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On generalized spin-boson models

with singular perturbations

Toshimitsu TAKAESU
(Received August 27, 2009; Revised January 28, 2010)

Abstract. In this paper we consider generalized spin-boson models with singular
perturbations. It is proven that under the infrared regularity condition Hamiltonians
have the unique ground state for sufficiently small values of coupling constants. In
addition it is shown that the asymptotic creation and annihilation operators of massless
boson field exist.
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1. Introduction and Main Theorem

1.1. Introduction

A generalized spin-boson model (GSB-models) is introduced by Arai
and Hirokawa [5], which is a generalization of the so-called spin-boson model.
It describes a general quantum system coupled to a boson field. A GSB-
Hamiltonian is defined as a self-adjoint operator on the tensor product of a
certain Hilbert space K and a Boson Fock space F,, which consists of a de-
coupled Hamiltonian and an interaction term. The decoupled Hamiltonian
is of the form:

Hy=K®I+I®dl'y(w), (1)

where K is a self-adjoint operator on K, and dI'y(w) the free Hamiltonian
on F},, which is given by the second quantization of a non-negative function
w. Then the GSB-Hamiltonian is given by

J
Ho+a) B ©¢(f;), (2)
j=1

where o € R is a coupling constant, B; a symmetric operator on K, and
#(f;) a field operator smeared by test function f; € L?(R?). The spectral
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properties of (2) are studied by [5], [7]. In particular the existence and
uniqueness of the ground state is established under suitable conditions.
In this paper, instead of (2), we investigate Hamiltonians of the form:

M
H=Ho+8) C®dg), (3)

=1

where 0 > 0 and Cj is a self-adjoint but bounded operator on . The
interaction term of (3) is singular compared with (2), and in particular it
is not relatively bounded with respect to the decoupled Hamiltonian Hy. It
is of interest to see the stability or instability of spectral properties of Hy
under singular perturbations.

Essential self-adjointness As is mentioned above, the interaction term
in (3) is not relatively bounded with respect to Hy. Then it is not trivial
to show the essential self-adjointness of H. In [3], [15], [23], an essential
self-adjointness of a Hamiltonian in quantum field theory with a singular
perturbation is considered. In this paper the essential self-adjointness of H
is proven by applying [3].

Existence of a ground state We consider a ground state of H for the
massless case:
inf w(k)=0. 4

inf w(k) @
Note that if the left hand side above is strictly positive we call it massive.
Under (4) the bottom of the spectrum of Hj is an eigenvalue but embedded
in the continuous spectrum. Then it is not trivial to show the existence of a
ground state of H even for sufficiently small but nonzero 3, since the regular

perturbation theory [22] for discrete spectra can not be applied. We prove
that for sufficiently small 5 and under the infrared regularity condition:

gi/we L*RY), j=1,..4d, (5)

H has a ground state such that the expectation of the number of bosons is
finite.

Asymptotic fields For a massive case, the asymptotic field is constructed
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in e.g., [10], [11], [21]. For a massless case, however, it is not straightforward
to construct it. Nevertheless it is also constructed in e.g., [12], [19]. Under
(4) we prove the existence of the asymptotic field and construct a wave
operator intertwining between H and dI'y,(w) + E by the methods used in
[19], where E denotes the ground state energy of H. From this we can
also show the absence of the spectral gap of H. Namely it follows that the
bottom of the spectrum, which is a point spectrum, also embedded in the
continuous spectrum.

Uniqueness of the ground state By using the asymptotic field men-
tioned above, we can also prove the uniqueness of the ground state of H.
Arai-Hirokawa [5] shows the uniqueness of the ground state of a massive
GSB model. In this paper we show it for the massless case by applying the
method used in [20].

Literatures of GSB-models and related works:
Miyao and Sasaki [24] consider a perturbation of a massive GSB-model:

GSB Hamiltonian + 1 ® ¢(f)?. (6)

They also show the existence of a ground state of (6). Arai, Hirokawa and
Hiroshima [6] consider the absence of eigenvectors of a GSB-Hamiltonian
(2) under the infrared singular condition:

g;/w ¢ L*(RY)  for some j. (7)

Arai and Kawano [8] prove the existence of a ground state even if the de-
coupled Hamiltonian has no ground state, but for a sufficiently large cou-
pling constant. Hiroshima [20] proves the uniqueness of the ground state
of Hamiltonians in some general class including GSB-Hamiltonians. Suzuki
[29] investigates a scaling limit of GSB-Hamiltonians and derives effective
Hamiltonians.

The existence of a ground state for related models is considered in e.g.,
[9], [13], [17], [19], [28]. In particular Bach, Frohlich and Sigal [9] prove the
existence of a ground state of the so-called non-relativistic quantum electro-
dynamics without infrared regular condition but sufficiently small coupling
constants, and Griesemer, Lieb and Loss [17] extend it for arbitrary values
of coupling constants.
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Finally we give a short remark on a relationship between H and the ¢*
model. Our Hamiltonian H is close to the ¢* model studied in Glimm and
Jaffe [14], [15], [16], but we introduce cutoff functions to construct the Hamil-
tonian as an operator on a Hilbert space. The ¢* model is defined on 7}, and
massive, while H is massless, defined on K ® F},, and includes self-adjoint
operators C;’s. So the analysis of H cannot be derived straightforwardly.
Of course we need the infrared regular condition (5) in compensation for the
massless assumption (4).

This paper is organized as follows:
In the remaining of Section 1, we define the total Hamiltonian H in (3)
rigorously, and state the main results. In Section 2 we show the essential
self-adjointness of H. In Section 3 we give a proof of the existence and
uniqueness of the ground state of H. In Section 4 we give a proof of the
existence of the asymptotic fields.

