(q_{1} d q_{0}-q_{0} d q_{1}\right)-\langle\overline{\mathfrak{q}} d \mathfrak{q}, i\rangle\right)\right. \\
&\left.\quad-\sqrt{-1}\left(\sin \alpha\left(|\mathfrak{q}|^{2} d q_{0}-q_{0}\langle\overline{\mathfrak{q}} d \mathfrak{q}, 1\rangle\right)\right)\right\} \\
& \sqrt{-1} \theta^{3}=-\frac{1}{2 A}\left\{\left(\cos \alpha\left(q_{3} d q_{0}-q_{0} d q_{3}\right)-\langle\overline{\mathfrak{q}} d \mathfrak{q}, k\rangle\right)\right. \\
& \quad+\sqrt{-1}\left(q_{0} \sin \alpha\left(\cos \alpha\left(q_{2} d q_{0}-q_{0} d q_{2}\right)-\langle\overline{\mathfrak{q}} d \mathfrak{q}, j\rangle\right)\right\} .
\end{aligned}
$$

Hence we have

$$
\begin{align*}
& \sqrt{-1} \theta^{1}=-\frac{1}{2}\left\{\omega^{1}-d x_{1}+\sqrt{-1} \sin \alpha\left(q_{2} d x_{0}-q_{0} d x_{2}\right)\right\} \tag{4.5}\\
& \sqrt{-1} \theta^{2}=-\frac{1}{2}\left\{\omega^{2}+\frac{1}{A}\left(q_{1} \sin \alpha+\sqrt{-1} \cos \alpha\right) d x_{0}\right\} \tag{4.6}\\
& \sqrt{-1} \theta^{3}=-\frac{1}{2}\left\{\omega^{3}-\frac{1}{A}\left(\sin \alpha\left(q_{3}+\sqrt{-1} q_{0} q_{2} \sin \alpha\right) d x_{0}+\sqrt{-1} A^{2} d x_{2}\right)\right\} \tag{4.7}
\end{align*}
$$

Now, we want to know the (local complexified) vector fields $\left\{v_{1}, v_{2}, v_{3}\right\}$ on $S^{3} \times \boldsymbol{R}^{3}$, which satisfy $\varphi_{3, \alpha_{*}}\left(v_{i}\right)=f_{i}(i=1,2,3)$. We set

$$
\begin{aligned}
E_{1} & =\left(\frac{\partial}{\partial x_{0}}\right)_{p}, & E_{2}=\left(\frac{\partial}{\partial x_{1}}\right)_{p}, & E_{3}=\left(\frac{\partial}{\partial x_{2}}\right)_{p} \\
E_{4} & =\left(q_{0}+\mathfrak{q}\right) i, & E_{5}=\left(q_{0}+\mathfrak{q}\right) j, & E_{6}=\left(q_{0}+\mathfrak{q}\right) k
\end{aligned}
$$

The tangent space $T_{p}\left(S^{3} \times \boldsymbol{R}^{3}\right)$ at $p \in S^{3} \times \boldsymbol{R}^{3}$ is given by

$$
T_{p}\left(S^{3} \times \boldsymbol{R}^{3}\right)=\operatorname{span}_{\boldsymbol{R}}\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}
$$

The elements of the image $\varphi_{3, \alpha_{*}}\left(T_{p}\left(S^{3} \times \boldsymbol{R}^{3}\right)\right)$ are given by

$$
\begin{aligned}
\varphi_{3, \alpha_{*}}\left(\frac{\partial}{\partial x_{0}}\right)=\cos \alpha i & +\sin \alpha \varepsilon, \quad \varphi_{3, \alpha_{*}}\left(\frac{\partial}{\partial x_{1}}\right)=j, \quad \varphi_{3, \alpha_{*}}\left(\frac{\partial}{\partial x_{2}}\right)=k \\
\varphi_{3, \alpha_{*}}\left(\left(q_{0}+\mathfrak{q}\right) i\right) & =\left.\frac{d}{d \theta}\left(\varphi_{3, \alpha}\left(\cos \theta\left(q_{0}+\mathfrak{q}\right)+\sin \theta\left(q_{0}+\mathfrak{q}\right) i\right)\right)\right|_{\theta=0} \\
& =q_{1} \sin \alpha i+\left(q_{1}(1-\cos \alpha)+\left(q_{0}+\mathfrak{q}\right) i\right) \varepsilon
\end{aligned}
$$

