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Abstract. In this paper we will prove that there exists a time periodic solution of

the Navier-Stokes equations with the inhomogeneous boundary condition for infinite

symmetric channels in R2. In two and three dimensional more generalized infinite

channels (than treated in this paper) H. Beirão da Veiga [5] proved that there exists

time periodic solutions of the Navier-Stokes equations with the homogeneous bound-

ary condition under a small time periodic flux. G. P. Galdi and A. M. Robertson

[11] obtained time-periodic Poiseuille flow in a straight channel with a smooth cross

section. C. J. Amick [3] proved that in two and three dimensional unbounded channels

there exists solutions of the stationary Navier-Stokes equations with the nonhomoge-

nous boundary condition. H. Morimoto and H. Fujita [19] and H. Morimoto [20]

proved that in a two dimensional certain unbounded symmetric channel there exists

symmetric solutions of the stationary Navier-Stokes equations with a special sym-

metric Dirichlet boundary condition. T-P. Kobayashi [15] demonstrated that for two

and three dimensional infinite channels time periodic solutions of the Navier-Stokes

equations exist under the same condition as C. J. Amick [3]. In this paper using the

condition of H. Morimoto and H. Fujita [19] and H. Morimoto [20], we obtain time

priodic solutions.

Key words: time periodic solutions of the Navier-Stokes equations, general outflow

condition, stationary symmetric Navier-Stokes flow, symmetry, 2-D infinite channels,

the poiseuille velocity.

1. Introduction

1.1. Problems
First of all, we define infinite channels in R2. Let L1 and L2 be positive

real numbers. Let

ωi = {x ∈ R2;−Li < x1 < Li} (i = 1, 2).

We consider the Poiseuille velocities

P α
i (x) =

(
0,

3α

4L3
i

(L2
i − x2

1)
)

in ωi (i = 1, 2), (1.1)
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where α is a flux of P α
i on the cross section of ωi.

In this paper we suppose that a domain Ω satisfies the following condi-
tions. Let H be a positive constant. We set

ω1
H = {x ∈ ω1;x2 ≥ H},

ω2
−H = {x ∈ ω2;x2 ≤ −H}.

Let Ω be a unbounded smooth domain satisfying Ω∩ω1
H = ω1

H and Ω∩ω2
−H

= ω2
−H . We set

ω0 = Ω\(ω1
H ∪ ω2

−H

)
.

Let ω0 be a bounded domain. The boundary ∂ω0 has J + 1 disjoint closed
boundary components Γ1, . . . ,ΓJ , ΓJ+1, i.e. ∂ω0 = ∪J+1

j=1 Γj with Γi∩Γj = ∅
(i 6= j). ΓJ+1 is the outer boundary of ω0 and not smooth and Γ1, . . . ,ΓJ

are the smooth inner boundaries of ω0. Let ∂Ω be the boundary of the
unbounded domain Ω. ∂Ω has J + 2 disjoint closed boundary components
Γ+

0 , Γ−0 , Γ1, . . . ,ΓJ i.e. ∂Ω = ∪J
j=1Γj ∪ Γ+

0 ∪ Γ−0 with Γi ∩ Γ+
0 = ∅ and

Γi∩Γ−0 = ∅, where Γ+
0 and Γ−0 are the right hand side and the left hand side

of the outer boundaries of Ω respectively and Γ1, . . . ,ΓJ are inner boundaries
of Ω. Futhermore the domain satisfies the following symmetric condition.

Assumption 1.1 The domain Ω is symmetric with respect to the x2-axis
and the boundary ∂Ω has connected components Γ+

0 , Γ−0 , Γ1, . . . ,ΓJ and the
inner boundaries Γj(1 ≤ j ≤ J) intersects the x2-axis.

An incompressible viscous fluid filles Ω. Let u = u(t, x), p = p(t, x)
be the unknown velocity and the unknown pressure of an incompressible
viscous fluid in Ω respectively, while ν > 0 is the kinematic viscosity. We
consider the nonstationary Navier-Stokes equations

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f in (0, T )× Ω, (1.2)

div u = 0 in (0, T )× Ω (1.3)

with the Dirichlet boundary condition

u = β on (0, T )× ∂Ω, (1.4)
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where f = (f1(t, x), f2(t, x)) is the external force and β = (β1(t, x), β2(t, x))
is the given function on (0, T )×∂Ω. The boundary condition β must satisfy

∫

∂Ω

β(t) · ndσ = 0 (∀t ∈ (0, T )), (1.5)

where n is the unit outward normal to ∂Ω. Let us call the condition (1.5)
“General Outflow Condition”, (GOC ). Futhermore if β satisfies

∫

Γ+
0

β(t) · ndσ =
∫

Γ−0

β(t) · ndσ =
∫

Γj

β(t) · ndσ = 0

(∀t ∈ (0, T ), j = 1, . . . , J), (1.6)

then we call the condition (1.6) “Stringent Outflow Condition”, (SOC ). We
consider at infinity

{
u → P α

1 as x2 →∞ in ω1
H

u → P α
2 as x2 → −∞ in ω2

−H

(1.7)

and the time periodic condition

u(0) = u(T ) in Ω. (1.8)

It is well known that there exists a smooth vector function P α which is
symmetric with respect to the x2-axis and satisfies

div P α = 0 in Ω, (1.9)

P α = 0 on ∂Ω, (1.10)

P α = P α
1 in ω1

H , (1.11)

P α = P α
2 in ω2

−H . (1.12)

For the proof, see C. J. Amick [3, Theorem 3.3]. Let us call P α “the extended
Poiseuille velocity”.