1.2. Boson Fock Space
Let d € N denotes the spatial dimension. The boson Fock space over
L?*(R?) is defined by

Fi = Fuo(L*(RY)) := @52 (@F (L*(RY))),

where ®7 L?(R?) stands for the n-fold symmetric tensor product of L?(R?)
and ®(L2(R?)) := C. The inner product of F, is given by

o0

(@,0)5, = 3@, 00) . poma. (8)
n=0

In this paper the inner product (y,z)x on the Hilbert space X is linear in
x and antilinear in y. Unless confusions arise, we omit the subscript X of
(y,7)x. Let Qp, = {1,0,0,...} € F, be the Fock vacuum. For f € L?(R?),
the creation operator is defined by

(@ (HY)™ =V + 1S (f@ ™), n>1,

where S, denotes a projection from ®"L2?(R?) onto ®7L%*(R%) and
(a*(f)¥)© := 0. The domain of a*(f) is given by
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D(a*(f)) = {w iy,

S @ DO gy < oo}.
n=0

The annihilation operator a(f) is defined by the adjoint operator of a*(f).
Let D C L*(R?) be a subspace. The finite particle subspace over D is given
by

fgn(D) :‘C{a*(fl)a*(fn)gba Qb ’ f] ED? .]: 17"’7”’ TLGN}

In particular we call Fi"(L?(R%)) the finite particle subspace. It is seen that
the domains of operators a*(f) and a(g) include the finite particle subspace,
leave it invariant, and satisfy the canonical commutation relations on it:

[a(f),a™(g9)] = (f,9) (9)
[a(f),a(g)] = [a"(f),a"(g)] = 0. (10)

The Segal operator is given by
81 = s alf) +a* (1)) ()

V2

It is well known that ¢(f) is essentially self-adjoint on F"(L?(R9)). By (9)
and (10), it is seen that on Fi*(L?(R%))

[9(f), #(9)] = iIm(f, g). (12)

In particular [¢(f), #(g)] = 0, when f and g are real-valued functions.
Let T be an operator on L?(R%). We define the second quantization
dl'y(T') of T by

drb(T):@;?:()( <I®...I® T ®I...®I)).

Jj=1 jth

1.3. Total Hamiltonian and Main Theorems
Let I be a Hilbert space over C. Then the total Hilbert space is defined
by
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H=K®F. (13)

Let K be a operator on K. The decoupled Hamiltonian of GSB models is
defined by

Hy=K®I+I®dly(w), (14)

where w denotes the multiplication operator by a Lebesgue measurable func-
tion w # 0. We assume the following conditions:

(S.1) The operator K is self-adjoint and non-negative.
(S.2) The function w is non-negative with inf, g+ w(k) = 0.

Let
M
H = ZC[ & ¢(9l)47 (15)
=1

where C, [ = 1,..., M, is an operator on K. We introduce the following
assumption:

(S.3) C;,l=1,...,M is a bounded, non-negative self-adjoint operator.

Proposition 1.1 (Essential self-adjointness) Assume (S.1)—(S.3). Then
Ho+ BH', 8 > 0, is essentially self-adjoint on

Dy = D(K)&F(LA(RY)), (16)
where @ denotes the algebraic tensor product and
LR = {v e L3R | supp v is compact}.
It is noted that
FEM(LF(R?) € M2y Dy (@)™) () Maa D(6(9)™)-
Let us define the total Hamiltonian by

H = (Ho + SH')p,, (17)
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where X denotes the closure of X and 3 > 0. By Proposition 1.1, it is
seen that H is self-adjoint, and hence o(H) C [Ey(H),o0) follows where
Ey(H) =info(H).

Let us assume the following conditions.

(S.4) The function g; is a real-valued continuous function and g; € D(w)
forl=1,..., M.
(S.5) (I) C; and Cp commute for all ;1" =1,..., M.
(In) ¢}/%, 1 = 1,...,M, leave D(K) invariant, ie. C//*D(K) C
D(K). There exists a constant v; € R, such that for all ¥ €
D(K),

(v, [C}%,[C}?, K] ®) = v v

It is noted that C'D(K) C D(K), 1 =1,..., M, follows from the condition
(IT) in (S.5).

By applying the methods used in [4], we can obtain the following propo-
sition.

Proposition 1.2 (Absence of spectral gap) Assume (S.1)—(S.5). Then
for sufficiently small 3, o(H) = [Eo(H ), 00) follows.

To prove the existence of a ground state of H, we introduce the following
assumptions:

(S.6) The function w(k) is continuous and lim|y| .. w(k) = 0o, and there
exist constants ¢ > 0 and 7 > 0 such that

w(k) — w(k)| < &k — K[F(1+wk) +wK)), kk R

(S.7) The operator K has a compact resolvent.
(S.8) (Infrared regularity condition) It holds that

Je

Theorem 1.3 (Existence of Ground states) Assume (S.1)-(S.8). Then
H has a ground state for sufficiently small (.

g1(k)

e, M.

dk < oo, l=1,...

)

We introduce the additional assumptions.
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(S.9) There exists a closed set O C R? such that w € C*(RNO), g, €
CERNO), 1 =1,...,M, £2(k) # 0 and 22 (k) # 0 on RNO for
J1 J2

some j1, jo € {1,...,d}.
Proposition 1.4 (Uniqueness of ground states) Assume (S.1)—(S.9).
Then dimker(H — Ey(H)) < dimker(K — Ey(K)) for sufficiently small 3,
where Fy(X) = inf o(X).
Theorem 1.5 (Existence of asymptotic fields)  Suppose (S.1)—(S.3) and
(S.9). Let h € C?*(R\O) and supph be compact. Then for ¥ € D(H), the
asymptotic field

aftoo(h)\ll =5 — t—lgtnoo et eitHo ([ & aﬁ(h))eitHoe—itH\I]7

exists.

Let us define the asymptotic in/out-going Fock space by Fio =
P, Fi. with

:ﬁoo = ‘C{a*:too<h1) o 'a*:too(hn)\pg’ ’ h‘i € D(w_1/2)7 1= 17 v ,TL}, (18)

where U, is a ground state of H and D denotes the closure of D. Here in
particular we set F{ = {2V, | z € C}. Let

F* = L{a*(h1) - a* (k) Dy | hi € D(w=1/2), i=1,...,n}.  (19)
We define the wave operator Wio = @, Wi, Wi F" — FL by
WEsoa* (he) - a* () 1= @ (hr) - g () Wy (20)

It is noted that by the commutation relations given by Lemma 4.2, W1 __ is
isometry and then W7 __ is the unitary operator from F" onto F} . From
Theorem 1.5 and, we obtain the following corollary.