In the same way

$$
\begin{aligned}
\varphi_{3, \alpha_{*}}\left(\left(q_{0}+\mathfrak{q}\right) j\right) & =q_{2} \sin \alpha i+\left(q_{2}(1-\cos \alpha)+\left(q_{0}+\mathfrak{q}\right) j\right) \varepsilon \\
\varphi_{3, \alpha_{*}}\left(\left(q_{0}+\mathfrak{q}\right) k\right) & =q_{3} \sin \alpha i+\left(q_{3}(1-\cos \alpha)+\left(q_{0}+\mathfrak{q}\right) k\right) \varepsilon
\end{aligned}
$$

Since $\left\langle\varphi_{3, \alpha_{*}}\left(E_{i}\right), \varphi_{3, \alpha_{*}}\left(E_{j}\right)\right\rangle=\delta_{i j}$, we have

$$
\begin{aligned}
& \left\langle\varphi_{3, \alpha_{*}}\left(v_{1}\right), \varphi_{3, \alpha_{*}}\left(\frac{\partial}{\partial x_{0}}\right)\right\rangle=-\frac{\sqrt{-1}}{2}\langle\mu j, 1\rangle \sin \alpha=\frac{\sqrt{-1}}{2} q_{2} \sin \alpha \\
& \left\langle\varphi_{3, \alpha_{*}}\left(v_{1}\right), \varphi_{3, \alpha_{*}}\left(\frac{\partial}{\partial x_{1}}\right)\right\rangle=\frac{1}{2} \\
& \left\langle\varphi_{3, \alpha_{*}}\left(v_{1}\right), \varphi_{3, \alpha_{*}}\left(\frac{\partial}{\partial x_{2}}\right)\right\rangle=-\frac{\sqrt{-1}}{2} q_{0} \sin \alpha .
\end{aligned}
$$

Therefore we obtain

$$
f_{1}=\varphi_{3, \alpha_{*}}\left(v_{1}\right)=\varphi_{3, \alpha_{*}}\left(\frac{\sqrt{-1}}{2} q_{2} \sin \alpha \frac{\partial}{\partial x_{0}}+\frac{1}{2} \frac{\partial}{\partial x_{1}}-\frac{\sqrt{-1}}{2} q_{0} \sin \alpha \frac{\partial}{\partial x_{2}}+\tilde{v_{1}}\right),
$$

where $\tilde{v_{1}}$ is a some (complexfied) vector filed on S^{3}. Hence

$$
\begin{equation*}
v_{1}=\frac{\sqrt{-1}}{2} q_{2} \sin \alpha \frac{\partial}{\partial x_{0}}+\frac{1}{2} \frac{\partial}{\partial x_{1}}-\frac{\sqrt{-1}}{2} q_{0} \sin \alpha \frac{\partial}{\partial x_{2}}+\tilde{v_{1}} . \tag{4.8}
\end{equation*}
$$

In the same way, we get

$$
\begin{equation*}
v_{2}=-\frac{1}{2 A}\left(q_{1} \sin \alpha-\sqrt{-1} \cos \alpha\right) \frac{\partial}{\partial x_{0}}+\tilde{v_{2}}, \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
v_{3}=\frac{1}{2 A}\left(q_{3} \sin \alpha-\sqrt{-1} q_{0} q_{2} \sin ^{2} \alpha\right) \frac{\partial}{\partial x_{0}}-\frac{\sqrt{-1}}{2} a \frac{\partial}{\partial x_{2}}+\tilde{v_{3}}, \tag{4.10}
\end{equation*}
$$

where $\tilde{v_{2}}, \tilde{v_{3}}$ are some (complexified) vector fields on S^{3}. Since $\omega^{i}\left(v_{j}\right)=\delta_{j}^{i}$, and, from (3.1), (4.8), (4.9), (4.10), we obtain