S. Kaniel and M. Shinbrot [13] proved the uniqueness of the time pe-
riodic solution of the Navier-Stokes equations. V. I. Yudovič [26] proved
the existence of time periodic solutions of the Navier-Stokes equations with
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the Dirichlet boundary condition satisfying (SOC ) in two and three dimen-
sional bounded domains. J. L. Lions [17] considered time priodic problems
for the Navier-Stokes equations with the homogeneous boundary condition.
A. Takeshita [23] studied the existence and uniquness of time periodic solu-
tions of the Navier-Stokes equations in two dimensional bounded domains.
In a symmetric domain H. Morimoto [21] obtained a time periodic symmet-
ric solution with the time-independent symmetric Dirichlet boundary condi-
tions satisfying (GOC ). T-P. Kobayashi [14] found time periodic symmetric
solutions of the Navier-Stokes equations with the time-dependent symmet-
ric Dirichlet boundary condition satisfying (GOC ) in the similar domain as
H. Morimoto [21]. T-P. Kobayashi [15] investigated the relation between sta-
tionary solutions and time periodic solutions of the Navier-Stokes equations
in two and three dimensional channles.

1.2. Function spaces
In this section we introduce some function spaces. Hereafter we use the

following symmetric rules.
Let X be a function space on the symmetric domain Ω. XS is a set of

all symmetric X functions with recpect to the x2-axis. For a vector function
v(x) = (v1(x), v2(x)), v(x) is symmetric with recpect to the x2-axis if and
only if v1 is an odd function with recpect to the x2-axis and v2 is an even
function with respect to the x2-axis, that is to say, v1 and v2 satisfy

−v1(−x1, x2) = v1(x1, x2) ((x1, x2) ∈ Ω),

v2(−x1, x2) = v2(x1, x2) ((x1, x2) ∈ Ω).

C∞0 (Ω) is the set of all smooth functions with compact support contained
in Ω. C∞0,σ(Ω) is all C∞0 (Ω) function ϕ with div ϕ = 0 in Ω. H(Ω) is the
closure of C∞0,σ(Ω) for the usual L2(Ω) norm. The L2 inner product and
norm on Ω are denoted as (·, ·)Ω and ‖ · ‖2,Ω respectively. We often omite Ω.
H1

0(Ω) and V(Ω) are the closure of C∞0 (Ω) and C∞0,σ(Ω) for the usual Dirichlet
norm ‖∇ · ‖2,Ω respectively. H1

0(Ω) and V(Ω) are the Hilbert spaces with
respect to the inner product ((u,v))Ω = (∇u,∇v)Ω. We often omite Ω.
H1

σ(Ω) is all H1(Ω) functions u with div u = 0 in Ω. Let (H(Ω))′, (V(Ω))′,
(HS(Ω))′ and (VS(Ω))′ be the dual spaces of H(Ω), V(Ω), HS(Ω) and VS(Ω)
respectively.

Let γ ∈ L(H1(Ω),L2(∂Ω)) be the trace operator. The space H 1
2 (∂Ω)
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denotes γ(H1(Ω)). H− 1
2 (∂Ω) is the dual space of H 1

2 (∂Ω).
Let X be a Banach space and X ′ be the dual space of X. The spaces

C([0, T ];X), C1([0, T ];X), L2((0, T );X) and L∞((0, T );X) are the usual
Banach spaces. If u belongs to Cπ([0, T ];X), u ∈ C([0, T ];X) satisfies
the time periodic condition u(0) = u(T ) in X. C1

π([0, T ];X) is similar to
Cπ([0, T ];X). If u belongs to H1((0, T );X), u belongs to L2((0, T );X) and
its weak derivative u′ belongs to L2((0, T );X). H1

π((0, T );X) is the set of
all H1((0, T );X) functions ϕ satisfying the time periodic condition ϕ(0) =
ϕ(T ) in X. Since it is well known that C([0, T ];X) contains H1((0, T );X),
the time periodic condition in H1((0, T );X) is meaningful.

1.3. Definition of time periodic solutions
Our definition of a time periodic weak solution of the Navier-Stokes

equations is as follows.

Definition 1.1 Suppose that a domain Ω satisfies Assumption 1.1.
Then a measurable function u = u(t, x) on (0, T ) × Ω is called a weak

solution of the Navier-Stokes equations (1.2), (1.3), (1.4), (1.7), (1.8) if and
only if u − P α ∈ L2((0, T );H1,S

σ (Ω)) ∩ L∞((0, T );L2,S(Ω)) such that u

satisfies

−
∫ T

0

(u,ϕ)ψ′dt +
∫ T

0

{ν(∇u,∇ϕ) + ((u · ∇)u,ϕ)}ψdt

=
∫ T

0
(VS(Ω))′〈f ,ϕ〉VS(Ω)ψdt

(
ϕ ∈ VS(Ω), ψ ∈ C∞0 (0, T )

)
(1.13)

and

u = β on (0, T )× ∂Ω (1.14)

in the trace sence. Moreover the weak solution u is a time periodic solution
if u− P α belongs to Cπ([0, T ];L2,S(Ω)).

We call u “a time periodic weak solution of the Navie-Stokes equations”.

Hereafter 〈·, ·〉 represent (VS(Ω))′〈·, ·〉VS(Ω).

Remark 1.1 Definition 1.1 is meaningful even if Ω does not satisfies
Assumption 1.1. In this case all symmetric conditions may be disregarded.
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1.4. Results
Before stating our results in the channels ωi we define a constant con-

cerned with the Poiseuille velocity.

Definition 1.2 We set

σi(α) = sup
ϕ∈V(ωi)

((ϕ · ∇)ϕ,P α
i )ωi

‖∇ϕ‖22,ωi

(i = 1, 2), (1.15)

σS
i (α) = sup

ϕ∈VS(ωi)

((ϕ · ∇)ϕ,P α
i )ωi

‖∇ϕ‖22,ωi

(i = 1, 2). (1.16)

Remark 1.2 The L2 inner products and norms in (1.15) and (1.16) are
denoted in the channels ωi, that is to say, the constant σi(α) and σS

i (α) do
not depend on Ω. In the paper of C. J. Amick [3], the constant σi(α) and
σS

i (α) are defined in two and three dimensional channels.