Corollary 1.6 Suppose (S.1)~(S.9). Then dl'y(w) + Eo(H) = Wi -
Hir Wig.
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2. Essential Self-adjointness of Hg + BH’

2.1. Proof of Proposition 1.1
For ¥ € D(Ny, + 1) it is known that [|a*(&)¥| < ||€][|(Ny + 1)V/2T]],
where a(€) = a(€) or a*(£). Hence we have

lo(©) Tl < V2JI€][|(No + 1) ]. (21)
Let ¢(€) = J5(—a(€) + a*(€)). Then it follows that on F"(L*(R%)),
[No, ()] = (€) (22)
and for ¥ € D(N/?),
16T < V2)€][|(Ny + 1)/ 2w ]. (23)

It is seen in ([2, Lemma 2.4]) that a(¢) maps D(Ns/z) into D(Vy,) and for
v e D(NY?),
(N + 12, a* (€))% < gl (Vs + 1) 2|, (24)
1

where ¢ = L [* (}\ﬁy dX. From (21), (23) and (24), we obtain the following

lemma.

Lemma 2.1  Assume (S.1)(S.3). Then there exists a constant M > 0
such that

[6(9)* || < Mllgll*||(Ns + 1)>¥||, ¥ e D(N). (25)
Let us identify ‘H = K ® Fy, with

Hi = @ZO:OLSym(Rdn; ]C)a (26)
where L2 (R9";K) is the set of K-valued, square integrable symmetric

sym
functions on R with L2, (R% K) := K. Let

H = {T = (UM} e Fie | ¥ = 0k for all k > J with some J}.
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It is clear that for W = {W(1e ¢ Hin
(T, H'W™) =0 for |m —n| > 5. (27)

Lemma 2.2 Assume (S.1)~(S.3). Then Hy + SH' is essentially self-
adjoint on D(Hy) NHER.

Proof. Let X, be the Hilbert spaces and Sy, S’, Ny and L be the operators
in Appendix A. Now we apply Hx to X, Hy to So, BH' to S', I ® Ny to
Ny, and I ® I to L under the identification (26). Then, by (40) and Lemma
2.1, it is seen that Hy + BH' satisfies the assumptions (A.1) and (A.2) in
Appendix A. In addition, by the definition of Hy + SH’, (A.3) is satisfied.
Hence by Theorem A, the proof is completed. O

Proof of Proposition 1.1. By Lemma 2.2, it is enough to show that
D(o) N < D(Trm) (29)
Let
By = Ex([Eo(K), ), Xnj(kis- - k) = x, (ki) % - % xr, (ka),

where Fi denotes the spectral projection of K and x;, the characteristic
function on I; = [~4,§) x --- x [—4,j) C R% Let ¥ = {w© v g
0,0,...} € D(Ho) N'HEP. Then W) n < J, can be represented as

o0
k=1

where u,, ;, € H and \IIE:L,)C € ®@"L2(RY). Let

o
\I/§n) = Z (E%(’un,k) ® (Xn,jw,(:%)a ] = 17 27 cr (29)
k=1
q
U =S (Bluns) © (gdlh), G=12.... (30)

k=1
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plication operator defined by (Mxnjyj\Il(”))(kl, o kn) = xnka, . k)
U (ky, ... k). Hence lim;j_o [|¥Y") — @™ || = 0. Since ¥ € D(K ® 1),
it is seen that [|(K@ 1)U\ (K@) U™ | = [|(B;@M,, ,~ DK@ T™|| -
0 as j — oo. In addition, we have ||I ® de(w)\Ilg»n) — I @ dT, ()T =
I(Ej @ My, ; — I)(I ®dly(w)¥(™M|| — 0 as j — co. By Lemma 2.1, we see
that

It is seen that \Ilg.n) = (B} ® M,, )¥™, where M,  denotes the multi-

1(Cr & ¢(g) )T — (Cr @ o(g) ) u ™|
< M||(Cr @ (N +1)?) (98 — w0 |

< (n+ 12 My|| G| w4 — w™|| — o,

as j — oo. Hence, we have ||H\I/§n) — HU™| — 0 as j — oo. By the
definition of \Ilg-z), it can be also seen that H\IJE"Q) - \I’§n) | - 0and ||H \I’EZ) -
H\Ilgn)H — 0 as ¢ — oo. Since {\I’ET;)} is a sequence of Dy, we obtain ¥ €
D(Hp,)- Thus (28) is obtained. O

2.2. Proof of Proposition 1.2
Let &£ € D(w™1/?). Tt is well known that for ¥ € D(dl',(w)'/?),

la(e) ]| < H;;H a0 () /29| (31)
la*(©)w] < ngaH T ()20 + €12 (32)
and hence
1/2 1
lo©)] < ‘@Hj&H Jarsw) 20| + el (33)
For ¢ € D(w), it follows that on Fi*(L?(R?)),
(AT (@), a(6)] = —a(wE), [dTo(@).a*(©)] = a*(wE).  (34)

Moreover it is seen in ([2, Lemma 2.4]) that for ¢ € D(w'/?) N D(w),
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(T (w) + 1)1/, % (€)] @
< &([lw 2] + lwéll) || (dTs (w) + 1) 9| (35)

where ¢ = 1 [ (AQ)Q dA. By (31), (32) and (35), we obtain the following

lemma.

Lemma 2.3 Let & € D(w™Y?) and n € D(w*/?), k = —1,1,2. Then for
W € D(dTy(w)),

lat(€)a () \n (@) + 9]

A= |Gl
+Z(& )| (dTs(w) + )2 + [i€lnlll 2],

where Z(€,m) = &l| S| (lo"/2n] + llonll) + || S [ Inll + el 25 .-

From Lemma 2.3 the following corollary immediately follows.