$$
\begin{aligned}
\mathfrak{B}_{1}^{1}=\sqrt{-1} \theta^{1}\left(v_{1}\right)= & -\frac{1}{2}\left\{\omega^{1}-d x_{1}+\sqrt{-1} \sin \alpha\left(q_{2} d x_{0}-q_{0} d x_{2}\right)\right\} \\
& \times\left(\frac{\sqrt{-1}}{2} q_{2} \sin \alpha \frac{\partial}{\partial x_{0}}+\frac{1}{2} \frac{\partial}{\partial x_{1}}-\frac{\sqrt{-1}}{2} q_{0} \sin \alpha \frac{\partial}{\partial x_{2}}+\tilde{v_{1}}\right) \\
= & \frac{1}{4}\left(1-\left(q_{0}^{2}+q_{2}^{2}\right) \sin ^{2} \alpha\right), \\
\mathfrak{B}_{2}^{2}=\sqrt{-1} \theta^{2}\left(v_{2}\right)= & -\frac{1}{2}\left\{1-\frac{1}{2 A^{2}}\left(\left(q_{1}^{2}-1\right) \sin ^{2} \alpha+1\right)\right\}, \\
\mathfrak{B}_{3}^{3}=\sqrt{-1} \theta^{3}\left(v_{3}\right)= & -\frac{1}{2}\left\{1-\frac{A^{2}}{2}-\frac{\sin ^{2} \alpha}{2 A^{2}}\left(q_{3}^{2}+q_{0}^{2} q_{2}^{2} \sin ^{2} \alpha\right)\right\}, \\
\mathfrak{B}_{1}^{2}=\sqrt{-1} \theta^{1}\left(v_{2}\right)= & \frac{q_{2} \sin \alpha}{4 A}\left(\cos \alpha+\sqrt{-1} q_{1} \sin \alpha\right), \\
\mathfrak{B}_{1}^{3}=\sqrt{-1} \theta^{1}\left(v_{3}\right)= & -\frac{\sin \alpha}{4 A}\left\{q_{0}\left(\left(q_{0}^{2}+q_{2}^{2}\right) \sin ^{2} \alpha-1\right)+\sqrt{-1} q_{2} q_{3} \sin ^{2} \alpha\right\}, \\
\mathfrak{B}_{2}^{3}=\sqrt{-1} \theta^{2}\left(v_{3}\right)= & -\frac{\sin \alpha}{4 A^{2}}\left\{\sin \alpha\left(q_{1} q_{3}+q_{0} q_{2} \cos \alpha\right)\right. \\
& \left.\left.+\sqrt{-1}\left(q_{3} \cos \alpha-q_{0} q_{1} q_{2} \sin ^{2} \alpha\right)\right)\right\} .
\end{aligned}
$$

If we put $X=\sin ^{2} \alpha$, then we have

$$
\begin{aligned}
16 A^{4}\left|\mathfrak{B}_{1}^{1}\right|= & \left(1-q_{0}^{2} X\right)\left\{1-\left(q_{0}^{2}+q_{2}^{2}\right) X\right\}^{2} \\
= & X^{4}\left\{q_{0}^{4}\left(q_{0}^{2}+q_{2}^{2}\right)\right\}+X^{3}\left\{-2 q_{0}^{2}\left(q_{0}^{2}+q_{2}^{2}\right)\left(2 q_{0}^{2}+q_{2}^{2}\right)\right\} \\
& +X^{2}\left\{6 q_{0}^{2}\left(q_{0}^{2}+q_{2}^{2}\right)+{q_{2}}^{4}\right\}+X\left\{-2\left(2{q_{0}}^{2}+{q_{2}}^{2}\right)\right\}+1, \\
16 A^{4}\left|\mathfrak{B}_{2}^{2}\right|= & \left\{-\left(2 q_{0}^{2}+\left(q_{1}^{2}-1\right)\right)+1\right\}^{2} \\
= & X^{2}\left\{2 q_{0}^{2}+\left(q_{1}^{2}-1\right)\right\}+X\left\{-2\left(2 q_{0}^{2}+\left(q_{1}^{2}-1\right)\right)\right\}+1,
\end{aligned}
$$