The constants σi(α) and σS
i (α) have the following properties.

Proposition 1.1 (C. J. Amick [3, Remarks, p. 494 and p. 499]) The equal-
ities

σ1(α) = σ2(α),

σS
1 (α) = σS

2 (α)

hold true.

As for the proof of Proposition 1.1, see H. Morimoto and H. Fujita [19].
Hereafter we set

σ(α) = σ1(α),

σS(α) = σS
1 (α).

Futhermore we obtain the following result.

Proposition 1.2 (H. Morimoto and H. Fujita [19, Lemma 2 and Lemma
4]) The following inequalities

σ(α) ≥ σS(α) > 0
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and equalities

σ(α) = |α|σ(1),

σS(α) = |α|σS(1)

hold true.

Remark 1.3 The explicit value of the constants σ1(α) and σ2(α) are
shown in C. J. Amick [4].

But in the three dimensional channels Proposition 1.1 does not hold true.
For the detail, see T-P. Kobayashi [15].

Our main reslut is as follows.

Theorem 1.1 Suppose that a domain Ω satisfies Assumption 1.1, β ∈
H1

π((0, T );H 1
2 ,S(∂Ω)) satisfies (GOC ) and vanishes on Γ+

0 ∪ Γ−0 , f belongs
to L2((0, T ); (VS(Ω))′) and σS(α) < ν.

Then, there exists at least one time periodic weak solution u of the
Navier-Stokes equation (1.2), (1.3), (1.4), (1.7), (1.8).

Remark 1.4 Supposing that σ(α) < ν, T-P. Kobayashi [15] proved that in
two and three dimensional channels there exists time periodic weak solutions
of the Navier-Stokes equations with the homogeneous boundary condition.
It is not necessary that the boundary condition β vanishes on Γ+

0 ∪Γ−0 . We
suppose that the support of β is compact and

∫

Γ+
0

β · ndσ =
∫

Γ−0

β · ndσ = 0 on [0, T ].

1.5. Results for stationary solutions
Supposing that σ(α) < ν, then C. J. Amick [3] proved that in two and

three dimensional channels there exists a weak solution of the stationary
Navier-Stokes equations with the homogeneous boundary condition. Sup-
posing that σS(α) < ν, in a two dimensional symmetric semi infinite chan-
nel H. Morimoto and H. Fujita [19] proved that there exists a symmetric
weak solution of the stationary Navier-Stokes equations with a cetain sym-
metric inhomogeneous boundary condition satisfying (GOC ). H. Morimoto
[20] demonstrated that if σS(α) < ν holds and the smooth and symmetric
boundary condition β satisfies (GOC ) and vanishes on Γ+

0 ∪Γ−0 , there exists



298 T. Kobayashi

a symmetric weak solution of the stationary Navier-Stokes equations.

Remark 1.5 For the results in this paper, we use the similar conditions
to H. Morimoto [20] for the flux condition and the boundary condition.

1.6. Leray’s Inequality
If Ω satisfies Assumption 1.1, the following Proposition 1.3 holds true.

Proposition 1.3 Suppose that a domain Ω satisfies Assumption 1.1 and
β ∈ H1

π((0, T );H 1
2 ,S(∂Ω)) satisfies (GOC ) and vanishes on Γ+

0 ∪ Γ−0 .
Then for any ε > 0 there exists an extension bε ∈ H1

π((0, T );H1,S
σ (Ω))

of β such that bε has a compact support and the inequality

∣∣((v · ∇)v, bε(t))
∣∣ < ε‖∇v‖22 (v ∈ VS(Ω), t ∈ [0, T ]) (1.17)

holds true.

Proposition 1.3 is the time periodic style of Lemma 4.3 of H. Morimoto [20].
The main course of the proof of Proposition 1.3 is similar to Theorem 1 of
H. Fujita [9]. For the outline of the proof, see Section 2. We call the estimate
(1.17) “Leray’s Inequality”. The condition “β vanishes on Γ+

0 ∪Γ−0 ” is strong
for “Leray’s Inequality”. If we suppose that the support of β is compact
and

∫

Γ+
0

β · ndσ =
∫

Γ−0

β · ndσ = 0 on [0, T ],

we obtain “Leray’s Inequality” (1.17).

Remark 1.6 “Leray’s Inequality” need not hold true for a given domain
and a given function satisfying (GOC ). See A. Takeshita [22]. If the bound-
ary data satisfy (SOC ), then we obtain an extension of the boundary data
satisfying “Leray’s Inequality”. For example, see R. Finn [7], H. Fujita [8].

1.7. Lemma
Lemma 1.1 (the Poincaré inequality) Suppose a domain Ω satisfies As-
sumption 1.1.

Then there exists a constant C(Ω) depending on Ω such that inequality

‖u‖2 ≤ C(Ω)‖∇u‖2 (u ∈ H1
0(Ω))
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holds true.

Lemma 1.2 (R. Temam [24]) The following inequalities

‖u‖2L4(Ω) ≤ 2
1
2 ‖u‖2‖∇u‖2 (u ∈ H1

0(Ω)),
∣∣((u · ∇)v,w)

∣∣ ≤ C‖∇u‖2‖∇v‖2‖∇w‖2 (u, v, w ∈ H1
0(Ω)) (1.18)

and equalities

((u · ∇)v,w) = −((u · ∇)w,v)
(
u ∈ H1

σ(Ω), v, w ∈ H1
0(Ω)

)
,

((u · ∇)v,v) = 0
(
u ∈ H1

σ(Ω), v ∈ H1
0(Ω)

)

hold true, where the constant C = 2
1
2 C(Ω).

Lemma 1.3 (K. Masuda [18, Lemma 2.2]) Let X0 be a dense subset of a
Banach space X and ϕ belongs to L2((0, T );X).