Corollary 2.4 Assume (S.1) and g € D(w*/?), k = —1,1,2. Then there
exist constants v1 > 0, 2 > 0 depending on g such that for ¥ € D(dl'y(w)),

1¢(9)* ]| < Y [ldls (W) @] + 2P

By the algebraic identity [XY, Z] = X[Y, Z] 4 [X, Z]Y and (34), we see
that for ¥ € F/ " (L?(R?)) and for £ € D(w),

[6(€)%, [6(€)*, dT ()] ¥ = —4(&, wE)H(&)*P. (36)

Lemma 2.5 Assume (S.1)—~(S.5). Then for sufficiently small 3 > 0, there
exist constants cog > 0 and dy > 0, such that

[HoW || + || H' V|| < col[HY|| + do| W[, ¥ € D(H). (37)
Proof. Let ¥ € Dy. Then we see that
|HW|* = || HoW|* + 52| H'W||* + B(¥, (H'Ho + HoH')¥).  (38)

By using the equality X2Y + Y X? = [X,[X,Y]] + 2XY X with applying
01/2 to X, and Hy to Y, we have
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(¥, (H'Ho + HoH')¥)

(0. [C/ @ (), [} © d(an)?, Ho]| ¥)

WV
NE

=1

{(w, [011/27 [Cll/sz” ® ¢(g1)"' )
+ (¥, Cr @ [o(90)?, [3(g)?, dTs (wr)]]¥) }. (39)

p"q:

N
Il
_

By the assumption (S.4)—(S.5) and (36), we have

(U, (H'Hy + HoH'")")
M

Z (W, 1® ¢(g)"®) — 4(g1,wq) (¥, C; @ p(g1)° W)} (40)

=1

Then, by (S.3), we have

(U, (H'Hy + HoH')®)
M

> = {wllI @ ¢(9)*T|* + 4| Coll(g1, wa) IT @ S(g) [P} (41)
=1

By (33) and Corollary 2.4, there exists a constant R; > 0 such that
il ¢(9)*P)* + 4(gr, wa) ICIIIT @ ¢(g0) ]
< Ry([|HoW |1 + [ 2[f). (42)

Hence, by (41), (42) and (38), we have
M M
\HP > (1 _ ﬂZRl) |How |2 + Y~ 5 Rylw?
=1 =1

for ¥ € Dy. Let us take (§ sufficiently small such as 1 — Zl]\il R, > 0.
Then (49) follows for all ¥ € Dy. Since Dy is a core of Hy, we can extend
(49) for all ¥ € D(H). Hence (37) is obtained. O

By the spectral decomposition theorem, it is seen that
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1C1® ¢(9)* || < [|Cr @ p(g) | + | Cull]|¥].
We also see that

[Cr @ ¢(a)* ¥ < [H'Y| (43)
follows by (S.5). Then by (37) and (43) we see that
[(Cr @ ¢(1)*)¥|| < ol HO|| + (do + [CUDII®I, ©eD(H).  (44)

Proof of Proposition 1.2. To complete the proof, we show that H satisfies
the assumptions (E.1)-(E.4) in Appendix B with applying H = Hy + SH’
to X = Xo + ¢X’. It is seen that H satisfies (E.1)—(E.4). Then we check
(E.4). By the canonical commutation relations, we see that for ®, ¥ € D,

(I ®a*(h)®, H'U) — (H'W,I® a(h)®)
M
=2V28 " (h, 9)(®,C1 ® ¢(g1)*¥). (45)
=1

By (44) and Lemma 2.5, we can extend (45) for all U € D(H). Let {f,}>2,
be the sequence of D(w) N D(w~'/?) such that ||f,|| =1, n > 1, and w —
limy, o0 fn = 0. Then we have

(I ® a*(fn)q)a H/\II) - (H/‘IJ7 I'® a(fn)q))
M
=2V28 (fnr 01)(®,C1 ® $(51)*¥) — 0,
1=1
as n — oo. Hence H satisfies the (E.4), and the proof is completed. g

3. Ground States

3.1. Massive Case
In this subsection we investigate the ground state of H in the massive
cases:

m:= inf w(k) > 0.
keR4
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Let V>0 and L > 0. We set

s 27 .
FV:VZd: {q:(q17"'an)|Qj:an7 n; GZ? ]:17"'ad}7
™ .
FV,L:{q:(QL---;CId)EFVHQj“i‘VSL; ]:17"'7d}7
Let

Fov = Fuo((Tv)).

We can regard F, v as a closed subspace of F,(L?(R%)). For a lattice point
a=(q1,...,q4) € T'y, we set the subset of R? by

s e s s
C(q,V):= [ql—v,qﬁr‘/) X e X [Qd—V7Qd+V>-

Let us define the following functions

wy (k) = Z w(@xcqv)k), g,rvk) = Z gi(d)Xc(q,v) (k)

qel'y qel'v, L
g, = xr(k)gi(k), (46)

where X¢(q,v) is the characteristic function on C(q,V), and xr(k) =
X[-r,z)(k1) - x[—r,r](k3). Let

Hy =K® fb,V,

and

Hyy = (Hoyv + BH] ) p,» (47)

where Hoy = K ® I +1®dl(wy), Hy, = S0, C1 @ ¢(gi,zv)", and

Hy, = (Ho + GHY) (48)

Do’

where H; = Zl]\il i ®¢(91,L)4~ In a similar way as the proof of Proposition
1.1, it is proven that Hy, v and Hj, are essentially self-adjoint on Djy.
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Proposition 3.1  Assume that (S.1)—(S.5) holds. Let V and L are suffi-
ciently large, and 3 > 0 sufficiently small. Then

(1) there exist constants c; > 0 and dq > 0 independent of both V' and L
such that

1 Hov || + [ HL v ¥|| < et |Ho v || + i[Ol ¥ € D(HLy), (49)
(2) there exist constants ca > 0 and d2 > 0 independent of L such that
|HoW| + || Hy ¥ < col HL W]+ dol| ¥, W € D(H).  (50)
Proof. 1In a similar way of Lemma 2.5, we have for ¥ € Dy,
1HL v ¥|* = [ How W) + 52| HL |2
+ B(, (Hy, vHo,v + Hoy Hy, ) V).
In a similar way as (41), we have
(\II, (HIL,VHO,V + HO’VH27v)\P)
M
> Z {v(¥,I1® ¢(91,L,v)4‘1’) —4(gi,Lv,wvgLv)(¥,Cr ® ¢(gz,L,v)2‘I’)}-
=1
(51)