$$
\begin{aligned}
16 A^{4}\left|\mathfrak{B}_{3}^{3}\right|= & \left\{-q_{0}^{2}\left(q_{0}^{2}+q_{2}^{2}\right) X^{2}-q_{3}^{2} X+1\right\}^{2} \\
= & X^{4}\left\{q_{0}^{4}\left(q_{0}^{2}+{q_{2}}^{2}\right)^{2}\right\}+X^{3}\left\{2 q_{0}^{2} q_{3}^{2}\left(q_{0}^{2}+q_{2}^{2}\right)\right\} \\
& +X^{2}\left\{-2 q_{0}^{2}\left(q_{0}^{2}+q_{2}^{2}\right)+q_{3}^{4}\right\}+X\left\{-2 q_{3}^{2}\right\}+1, \\
32 A^{4}\left|\mathfrak{B}_{1}^{2}\right|= & 2 q_{2}^{2} X\left(1-q_{0}^{2} X\right)\left\{\left(q_{1}^{2}-1\right) X+1\right\} \\
= & X^{3}\left\{-2 q_{0}^{2} q_{2}^{2}\left(q_{1}^{2}-1\right)\right\}+\left\{2 q_{2}^{2}\left(-q_{0}^{2}+\left(q_{1}^{2}-1\right)\right)\right\} \\
& +X\left\{2 q_{2}^{2}\right\}, \\
32 A^{4}\left|\mathfrak{B}_{1}^{3}\right|= & 2 X\left(1-q_{0}^{2} X\right)\left\{q_{0}^{2}\left(\left(q_{0}^{2}+q_{2}^{2}\right) X-1\right)^{2}+q_{2}^{2} q_{3}^{2} X\right\} \\
= & X^{4}\left\{-2 q_{0}^{4}\left(q_{0}^{2}+q_{2}^{2}\right)^{2}\right\} \\
& +X^{3}\left\{2{q_{0}}^{2}\left(\left({q_{0}}^{2}+q_{2}^{2}\right)\left(3 q_{0}^{2}+q_{2}^{2}\right)^{2}-{q_{2}}^{2} q_{3}^{2}\right)\right\} \\
& +X^{2}\left\{2\left(-q_{0}^{2}\left(q_{0}^{2}+2\left(q_{0}^{2}+q_{2}^{2}\right)\right)+{q_{2}}^{2} q_{3}^{2}\right)\right\}+X\left\{2 q_{0}^{2}\right\}, \\
32 A^{4}\left|\mathfrak{B}_{2}^{3}\right|= & 2 X\left\{X\left(q_{1} q_{3}+q_{0} q_{2} \cos \alpha\right)^{2}+\left(q_{3} \cos \alpha-q_{0} q_{1} q_{2} X\right)^{2}\right\} \\
= & X^{3}\left\{2 q_{0}^{2} q_{2}^{2}\left(q_{1}^{2}-1\right)\right\}+X^{2}\left\{2\left(q_{3}^{2}\left(q_{1}^{2}-1\right)+q_{0}^{2} q_{2}^{2}\right)\right\} \\
& +X\left\{2 q_{3}^{2}\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{tr}\left({ }^{t} \overline{\mathfrak{B}} \mathfrak{B}\right)= & \frac{1}{16 A^{4}}\left\{X^{3}\left(2 q_{0}{ }^{4}\left(1-q_{1}^{2}\right)\right)+X^{2}\left(q_{0}^{2}\left(3 q_{0}^{2}+4\left(q_{1}^{2}-1\right)\right)\right)\right. \\
& \left.+X\left(-2\left(3 q_{0}^{2}+q_{1}^{2}-1\right)\right)+3\right\} \\
= & \frac{1}{16}\left(2\left(1-q_{1}^{2}\right) X+3\right)
\end{aligned}
$$

In the same way, we obtain

$$
\begin{aligned}
\operatorname{tr}\left({ }^{t} \overline{\mathfrak{A}} \mathfrak{A}\right)= & \frac{1}{16 A^{4}}\left\{X^{3}\left(-2 q_{0}^{4}\left(1-q_{1}^{2}\right)\right)+X^{2}\left(4 q_{0}^{2}\left(1-q_{1}^{2}\right)+3 q_{0}^{4}\right)\right. \\
& \left.\quad+X\left(-2\left(3 q_{0}^{2}+\left(1-q_{1}^{2}\right)\right)\right)+3\right\} \\
= & \frac{1}{16}\left(-2\left(1-q_{1}^{2}\right) X+3\right) .
\end{aligned}
$$