Then for all ε > 0 there exists finite sequences {ψj} ⊂ X0 and {qj} ⊂
C[0, T ] such that

∥∥∥∥ϕ−
L∑

j=1

qjψj

∥∥∥∥
L2((0,T );X)

< ε

holds true.

Lemma 1.4 (K. Masuda [18]) Suppose a domain Ω satisfies Assumption
1.1.

Then for any ε > 0 and w3 ∈ C([0, T ];L2,S(Ω)), there exists a constant
M , an integer N and functions ψj ∈ L2,S(Ω) (j = 1, . . . , N) such that the
inequality

∫ T

0

∣∣((w1 · ∇)w2,w3)
∣∣dt

≤ ε

∫ T

0

(‖∇w1‖22 + ‖∇w2‖22 + ‖w1‖2‖∇w2‖2
)
dt

+ M
N∑

j=1

∫ T

0

∣∣(w1,ψj)
∣∣2dt

(
w1,w2 ∈ L2((0, T );VS(Ω))

)
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holds true.

This kind of inequality appears in K. Masuda [18, p. 632, Lemma 2.5]. This
inequality is its two dimensional and symmetric version.

Lemma 1.5 (R. Finn [7]) Let Ω be any domain in R2 and

ρ(x) = dist(x, ∂Ω) (x ∈ Ω).

Then the inequality

∫

Ω

∣∣∣∣
v

ρ

∣∣∣∣
2

dx ≤ CH

∫

Ω

|∇v|2dx
(
v ∈ H1

0(Ω)
)

holds true.

This inequality is called Hardy’s inequality.
We define a functional r from

ϕ ∈ VS(Ω) 7→ ν(∇P α,∇ϕ) + ((P α · ∇)P α,ϕ), (1.19)

where P α is defined in (1.9), (1.10), (1.11), (1.12).

Lemma 1.6 (C. J. Amick [3, pp. 490–491]) The map r is a linear and
continuous functional on VS(Ω).

Therefore r ∈ (VS(Ω))′ satisfies

(VS(Ω))′〈r,ϕ〉VS(Ω) = ν(∇P α,∇ϕ) + ((P α · ∇)P α,ϕ) (ϕ ∈ VS(Ω)).

2. Proof of Proposition 1.3

In this subsection we prove the following Lemmas for the proof of Propo-
sition 1.3. These are stationary results except Lemma 2.6. In this subsection
we suppose that a domain Ω satisfies Assumption 1.1. But even if a domain
Ω does not satisfy Assumption 1.1 or Ω is a three dimensional domain, the
following Lemmas hold true.

Lemma 2.1 Suppose that a domain Ω satisfies Assumption 1.1, β ∈
H 1

2 (∂Ω) and the support of β is compact.
Then there exists a bounded subdomain Ω̃ ⊂ Ω such that the following
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conditions hold true.
(1) The support of β is contained in ∂Ω̃ (the boundary of Ω̃).
(2) If we set

β̃ =

{
β on ∂Ω ∩ ∂Ω̃

0 on ∂Ω̃\∂Ω,

then

‖β̃‖H 1
2 (∂eΩ)

= ‖β‖H 1
2 (∂Ω)

holds true.

Lemma 2.2 Suppose that a domain Ω satisfies Assumption 1.1, β ∈
H 1

2 (∂Ω) satisfies (GOC ) and the support of β is compact.
Then there exists one and only one ψ ∈ H1

σ(Ω) such that the support of
ψ is compact and

ψ = β on ∂Ω,

‖ψ‖H1(Ω) ≤ C‖β‖H 1
2 (∂Ω)

hold true, where the constant C depends only on Ω and the support of β.

Proof. We may use the bounded smooth domain Ω̃ and β̃ in Lemma 2.1.
In the domain Ω̃ we consider the stationary Stokes equations

−ν∆u +∇p = 0 in Ω̃,

div u = 0 in Ω̃,

u = β̃ on ∂Ω̃.

See Galdi [10, Section IV.1, Theorem 1.1]. ¤

Lemma 2.3 Suppose that a domain Ω satisfies Assumption 1.1, β ∈
H 1

2 (∂Ω) satisfies (GOC ) and the support of β is compact. Let ψ ∈ H1
σ(Ω)

be the extension of β obtained in Lemma 2.2.
Then for all ξ ∈ (H1

σ(Ω))′ there exists a ζ ∈ H− 1
2 (∂Ω) such that
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H1
σ
〈ψ, ξ〉(H1

σ)′ = H
1
2
〈β, ζ〉H− 1

2
(2.1)

holds true.

Lemma 2.4 Suppose that a domain Ω satisfies Assumption 1.1, β ∈
H 1

2 (∂Ω) satisfies (SOC ) and the support of β is compact. Let ψ ∈ H1
σ(Ω)

be the extension of β obtained in Lemma 2.2.
Then there exists a ϕ ∈ H2(Ω) such that the support of ϕ is compact

and

rotϕ = ψ in Ω,

‖ϕ‖H2(Ω) ≤ C1‖ψ‖H1(Ω) ≤ C2‖β‖H 1
2 (∂Ω)

hold true where the constant C1 and C2 depend on Ω and the support of β.

For the proof of Lemma 2.4, see Galdi [10, Section VIII, Lemma 4.1].

Lemma 2.5 Suppose that a domain Ω satisfies Assumption 1.1, β ∈
H 1

2 (∂Ω) satisfies (SOC ) and the support of β is compact. Let ϕ ∈ H2(Ω)
be the extension of β obtained in Lemma 2.4.

Then for all u ∈ (H2(Ω))′ there exists a Ψ ∈ H− 1
2 (∂Ω) such that

H2〈ϕ, u〉(H2)′ = H
1
2
〈β,Ψ〉H− 1

2
(2.2)

holds true.