Since limy —oo(g1,L,vswvgnL,v) = (91,0, wg,z) and limp (g1, wq,) =
(g1,waq1), we have for sufficiently large V' > 0 and L > 0,

(W, (H} v Hov + HovHp y)¥)

M
> = AWl ® ¢lgr.L.v)* VI + 41 Cull (g1, wgn) I © Slgn,L.v) VI }-
=1
(52)
By (33) and Corollary 2.4, there exists a constant R; > 0 such that
lllT @ ¢(gr,Lv)*@l* + 4g, wa) |CUIIT @ ¢lgr.L.v) P
< Ri([[ Hov | + [ 2])).
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Hence, by (52), we have

M M
e 01 > (1830 R ) Ho WP + 62 0 - 53 Rl
=1 =1

for ¥ € Dy. Hence sufficiently small 8 such as 1 — ﬁzl]\il R; > 0, (49)
follows for all ¥ € Dy. Since Dy is a core of Hy, v, we can extend (49) for
all U € D(H). Hence (49) is obtained. We can prove (2) in a similar way
as (1). O

Lemma 3.2 Assume (S.1)-(S.5) and (S.7). Then Hp v is reduced by
Hy, and Hy, v has purely discrete spectrum in [Eq(Hpv), Eo(Hr,v) +m).

Proof. Tt is similar to ([5, Lemma 3.9, Lemma 3.10]). O
Lemma 3.3 Assume (S.1)—~(S.6). Then for all z € C\R, it follows that

g [[(Hry — 27 = (Hy—2)7t =0, (53)
Jim |(Hp —2)"' = (H - 27| =0. (54)

Proof. We see that
(Hpv —2) ' = (Hp—2)"' =Ly + Ly,

where

Ll,V = (HLJ/ — Z)_l(l X de(w) —-1® de(wV))(HL — Z)_l,

M
Loy = ﬂZ(HL,V — )7t (Cr® (¢(gl,L,V)4 - ¢>(gl,L)4)) (Hp —2)~ %

=1

Let ¢ > 0 and 7 > 0 be the constants in (S.6) and we set R(V) :=
67428k +1)

Then it is seen ([5, Lemma 3.1]) that [[(dI'v(w) — dI'y(wv))¥| <
Pt T (W)W, for U € D(dIy (w)).

Then we have
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2R(V)
[Imz|(1 — R(V))

vl < I( ® dTy(w))(Hr —2)7 1] = 0, (55)

as V — oco. By (12) and the assumption (S.2), ¢(gr,v) commutes with
¢(gr). Then

M 3
Z Cr@ (d(g,Lv)' — dgrr)?) = Z S
=1 =0

where §; = Y1, Cr @ (8lgr,v) — ¢(o,.)d(9ev) 7 dlgir)’), § =
0,....3.
Let ¥ = (Hy, — 2)= for E € Dy. Then for ® € Dy

3
(®, Loy @) < B |(@,(Hpv — 2)7'S;)E)]. (56)
j=0
We evaluate the right side of (56). Let j = 0. We see that

(@, (Hpv —2)" " SoE)| (57)

M
< Z 1Cr @ ¢(g1,0,v)* (Hrv — ZT)il@H
=1

M@ d(gi,r,v — g1,0)0(91,0,v)E]- (58)

It is seen that ||¢(gi,2,v)?O < |6(g1,2,v)*Oll + [|©]| for © € D(d(g1,L,v)*).
Then by (49), the first term of (58) can be estimated as

1Cr @ ¢(g1,rv)*(Hev — 21710

<@ dlgLv) (Hoy — 207 || + |G| (HLv — ZT)_lq)H

|[Imz|
d +C
<<QO+|A>+1+”M)WW (59)

[Imz| |[Imz|

’ - C
< <HHL,V(HL,V — 27 1“ + & )H‘I’l

On the second term of (58), by Lemma 2.3 we have
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1 ®d(gi,L.v — g.L)0(g,L.v)E|
< (\|w71/2(gl,L,v - gl,L)HHwil/le,L,V” + Z(gl,L,v - gngl,L,V))
I(dTs (W) + 1) (Hy = 2) 7]
+llgev = ancllllgeevII(He = 2) 7 H1@]. (60)
By (59) and (60), there exists a constant Mo(g,r.v, g1,.) > 0 such that

M

(@, (Hpy —2)" So(H —2)" )| < Y MolgLv.g.o)[2l1¥],  (61)
=1

and limy_, o Mo(9r,v,9r) = 0. Since Ran [(Hf — z)p,] is dense in H, we
obtain

Jm [[(Hzy — 2) T So(Hp —2)7 Y =0.
In a similar way as Sy, we have for 7 =1,2,3
Jim ([(Hp,v = 2)718;(Hy — 2) 7| = 0.

Thus (53) is obtained. (54) is also proven in a similar way as (53). O

Proposition 3.4 Assume (S.1)~(S.7). Then H has purely discrete spec-
trum in [Eo(H), Eo(H) + m). In particular H has a ground state.

Proof. By Lemma 3.2, Hy, v has purely discrete spectrum in [Eo(Hp v),
Eo(Hp,v)+m). In addition Hy, 1 converges to Hy, in the norm resolvent
sense as V' — oo by Lemma 3.3. Hence by the general theorem ([27, Lemma
4.6]) Hy, has purely discrete spectrum in [Ey(Hp), Eo(Hr) +m). It is also
seen that Hy converges to H in the norm resolvent sense as L — oo by
Lemma 3.3. Hence H also has purely discrete spectrum in [Ey(H), Eo(H) +
m). O

3.2. Ground states in Massless Cases
In this subsection, we assume that

inf w(k)=0.
keR4
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Let
wm (k) =w(k)+m, (m>0),
and
Hom=K®I+1Qd'y(wn), (62)
Hy, = (Hoym + BH') D, - (63)

By Proposition 1.1 and Theorem 1.2, H,, is essentially self-adjoint on Dq
and has a ground state. Let U,,, be a normalized ground state of H,,:

Hp Y., = BV, [P =1, (64)
where E,, := Ey(H,,).