Proposition 4.9 Let φ be any homogeneous isometric imbedding from $S^{3} \times \mathbf{R}^{3}$ to Im \mathfrak{C}. Then there exist a $g \in G_{2}$ and $\alpha \in[0, \pi]$ such that

$$
g \circ \varphi=\varphi_{\alpha}
$$

Proof. We fix the immersion φ_{0} from $S^{3} \times \boldsymbol{R}^{3}$ to $\operatorname{Im} \mathfrak{C}$, as

$$
\varphi_{0}\left(u_{0}, \ldots, u_{3}, v_{1}, v_{2}, v_{3}\right)=u_{0} i+\cdots+u_{3} \varepsilon+v_{1} i \varepsilon+v_{2} j \varepsilon+v_{3} k \varepsilon
$$

where $\sum_{i=0}^{3} u_{i}^{2}=1$ and $\left(v_{1}, v_{2}, v_{3}\right) \in \boldsymbol{R}^{3}$.
Let $\varphi: S^{3} \times \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{7}$ be an arbitrary immersion. Then there exists an orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{7}\right\}$ of \boldsymbol{R}^{7} satisfying

$$
\varphi_{0}\left(x_{0}, \ldots, x_{3}, y_{1}, y_{2}, y_{3}\right)=x_{0} e_{1}+\cdots+x_{3} e_{4}+y_{1} e_{5}+y_{2} e_{6}+y_{3} e_{7}
$$

where $\sum_{i=0}^{3} x_{i}^{2}=1$ and $\left(y_{1}, y_{2}, y_{3}\right) \in \boldsymbol{R}^{3}$. If we set $V=\operatorname{span}_{\boldsymbol{R}}\left\{e_{5}, e_{6}, e_{7}\right\}$, then by Proposition 3.2, we have

$$
V=\operatorname{span}_{\boldsymbol{R}}\{g(i), g(j), g(\cos \theta k+\sin \theta \varepsilon)\} .
$$

In the same argument of the proof of Proposition 4.8, we get the desired result.

Acknowledgments The authors would like to thank the refree for his/her careful reading of the paper and his/her valuable comments.

References

[1] Bryant R. L., Submanifolds and special structures on the octonions. J. Diff. Geom. 17 (1982), 185-232.
[2] Calabi E., Construction and properties of some 6-dimensional almost complex manifolds. Trans. A.M.S. 87 (1958), 407-438.
[3] Ejiri N., Equivaiant minimal immersions of S^{2} into $S^{2 m}(1)$. Trans. A.M.S. 297 (1986), 105-124.
[4] Fukami T. and Ishihara S., Almost Hermitian structure on S^{6}. Tohoku. Math. J. 7 (1955), 151-156.
[5] Harvey R. and Lawson H.B., Calibrated geometries. Acta Math. 148 (1982), 47-157.
[6] Hashimoto H., Koda T., Mashimo K. and Sekigawa K., Extrinsic homogeneous almost Hermitian 6-dimensional submanifolds in the octonions. Kodai Math. J. 30 (2007), 297-321.
[7] Hashimoto H. and Mashimo K., On some 3-dimensional CR submanifolds in S^{6}. Nagoya Math. J. 156 (1999), 171-185.
[8] Hashimoto H., Characteristic classes of oriented 6-dimensional submanifolds in the octonians. Kodai Math. J. 16 (1993), 65-73.
[9] Hashimoto H., Oriented 6-dimensional submanifolds in the octonions III. Internat. J. Math and Math. Sci. 18 (1995), 111-120.
[10] Kobayashi S. and Nomizu K., Foundations of Differential geometry II. Wiley-Interscience, New York, 1968.

H. Hashimoto
Department of Mathematics
Meijo University
Tempaku, Nagoya 468-8502, Japan
E-mail: hhashi@ccmfs.meijo-u.ac.jp
M. Оhashi
Department of mathematics
Meijo University
Tempaku, Nagoya 468-8502, Japan
E-mail: m0851501@ccalumni.meijo-u.ac.jp