Lemma 2.6 Suppose that a domain Ω satisfies Assumption 1.1, β ∈
H1

π((0, T );H 1
2 (∂Ω)) satisfies (SOC ) and the support of β is compact.

Then for all ε > 0 there exists an extension gε ∈ H1
π((0, T );H1

σ(Ω)) of
β such that the support of gε is compact and

∣∣((v · ∇)v, gε(t))
∣∣ < ε‖v‖22 (v ∈ V(Ω), t ∈ [0, T ]) (2.3)

hold true.

Remark 2.1 The inequality (2.3) is Leray’s Inequality. It is the time
periodic version. The proof is similar to H. Fujita [8].

Using Lemma 2.6, we can prove Proposition 1.3. Since the detail of the
proof is similar to H. Fujita [9], we omit the proof.
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3. Proof of Theorem 1.1

3.1. Time periodic solution in a bounded symmetric domain
In this section bε is the extension for Proposition 1.3. We suppose that

{Ωn} is a symmetric and bounded domain of Ω and satisfies Ωn ⊂ Ωn+1 and
∪n∈NΩn = Ω, where Ω1 and ∂Ω1 (the boundary of Ω1) containe the support
of bε and β respectively. In the bounded domains Ωn we consider a time
periodic problem of the Navier-Stokes equations

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f in (0, T )× Ωn,

div u = 0 in (0, T )× Ωn,

u = βn + P α on (0, T )× ∂Ωn,

u(0) = u(T ) in Ωn,

where

βn =

{
β on (0, T )× ∂Ω ∩ ∂Ωn

0 on (0, T )× ∂Ω\∂Ωn.

Since the connected components of ∂Ωn are symmetric and intersect the
x2-axis, βn + P α satisfies (GOC ) on ∂Ωn and is symmetric with respect to
the x2-axis, therefore there exists a un satisfying

un ∈ L2
(
(0, T );H1,S

σ (Ωn)
) ∩ L∞

(
(0, T );L2,S(Ωn)

)
,

u′n ∈ L2((0, T ); (VS(Ωn))′) (weak derivative of un),

un ∈ Cπ([0, T ];L2,S(Ωn))

and

d

dt
(un,ϕ)Ωn + ν(∇un,∇ϕ)Ωn + ((un · ∇)un,ϕ)Ωn = 〈f ,ϕ〉n

(ϕ ∈ VS(Ωn)),

un = βn + P α (0, T )× on ∂Ωn,

where 〈·, ·〉n denotes the duality pair of (VS(Ωn))′ and VS(Ωn). For the
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proof, see T-P. Kobayashi [14, Theorem 1.1].

Remark 3.1 In the paper of T-P. Kobayashi [14], a given function βn on
∂Ωn belongs to C1

π([0, T ];H 1
2 ,S(∂Ωn)). But we obtain “Leray’s Inequality”,

even if a given function on ∂Ωn belongs to H1
π((0, T );H 1

2 ,S(∂Ωn)). Therefore
in the symmetric bounded domain Ωn there exists the time periodic solution
as above.

We set

vn =

{
un − bε − P α in Ωn

0 in Ω\Ωn.

Then we obtain

d

dt
(vn,ϕ) + ν((vn,ϕ)) + ((vn · ∇)vn,ϕ) + ((vn · ∇)bε,ϕ)

+ ((bε · ∇)vn,ϕ) + ((vn · ∇)P α,ϕ) + ((P α · ∇)vn,ϕ)

= 〈F ,ϕ〉 (ϕ ∈ VS(Ωn)), (3.1)

where ϕ ∈ VS(Ωn) is extended as a 0 function to the outside of Ωn and

〈F ,ϕ〉 = 〈f ,ϕ〉 − (bε,t,ϕ)− (∇bε,∇ϕ)− ((bε · ∇)bε,ϕ)− 〈r,ϕ〉
(ϕ ∈ VS(Ω)).

Now we obtain F ∈ L2((0, T ); (VS(Ω))′) because the estimate

|〈F ,ϕ〉| ≤ (‖f‖(VS)′ + ‖bt,ε‖H1 + ‖bε‖H1 + Cs‖bε‖2H1 + ‖r‖(VS)′
)‖∇ϕ‖2

(ϕ ∈ VS(Ω))

holds true and bε ∈ C([0, T ];H1,S
σ (Ω)), where Cs is the constant of Sobolev’s

Imbedding Theorem H1(Ω) ↪→ L4(Ω).
We will prove that ‖vn(0)‖2 is a bounded sequence with respect to n.

We use the above two Propositions.

Proposition 3.1 (H. Morimoto [20, Lemma 4.4]) Suppose that θ ∈ C∞(R)
satisfies 0 ≤ θ ≤ 1, θ(t) = 1 (t > 1) and θ = 0 (t ≤ 0). For all δ > 0, we set
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θδ(x) =





θ(δ(x2 −H − 1)) (x ∈ ω1
H)

θ(−δ(x2 + H + 1)) (x′ ∈ ω2
−H)

0 otherwise.

Then for all ε > 0, there exists an s ∈ C∞,S
0,σ (Ω) and a constant C0 such

that

((ϕ · ∇)ϕ,P α) ≤ ((ϕ · ∇)ϕ, s) +
(
(ϕ · ∇)ϕ,P αθ2

δ

)
ω1

H∪ω2
−H

+ (ε + c0δ)‖∇ϕ‖22 (ϕ ∈ VS(Ω)) (3.2)

holds true.

Proposition 3.1 is the special case of Lemma 4.4 in H. Morimoto [20]. We
may assume that the support of s ∈ C∞,S

0,σ (Ω) is contained in Ω1.

Proposition 3.2 (C. J. Amick [3, Theorem 4.3 and Corollary 4.4])

lim
δ→0

sup
ϕ∈VS(Ω)

((ϕ · ∇)ϕ,P αθ2
δ)ω1

H∪ω2
−H

‖∇ϕ‖22,Ω

= σS(α) (3.3)

holds true.