In a similar way as Proposition 3.1, we obtain the following lemma.
Lemma 3.5 Assume (S.1)—(S.5). Then there exist constants cz > 0 and
ds > 0 independent of m such that

[Hom Wl + | H' || < sl Hu || + ds | ¥ (65)

Remark 3.1 It is noted that the condition m > 0 is not used in the proof
of Proposition 3.1. And hence we can prove (65) for m = 0.

Proposition 3.6 Assume (S.1)—~(S.8). Then for sufficiently small m,
there exists a constant cqy > 0 independent of m such that

M

(I ® No) 20, |° < eaB®
=1

2
9

m

(66)

Proof. Let h € D(wy,) N D(wﬁll/Q) and

M
To(h) =1 ® a(wnh) + 228 (h,0)C1 @ d(g1)°.

=1

Since ¥,,, € D(I @ d'y(wr,)) and h € D(wpm), Vi € I @ a(wp,h) follows.
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By [|C1 @ ¢(90)* U nll < 1 ® ¢(90) Ul + [Cll[[ ], (43) and (65), ¥y, €
D(H,,) implies that ¥,, € C; ® ¢(g;)3. Then by the commutation relation
(34), we have

(Hyp — En)(I ® a(h)) Ty, = T () Uy (67)
y (67), we see that

0< (I ®a(h)V,, (Hy — En)] ® a(h)¥,,)
—(I ® a(wWnh) Vs, I @ a(h)V,,)

—2v2B3> (hg)(I @ a(h) ¥y, Cy @ $(g1)° V). (68)
l

Let {e;}3°, be a complete orthonormal system of L2(RY) such that e; €
D(w'/?) N D(w™1/2). By (68), we have

V= <I® a(\/%)q/m,f@@a(\/mwm)

+2v28(I @ a(m)¥m, C1 ® ¢(g:)° Tr) <0,

where 7, = \/%(ez, \%) ;. It is seen ([5, Lemma 4.2]) that for all ¥ €
DI @ dI'(wm)),

1(I®a<r>xy I®af wmei)\ll>:HI®N§/2\If}|2. (69)

Since {e;}2, is a complete orthonormal system, we see that

1=

> (1@ a(:)¥m, Cr & ¢(91)"¥m)

(ma(wm)\pm,a 9 60" ) (70)

Then by (69) and (70) it follows that
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02 Y w180 +2v35(18 0 L) 0 Cim o0 0 ).

i=1

Thus we have

I M0 < 2058 (120 2 ) )0

1C1 ® ¢(g0)> o] (71)

g1
w7ﬂ

Note that H(I@a(i))\DmH < ‘

wm Jirex=: Nﬁ/z)\I/mH. From (65) and (43)
it follows that

HCl ® qb(gl)?)\I/mH < HCI ® ¢(gl)4qij + ||Cl||||\I’mH
< ce3k,, +ds + HCZH (72)
By the definition of wy,, we see that dI'(w,,) = dI'(w) + mN,. Then for

m < m', E, < E,, follows. Hence the right side of (72) is suppressed by
some constant independent of m. Then (66) is obtained. O

Let dim K = oo. By (S.7) we can take the sequence {u,}>2, which
is eigenvector of K with p, < pr41 and g, — oo as r — oco. We define
orthogonal projections by

P, : the projection from K to ®}_,Ks,
Pr:=1-P,

Pq, : the projection from Fi, to {282, |z € C}.

Lemma 3.7 Assume (S.1)—(S.8). Then

(2) Let m be sufficiently small. Then for sufficiently large r, there exists a
constant cs such that

Cs

Uy, (P @ Poy)V,) < —————
( m’( r ® Qb) m) (Mr+1*Em)2

(73)

Proof. (1) is proven in a similar way as ([5, Lemma 4.11]). (2) is also
proven in a similar way as ([5, Lemma 4.3]). O
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Proof of Theorem 1.3.

(Case of dim KK = oo) By (1) in Lemma 3.7 and the general theorem
([5, Lemma 4.9]), it is enough to show that there exists a nonzero weak limit
of W,,, as m — 0. Since ||¥,,|| = 1, there exists a subsequence {V,,, } such
that g := w — lim;_, o ¥yp,,. By the inequality P, ® Po, > I — I ® N} —
Pt ® Pq,, (66) and (73), we have

(\Ilmja (P’l" & PQb)\IImj)

M
> 1 —cq|B? Z
=1

2
Cs

9
(pr1 — Eo(Hp,))?

W,

(74)

Since p, — 0o as r — oo, we see that (¥, (P ® Po,)W¥,,,) > 1 —
ca|B)? Zf\il | 2 H2 for sufficiently large r. Since P, ® Pq, is a finite rank

Wm

operator, (P, ®‘PQb)‘1ij strongly converges to (P, ® Pq,)Ug as j — oo.
Then (Vo, (P, ® Pq)¥g) > 1 — ¢y3? Zl]\il H%HQ For sufficiently small 3,
we have (U, (P, ® Pq)¥g) > 0. Then ¥q # 0 follows, and ¥y is a ground
state of H.

(Case of dim K < o0) By I®@ Po>1—1® Ny, we get (V,,, (I ®
Po, )V, = 1—c4|0)? Zf\il Huf’—jn‘f > 0 for sufficiently small 5. Then ¥y # 0,
and Wy is a ground state of H. ([

3.3. Uniqueness of Ground States
Lemma 3.8 Assume (S.9). Then for n € C3(RY\O)N LY(RY),

. 1
[ 0w < 5 [ ok (75)
Rd t? JRa
o _ o2 dw(k)\—1/0w(k)\—1 g .
where (k) = o, Or, {( 6k§1 ) ( 6‘k5.2 ) n(k)} with j1 # ja.
Proof. Tt is seen that e« = _%2(85251:))—1 (851)5:))_1 8kj182kj2 e~ Using

integration by parts, we have

) 1 )
/ n(k)e ™M dk = — / fi(k)e ) gk
Rd t Rd

Hence we can complete the proof. O
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Proof of Proposition 1.4. We see that for &,V € D(H),

(I®a"(h)®, H'Y) — (H'V,I® a(h)® —2\fﬂzhgz (®,Cr @ ¢(g:)° V)

where
T(k)¥ _2\[5291 )C1 @ ¢(q1) . (76)

To complete the proof it is enough to show that H and T'(k) satisfy the
assumptions (H.1)—-(H.6) in Appendix C with applying H = Hy + SH’ to
X = Xo+ ¢X’ and T'(k) to S(k). But it is trivial to see (H.1)-(H.3) and
(H.5). Hence it remains to show (H.4) and (H.6). Let h € C2(R4\0). We
see that

‘ / h(k) (@, et H Lo+ )7 (k)¥) dk
R4

M
< 2V26)19|1 Y [ICr ® ¢(9)*|l[(h, e~ g1).
=1

Then Lemma 3.8 implies that [g, h(k)(®, e~ #H - EotH)+el)T(k)I)dk €
L1([0,00),dt). We can also see that

17 (1) W] <2\fﬁZ|gz NSt ® ¢(a)* ¥, (77)

and hence [g, [|T(k)¥||?dk < oo follows. Thus (H.4) is satisfied. Let ¥,
be a ground state of H. Then by (44) and (77), we have

I(H — Eo(H) + w(k)) ™' T (k) ¥l

< D (coBol) + o+ 101N gl 194
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and hence (H.6) follows. O

4. Asymptotic fields

4.1. Existence of Asymptotic Fields
Let

ag(h) — eitHe—itHo (I ® aj:i(h))eitHoe—itH7

where af(h) = a(h) or a*(h). Let us prepare the some inequalities for
proving the existence of the asymptotic fields. It is noted that by the spectral
decomposition theorem, for all € > 0, there exists A\ > 0 such that for all
U € D(dl'p(w)),

14T (w) /2| < €| dT (W) ]| + Ac[[4]- (78)

Proposition 4.1  Assume (S.1)—(S.3), (S.5) and (S.9). Let ¥ € D(H)
and s' < s. Then

as(h)¥ —ay (h)¥

— _% < 3 —itw tH 3\ —itH
= ﬂ;/s (g1, e ™ h)e™ (C @ ¢(gr)*)e W dt,  (79)

where the above integral is the Bochner integral.

Proof. Let ®, ¥ € D(H) and ®(t) = e *Hd, V() = e HW. Tt is seen
that e=®Ho (I @ a(h))e!o = I ® a(e~™h). Then by the strong differentia-
bility of e W and oW with respect to t, we have

d
(@, a(n)v)

=i(H®(t),I @ a(e”"™h)¥(t)) —i(Ho®(t),] ® a(e”"h)U(t))
Fi(T©a (@ h)a(0), HoU (1) — i(1 © a* (" R)B(), HU(1)). (80)
Since ®(t), ¥(t) € D(H), there exist sequences {®,}>°; and {U,}52,

such that ®,, € Dy, ®, — ®(t), H?,, — HP(t), and ¥,, € Dy, ¥, —
V(t)HY, — HU(t) as n — oco. Since ®,, ¥,, € Dy, we have
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Vp = Z(q)rm [H/7I ® a(eiitwh’)]\pn)

M
=iy (Pn,Cr@[d(g)* ale”h)]T,)
=1

—4z a
Zgh THR) (@, O ® B(91)° ). (81)
=1

On the other hand, HV,, — HVY(t) yields that HoV, — Ho¥(t) by (37).
Then by (31) and (78), we obtain that I ®a(e " *“h)¥,, — [ @a(e”*h)¥(t)
as n — oo. In addition, (44) implies that lim, .., C; ® ¢(g;)3¥,, = C; ®
#(91)3¥(t) as n — oo. Hence we see that

. M
(30) = Jim vy, = —28 > (ar e R (B(0).C1 0 0(a*0(0).

Thus

((I) (as(h) - as’(h))\ll)

_42,3 Z/ gl e ztwh th(C ®¢( ) ) _itH\I/)dt,

follows. Since D(H) is dense in H, the proof is completed. O

Proof of Theorem 1.5. Let h € C3(R\0), and ¥ € D(H). By Proposi-
tion 4.1,

[(as(h) — as (h)) V||
4 $ . . .
< 4ﬁ2/ (g1, =™ R)|[| " (Cr @ ¢(gr)*)e™ "W ||dt.  (82)
=17
It is seen by (44) that

1(Cr @ d(g1)*)e ™ W[ < col[HE| + (do + [|Col))[1¥]]. (83)

Then by (82), (83) and Lemma 3.8, we obtain that ||(as(h) — as (h))¥] <



On generalized spin-boson models with singular perturbations 343

const. [ &dt — 0, as 5,5’ — oo for h € C?*(R4\0). Let £ € D(w~1/?).
Since CZ(R\0) is a core of w™'/2  there exists a sequence {{,} C
C2(RN\O0) such that ||&, — &|| — 0, and ||w™1/2¢, —w™2¢|| — 0 as n — 0.
It is seen that for ¥ € D(H) and ¢’ < t,

|as(§)¥ — ay ()W < [lale™ (€ = &))e || + [las(£n) ¥ — ay (€)Y ||
+lale™™ (€ — &) H ||, (84)
By (31), (37) and (78),

la(e™(€ — &n))e ™" |

< \ (ecol ]| + (edo + A1 %) + i€ — Enll %] — 0,

§—§n
Vw
as n — oo. Hence by (84), ||as(§)¥ — ay (§)V]] — 0, as s, s’ — oo. O

4.2. Algebraic Properties of the Asymptotic Fields
Lemma 4.2 Assume (S.1)—~(S.3) and (S.9).

(1) Let h € D(w=/?). Then for ®, ¥ € D(H),
(D, 400 (h) W) = (a0 (h)®, W),
(2) Let h,h' € D(W*/?), k = —1,1,2. Then on D(H),
(a0 (h), oo ()] = (R, 1),
[azo0(h), axoo ()] = [aZ oo (h), adoe (R)] = 0.
(3) Let h € D(w='?)ND(w). Then it follows that on D(|H|?/?),
[H, 0100 (h)] = —asc0(wh),  [H,aloo(h)] = al(wh).