Now we set ϕ = vn in the Equation (3.1). We obtain

1
2

d

dt
‖vn‖22 +ν‖∇vn‖22 +((vn ·∇)bε,vn) = ((vn ·∇)vn,P α)+ 〈F ,vn〉. (3.4)

Using Proposition 3.1 for the first term of the right hand side of (3.4), then
we have

((vn · ∇)vn,P α) ≤ ((vn · ∇)vn, s) +
(
(vn · ∇)vn,P αθ2

δ

)
ω1

H∪ω2
−H

+ (ε + C0δ)‖∇vn‖22

We obtain
(
(vn · ∇)vn,P αθ2

δ

)
ω1

H∪ω2
−H

≤ (σS(α) + ε)‖∇vn‖22
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for enough small δ > 0 by Proposition 3.2. Using Leray’s inequality for the
third term of the left hand side of (3.4), we have

1
2

d

dt
‖vn‖22 + (ν − σS(α)− 4ε− C0δ)‖∇vn‖22
≤ ((vn · ∇)vn, s) + C‖F ‖2(VS)′ ,

where we choose ε and δ such that ν − σS(α)− 5ε− C0δ is greater than 0.
It is easy to follow from (3.1) that

((vn · ∇)vn, s)

= − d

dt
(vn, s)− ν((vn, s))− ((vn · ∇)bε, s)− ((bε · ∇)vn, s)

− ((vn · ∇)P α, s)− ((P α · ∇)vn, s) + 〈F , s〉

≤ − d

dt
(vn, s) + ε‖∇vn‖22 + C

(‖∇s‖22 + Cs‖∇s‖22‖bε‖2H1 + ‖F ‖2(VS)′
)
,

where the constant C is depndent of P α, ε and the Poincaré inequality and
Cs is the constant of Sobolev’s Imbedding Theorem H1(Ω) ↪→ L4(Ω). We
set

K1(t) = C
(‖∇s‖22 + Cs‖∇s‖22‖bε‖2H1 + ‖F ‖2(VS)′

)
.

Using the Poincaré inequality, we have

d

dt
‖vn‖22 + µ‖vn‖22 ≤ −2

d

dt
(vn, s) + 2K1(t),

where

µ = 2
ν − σS(α)− 5ε− C0δ

C(Ω)2
.

For ξ > 0 (smaller than µ) multiplying by e(µ−ξ)t, then we obtain
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e(µ−ξ)t d

dt
‖vn‖22 + µe(µ−ξ)t‖vn‖22

≤ −2e(µ−ξ)t d

dt
(vn, s) + 2K1(t)e(µ−ξ)t

= −2
d

dt
{(vn, s)e(µ−ξ)t}+ 2(µ− ξ)e(µ−ξ)t(vn, s) + 2K1(t)e(µ−ξ)t

≤ −2
d

dt
{(vn, s)e(µ−ξ)t}+ ξe(µ−ξ)t‖vn‖22 +

(
C‖s‖22 + 2K1(t)

)
e(µ−ξ)t,

(3.5)

where the constant C depends only on µ, ξ and ε. If we set

K2(t) =
(
C‖s‖22 + 2K1(t)

)
e(µ−ξ)t,

it follows from (3.5) that

d

dt

(
e(µ−ξ)t‖vn‖22

) ≤ −2
d

dt
{(vn, s)e(µ−ξ)t}+ K2(t). (3.6)

Integrating (3.6) on [0, T ], then we have

‖vn(T )‖22e(µ−ξ)T ≤ ‖vn(0)‖22 − 2(vn(T ), s)e(µ−ξ)T + 2(vn(0), s) + K,

where

K =
∫ T

0

K2(t)dt.

Since vn is time periodic in L2(Ω), for all η > 0 the inequality

‖vn(0)‖22e(µ−ξ)T ≤ ‖vn(0)‖22 +
(
η‖vn(0)‖22 + C‖s‖22

)
e(µ−ξ)T

+ η‖vn(0)‖22 + C‖s‖22 + K

holds true, where the constant C is dependent of η. We set

H = Ke−(µ−ξ)T + C‖s‖22(e−(µ−ξ)T + 1),

γ = 1− η − (1 + η)e−(µ−ξ)T .
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We choose η > 0 such that γ is greater than 0. Then

‖vn(0)‖22 ≤
H

γ
:= M1 (3.7)

holds true. Consequetly we see that {vn(0)} is a bounded sequence in L2(Ω)
with respect to n.

3.2. Weak limit
Using Leray’s inequality for the equation (3.4), we obtain

1
2

d

dt
‖vn‖22 + (ν − 2ε)‖∇vn‖22 ≤

∣∣((vn · ∇)P α,vn)
∣∣ + C‖F ‖2(VS)′ , (3.8)

where the constant C depends only on ε. The inequality
∣∣((vn · ∇)P α,vn)

∣∣ ≤ C(Pα)‖vn‖22 (3.9)

holds true, where the constant C(Pα) depends only on the extended
Poiseuille velocity P α. Using (3.9), the Gronwall inequality and integrating
(3.8) from 0 to t (≤ T ), then we obtain

‖vn(t)‖22 ≤ M1e
C(P α)T + C

∫ T

0

eC(P α)t‖F ‖2(VS)′dt =: M2. (3.10)

Integrating (3.8) on [0, T ], we see that

∫ T

0

‖∇vn‖22dt ≤ 1
(ν − 2ε)

(
C(Pα)TM2 +C

∫ T

0

‖F ‖2(VS)′dt

)
=: M3 (3.11)

holds true.
For any ϕ ∈ C∞,S

0,σ (Ω), there exists an N ∈ N such that ΩN contains
the support of ϕ. We will prove that {(vn(t),ϕ)}n≥N is uniformly bounded
and equicontinuous on [0, T ] with respect to n. A calculations

|(vn(t),ϕ)| ≤ ‖vn(t)‖2‖ϕ‖2 ≤ M2‖ϕ‖2

and
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|(vn(t),ϕ)− (vn(s),ϕ)|

=
∣∣∣∣
∫ t

s

d

dτ
(vn(τ),ϕ)dτ

∣∣∣∣

≤
∫ t

s

ν|((vn,ϕ))|+ ∣∣((vn · ∇)vn,ϕ)
∣∣ +

∣∣((vn · ∇)bε,ϕ)
∣∣ +

∣∣((bε · ∇)vn,ϕ)
∣∣

+
∣∣((vn · ∇)P α,ϕ)

∣∣ +
∣∣((P α · ∇)vn,ϕ)

∣∣ + |〈F ,ϕ〉|dτ

≤
∫ t

s

(
ν‖∇vn‖2 + 2

1
2 ‖vn‖2‖∇vn‖2 + 2C(Ω)Cs‖∇vn‖2‖bε‖H1

+ 2C(Pα)C(Ω)‖∇vn‖2 + ‖F ‖(VS)′
)‖∇ϕ‖2dτ

≤ M4|t− s| 12 ‖∇ϕ‖2

yield, where the constant Cs depends only on Sobolev’s Imbedding Theorem
H1(Ω) ↪→ L4(Ω) and the constant M4 does not depend on n.

Since the time periodic solution {vn} is a bounded sequence in
L2((0, T );VS(Ω))∩L∞((0, T );HS(Ω)), therefore there exists a subsequence
{vnk}k of {vn} and an element v of L2((0, T );VS(Ω)) ∩ L∞((0, T );HS(Ω))
such that

vnk → v in

{
L∞((0, T );HS(Ω)) weak star

L2((0, T );VS(Ω)) weakly
(k →∞) (3.12)

holds true. For any ϕ ∈ C∞,S
0,σ (Ω), there exists a subsequence {vnki} of

{vnk} such that

lim
i→∞

(vnki,ϕ) = (v,ϕ) (3.13)

holds true using the Ascoli-Arzelà Theorem. We will prove the convergence
(3.13) for any ϕ ∈ L2,S(Ω). Since we know L2,S(Ω) = HS(Ω)⊕ (HS(Ω))⊥,
we have ϕ = ϕσ + ϕp (ϕσ ∈ HS(Ω),ϕp ∈ (HS(Ω))⊥). Since C∞,S

0,σ (Ω) is
dence in HS(Ω), for any δ > 0 there exists a ϕδ

σ ∈ C∞,S
0,σ (Ω) such that

∥∥ϕδ
σ −ϕσ

∥∥
2

< δ
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holds true. We have

|(v − vn,ϕ)| ≤ ∣∣(v − vn,ϕσ −ϕδ
σ)

∣∣ +
∣∣(v − vn,ϕδ

σ)
∣∣

≤ 2M2δ +
∣∣(v − vn,ϕδ

σ)
∣∣ (3.14)

because vn is bounded in L∞((0, T );HS(Ω)). We can choose a subsequence
{vnk}k of {vn}n such that the second term of the right hand side of (3.14)
goes to 0. Therefore for any ϕ ∈ L2,S(Ω) there exists a subsequence {vnk}
such that (vnk,ϕ) converges to (v,ϕ) uniformly on [0, T ].

3.3. Time periodic solution
We mulitiply (3.1) by ψ ∈ C∞0 (0, T ) and integrate on [0, T ]. For any

ϕ ∈ C∞,S
0,σ (Ω), there exists an N ∈ N (choosing an N such that ΩN contains

the support of ϕ) such that for all n ≥ N

−
∫ T

0

(vn,ϕ)ψ′ +
{
ν((vn,ϕ)) + ((vn · ∇)vn,ϕ) + ((vn · ∇)bε,ϕ)

+ ((bε · ∇)vn,ϕ) + ((vn · ∇)P α),ϕ) + ((P α · ∇)vn,ϕ)
}
ψdt

=
∫ T

0

〈F ,ϕ〉ψdt (3.15)

holds true. We can choose a subsequence {vnk}k such that the left hand
side of (3.15) except the nonliner term converges to

−
∫ T

0

(v,ϕ)ψ′ +
{
ν((v,ϕ)) + ((v · ∇)bε,ϕ)

+ ((bε · ∇)v,ϕ) + ((v · ∇)P α),ϕ) + ((P α · ∇)v,ϕ)
}
ψdt

from (3.12). We prove that there exists a subsequence {vnki} such that

∫ T

0

((vnki · ∇)vnki,ϕ)ψdt →
∫ T

0

((v · ∇)v,ϕ)ψdt (i →∞) (3.16)

holds true. We have
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∫ T

0

((vnk · ∇)vnk,ϕ)ψdt−
∫ T

0

((v · ∇)v,ϕ)ψdt

=
∫ T

0

((vnk − v) · ∇vnk,ϕ)ψdt−
∫ T

0

(v · ∇ϕ,vnk − v)ψdt. (3.17)

Firstly, we consider the first term of the right hand side of (3.17). By
Lemma 1.4, for any δ > 0 there exists a constant M , an integer N and
ψl ∈ L2,S(Ω) (l = 1, . . . , N) such that

∣∣∣∣
∫ T

0

((vnk − v) · ∇vnk, ψϕ)dt

∣∣∣∣

≤ δ

∫ T

0

(‖∇vnk −∇v‖22 + ‖∇vnk‖22 + ‖vnk − v‖2‖∇vnk‖2
)
dt

+ M

N∑

l=1

∫ T

0

|(vnk − v,ψl)|2dt. (3.18)

holds. Since it follows that the time periodic solution {vnk} is a bounded
sequence in L2((0, T );VS(Ω)) ∩ L∞((0, T );HS(Ω)) with respect to n, there
exists a constant M5 (independent of n) such that