(4) Let W be an eigenvector of H with eigenvalue E. Then for h €
D(w™'/?),

a+00(h)Vg = 0. (85)
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Proof. (1) is proven in a similar way as ([19, Lemma 4.5]), (2) is ([19,
Lemma 4.8]), (3) is ([19, Lemma 4.10]) and (4) is ([19, Lemma 4.11, Lemma
4.12)). O

Proof of Corollary 1.6. Let h; € D(w™'/?),i=1,...,n. By Lemma 4.2,
eitHajtoo(hl) st a;ktoo(hn)ﬂg

_ eitEO(H)a:too(eitwhl) o ajtoo(eitwhn)Qg. (86)

Then eH leaves Fi. invariant, and hence H is reduced by Fi. In
addition, we see that

Weiooe @ a* (hy) . a* (hy)
= MH-EHDyy, a*(hy)...a*(hn)Qp.
Thus we obtain Wi,e (@@ +Eo(H) — oitHy7,  on Fy, and dl'y(w) +
Eo(H) =Wi Hyr, Wis. Hence the proof is completed. O
5. Concluding Remarks

In this paper we analyzed the GSB-Hamiltonian with a singular pertur-
bation. But this model does not include the Hamiltonian of the system of
non-relativistic particles coupled to bose fields

H=—-A+V +dly(w) + koa(x)?,

where

XA(k) (akeik-x + aik(e—ikx)dk7

Pa(x) = Rt /2 ()

and x, is the ultraviolet cutoff. Indeed, the singular perturbation H’ defined
in (15) is finite tensor product. This problem is left for future study.

Appendix A. ([3, Self-adjointness])

Let X,,, n > 0, be a sequence of a Hilbert space. We consider the infinite
direct sum of X,:
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X:ék’n

n=0

o0

with the inner product (y,z)x = Yoo (y™, (™), for z = {x(M}2
{yM}ee, € X. Let Sy be a self-adjoint operator on X with So(D(Sp) N
X,) C X, and S’ be a symmetric operator on X such that D(S’) D Dir,
where

D = {2 = {1 e x| 2™ =0 for all k > J with some J}.

The number operator Ny on X is defined by (Nxz)™ = nz(™. Let us
define S the symmetric operator by

S=5+9"

We introduce the following assumptions:

(A.1) There exist a constant ¢ > 0 and linar operator L on X such that
D((S[D(SO)QDQH)*) C D(L), L(D(L) N Xn) C XT” for all n > 07 and

[y, 2)| < ellLylll|(Nx + 1%z, 2,y € D(So) N DY
(A.2) There exists an integer p > 0 such that for all x € vam,
(fc(m),S’$(”))X =0 for|m—n|=p+1.

(A.3) S is bounded from below.

Theorem A ([3, Theorem 2.1])  Suppose that (A.1)-(A.3). Then S is
essentially self-adjoint on D(Sy) N Df;m.

Appendix B. [4, Essential spectrum]
Let Xo=A® I+ ®dl'(w), and

X =Xo+q¢X', g€R.

We assume the following conditions:

(E.1) The operator A is self-adjoint and bounded from below.
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(E.2) X’ is a symmetric operator on H.

(E.3) X is self-adjoint and bounded from bellow.

(E.4) For the sequence {£,}22, of D(w) N D(w~'/2) such that ||&,]| = 1,
n > 1, and w — lim, o &, = 0, it follows that for ¥ € D(X),

lim {((X)*¥,I®a(&)" V) — (I ®a(é)V, X' W)} =0.

n—oo

Theorem B ([4, Theorem 1.3]) Assume (E.1)-(E.4) and o(w) = [0.00).
Then o(X) = 0ess(X) = [Ep(X), 00).

Appendix C. [20, Uniqueness of ground states]
Let Xo=A® I+ 1®dl'y(w), and
X =Xo+qgX', gcR.

We introduce the following assumptions:

(H.1) The operator A is self-adjoint and bounded from below.
(H.2) X’ is a symmetric operator on H, and there exist constants a > 0
and b > 0 such that
| X7 < al| XoW|| +b[[¥||, ¥ € D(H,).

(H.3) There exists an operator S(k) : H — H, k € R3, such that for
&, W € D(H,),

(I®a*(f)®,X'V) — (X', 1RQa(f)V) = /Rd F(k)(®, S(k)W)dk.

(H.4) Let ® € D(Xy), f € C*(R?) and S(k) in (H.3). Then for any ground
state ¢ of X, it follows that

/ (k) (@, X O=FX@+9) 5 (k) p) dk € L ([0, 00), dt),
R4

and [, [|S(k)o2dk < oc.

Theorem C.1 (]20, Theorem 2.9]) Assume (H.1)-(H.4). Let ¢ be an
ground state of X. Then (a) and (b) are equivalent.
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(a) p € D(I@Nbl/Q).
(b) fra (X = Eo(X) + w(k))~1S(k)y|2dk < .
In particular, if (a) or (b) holds, then

(7 Ny2)g|” = ¢? / 1(X = Eo(X) + w(k)) "' S (k)| *dk.
Rd

In addition, we introduce following assumptions:

(H.5) (Euxistence of positive spectral gap of A) It holds that inf oes5(A) —
Eo(A) > 0.
(H.6) It follows that

lim su 2/
970 peker(X —Eo(X)\{0} JRd
— 2
X = Eo(X) 4+ w(k)) 'S (k)| "dk/[|¢]|* = 0.

Theorem C.2 ([20, Theorem 4.2])  Assume (H.1)-(H.6). Then there exists
a constant ¢ > 0 such that for |q| < g,

dim ker(X(q) — Fo(X(q))) < dim ker(A — Eo(A)).
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