δ

∫ T

0

(‖∇vnk −∇v‖22 + ‖∇vnk‖22 + ‖vnk − v‖2‖∇vnk‖2
)
dt ≤ M5δ

holds true. Secondly, we consider the second term of the right hand side
of (3.17). Since we know that v · ∇ϕ belongs to L2((0, T );L2,S(Ω)), there
exists a Φδ ∈ C∞0 ((0, T )×Ω) such that Φδ is symmetric with respect to the
x2-axis and

‖v · ∇ϕ−Φδ‖L2((0,T );L2(Ω)) < δ

holds true. For any t ∈ [0, T ] we obtain the decomposition

Φδ(t) = Φδ,σ(t) + Φδ,p(t)
(
Φδ,σ(t) ∈ HS(Ω),Φδ,p(t) ∈ (HS(Ω))⊥

)
.

It is easy to follow that Φδ,σ belongs to L2((0, T );HS(Ω)). According
to Lemma 1.3, there exists finite sequences {ξj}j=1,...,L ⊂ C∞,S

0,σ (Ω) and



312 T. Kobayashi

{qj}j=1,...,L ⊂ C[0, T ] such that

∥∥∥∥Φδ,σ −
L∑

j=1

qjξj

∥∥∥∥
L2((0,T );H(Ω))

< δ

holds true. Now we divide the second term of the right hand side of (3.17)
into

−
∫ T

0

(v · ∇ϕ−Φδ,vnk − v)ψdt−
∫ T

0

(
Φδ,σ −

L∑

j=1

qjξj ,vnk − v

)
ψdt

−
L∑

j=1

∫ T

0

qj(ξj ,vnk − v)ψdt.

There exists a constant M6 (independent of n) such that the estimates

∣∣∣∣
∫ T

0

(v · ∇ϕ−Φδ,vnk − v)ψdt

∣∣∣∣

<
(

sup
[0,T ]

|ψ|
)
C(Ω)δ

( ∫ T

0

‖∇vnk −∇v‖22dt

)
≤ M6δ,

∣∣∣∣
∫ T

0

(
Φδ,σ −

L∑

j=1

qjξj ,vnk − v

)
ψdt

∣∣∣∣

<
(

sup
[0,T ]

|ψ|
)
C(Ω)δ

( ∫ T

0

‖∇vnk −∇v‖22dt

)
≤ M6δ

hold true. Consequently we obtain

∣∣∣∣
∫ T

0

((vnk · ∇)vnk,ϕ)ψdt−
∫ T

0

((v · ∇)v,ϕ)ψdt

∣∣∣∣

< δ(M5 + 2M6) + M
N∑

l=1

∫ T

0

|(vnk − v,ψl)|2dt

+ M7

L∑

j=1

∫ T

0

|(ξj ,vnk − v)|dt, (3.19)
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where

M7 = sup
[0,T ]

|ψ| max
1≤j≤J

sup
[0,T ]

|qj |.

We can choose a subsequence {vnki}i∈N of {vnk}k∈N such that the second
and third terms of the right hand side of (3.19) converge to zero by (3.13).
Therefore (3.16) holds true. We obtain (3.15) for the subsequence {vnki}.
As i goes to infinity, v satisfies

−
∫ T

0

(v,ϕ)ψ′ +
{
ν((v,ϕ)) + ((v · ∇)v,ϕ) + ((v · ∇)bε,ϕ)

+ ((bε · ∇)v,ϕ) + ((v · ∇)P α,ϕ) + ((P α · ∇)v,ϕ)
}
ψdt

=
∫ T

0

〈F ,ϕ〉ψdt.

Since the inclusion C∞,S
0,σ (Ω) ⊂ VS(Ω) is dense, consequently we have

−
∫ T

0

(v,ϕ)ψ′ +
{
ν((v,ϕ)) + ((v · ∇)v,ϕ) + ((v · ∇)bε,ϕ)

+ ((bε · ∇)v,ϕ) + ((v · ∇)P α,ϕ) + ((P α · ∇)v,ϕ)
}
ψdt

=
∫ T

0

〈F ,ϕ〉ψdt (ϕ ∈ VS(Ω), ψ ∈ C∞0 (0, T )). (3.20)

Then v satisfies

d

dt
(v,ϕ) + ν((v,ϕ)) + ((v · ∇)v,ϕ) + ((v · ∇)bε,ϕ) + ((bε · ∇)v,ϕ)

+ ((v · ∇)P α,ϕ) + ((P α · ∇)v,ϕ) = 〈F ,ϕ〉 (ϕ ∈ VS(Ω)). (3.21)

in the distribution sence on (0, T ). Let w ∈ L2((0, T );VS(Ω)). A map

w 7→
∫ T

0

{− ν((w,ϕ))− ((w · ∇)w,ϕ)− ((w · ∇)bε,ϕ)− ((bε · ∇)w,ϕ)

− ((w · ∇)P α,ϕ)− ((P α · ∇)w,ϕ) + 〈F ,ϕ〉}ψdt

(ϕ ∈ VS(Ω), ψ ∈ C∞0 (0, T )) (3.22)
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is cotinuous functional on L2((0, T );VS(Ω)). Therefore v has a weak deriva-
tive v′ ∈ L2((0, T ); (VS(Ω))′) and v belongs to C([0, T ];HS(Ω)). For any
ϕ ∈ L2,S(Ω), it is evident that there exists a subsequence {vnk} such that
the limit (3.13) holds true with respect to ϕ. Therefore it follows that

(v(0)− v(T ),ϕ) = (v(0)− vnk(0),ϕ) + (vnk(T )− v(T ),ϕ) → 0 (k →∞)

holds true. Consequently v ∈ Cπ([0, T ];HS(Ω)). We set u = v + bε + P α.
Then u is a time periodic weak solution. ¤
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