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Scaling limit for the Dereziński-Gérard model
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Abstract. We consider a scaling limit for the Dereziński-Gérard model. We derive an

effective potential by taking a scaling limit for the total Hamiltonian of the Dereziński-

Gérard model. Our method to derive an effective potential is independent of whether

or not the quantum field has a nonnegative mass. As an application of our theory

developed in the present paper, we derive an effective potential of the Nelson model.
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1. Introduction

The Dereziński-Gérard model was introduced by Dereziński and Gérard
[5] as an abstract model of particle-field interaction. (they call it the Pauli-
Fierz model, but we call it the Dereziński-Gérard model for the sake of
clarity.) The Hamiltonian of the Dereziński-Gérard model is given by

H := A⊗ I + I ⊗Hb + φ̃(v).

The first and second terms mean Hamiltonians of a particle and a field,
respectively. The third term means the interaction between a particle and
a field.

Davies [4] initiated a scaling limit for models of quantum particles cou-
pled to a Bose field and obtained effective potentials. In [1], Arai constructed
a theory of abstract scaling limit. He applied it to the Pauli-Fierz model
without A2-term in the dipole approximation and derived the effective po-
tential introduced by Bethe [3] and Welton [14] to explain the Lamb shift.
He not only derived the effective potential of Bethe and Welton rigorously
but also clarified a mathematical meaning of it. Hiroshima [6] considered
a scaling limit for the Pauli-Fierz model with A2-term in the diploe ap-
proximation. In [7], he derived the Yukawa potential by taking a weak
coupling limit and removing the ultraviolet cutoff simultaneously for the
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massive Nelson model. In [8], he analyzed the same problem by means of
functional integration. Various kinds of scaling limits for the Pauli-Fierz
model in the dipole approximation with A2-term were studied by Hiroshima
[9]. Suzuki [12] studied a scaling limit for the generalized spin boson (GSB)
model, which was introduced by Arai and Hirokawa in [2], and applied it to
the models in nuclear physics. He also studied a scaling limit for a general
version of the Nelson model in [13].

The purpose of the present paper is to consider a scaling limit for the
Dereziński-Gérard model. As far as the author knows, a scaling limit for
the Dereziński-Gérard model has not been investigated. This is one of the
motivations of the present paper.

The present paper is organized as follows. Section 2 consists of three
subsections. In Subsection 2.1, we describe the model considered in the
present paper. We devote Subsection 2.2 to investigating properties of oper-
ators ã](v) and φ̃(v) extensively for later use. In Subsection 2.3, we introduce
some assumptions and state the main result. In Section 3, we briefly ex-
plain an abstract scaling limit theory used in the present paper. Section 4
also consists of three subsections. In Subsection 4.1, we transform a scaled
Hamiltonian into an operator handled easily. In Subsection 4.2, we prove
two conditions, which are needed to apply abstract scaling limit theorems.
In Subsection 4.3, we prove the main theorem. In Section 5, we consider
an application of our theory to the Nelson model and derive an effective
potential of the Nelson model. In Appendix A, we prove the Weyl relations
for φ̃(v). As a corollary of the Weyl relations, we obtain a necessary and
sufficient condition that φ̃(v) and φ̃(w) strongly commute. In Appendix B,
we show a relative boundedness of φ̃(v)φ̃(w) with respect to I ⊗Hb.

2. Definition of the Model and the Main Result

2.1. Definition of the model of the model
In the present paper, we denote the inner product and the norm of a

Hilbert space X by 〈·, ·〉X and ‖ · ‖X , respectively. The inner product is
antilinear in the first variable. If there is no danger of confusion, then we
omit the subscript X in 〈·, ·〉X and ‖ · ‖X .

For a linear operator T on a Hilbert space, we denote its domain by
D(T ). If T is densely defined, the adjoint of T is denoted by T ∗. For linear
operators S and T on a Hilbert space, D(S + T ) := D(S) ∩ D(T ) unless
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otherwise stated.
For a self-adjoint operator S on a Hilbert space, we denote its spectum

and its resolvent set by σ(S) and ρ(S), respectively. The spectral measure
associated with S is denoted by ES(·). If S is bounded below, then we set

E0(S) := inf σ(S)

and call it the ground state energy of S.
To describe the Bose field, one uses the Boson Fock space over a sepa-

rable complex Hilbert space X :

Fb(X ) :=
∞⊕

n=0

n⊗
s

X

=
{

ψ = {ψ(n)}∞n=0

∣∣∣ n ≥ 0, ψ(n) ∈
n⊗
s

X ,

∞∑
n=0

‖ψ(n)‖2 < ∞
}

,

where
⊗n

s X denotes the n -fold symmetric tensor product of X with⊗0
s X := C (the space of complex numbers). The vector Ω := {1, 0, . . .}

is called the Fock vacuum in Fb(X ).
One of the main objects on Fb(X ) is the annihilation operator a(f)

which is a densely defined closed linear operator on Fb(X ) such that for
all η = {η(n)}∞n=0 ∈ D(a(f)∗), (a(f)∗η)(0) = 0 and (a(f)∗η)(n) =

√
nSn(f ⊗

η(n−1)), n ≥ 1, where Sn is the symmetrization operator on
⊗n X . The

adjoint a(f)∗, which is called the creation operator, and the annihilation
operator a(g) obey the canonical commutation relations

[a(f), a(g)∗] = 〈f, g〉, [a(f), a(g)] = 0, [a(f)∗, a(g)∗] = 0

for all f, g ∈ X on the dense subspace

F0(X ) := {η ∈ Fb(X ) | there exists a number n0

such that η(n) = 0 for all n ≥ n0},

where [·, ·] means the commutator.
For every self-adjoint operator S on X , one can define a self-adjoint

operator dΓ(S), called the second quantization of S, by
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dΓ(S) :=
∞⊕

n=0

S(n),

with S(0) := 0 and S(n) is the closure of

(
n∑

j=1

I ⊗ · · · ⊗
j︷︸︸︷
S ⊗ . . . I︸ ︷︷ ︸

n

)∣∣∣∣∣N̂n
D(S)

,

where I denotes the identity and
⊗̂n

D(S) the algebraic tensor product of
D(S). If S is nonnegative, then so is dΓ(S). The second quantization of the
identity, Nb := dΓ(I), is called the number operator.

As the state space of the Dereziński-Gérard model, we take the tensor
product Hilbert space

F := L2(RN )⊗Fb

(
L2(Rd)

)
.

The Hilbert space F is identified with the space

∞⊕
n=0

[
L2(RN )⊗

n⊗
s

L2(Rd)
]
,

and we use this identification freely in what follows.
The subspace D0 of F is defined as follows:

D0 := {ψ ∈ F | there exists an n0 such that, for all n ≥ n0, ψ(n) = 0}.

Let A be a self-adjoint operator on L2(RN ). Let ω be a nonnegative
Borel measurable function such that 0 < ω(k) < ∞ a.e. k ∈ Rd with respect
to the Lebesgue measure on Rd. Then ω defines a multiplication operator
on L2(Rd), which is nonnegative, injective and self-adjoint. We denote it
by the same symbol. The function ω represents a dispersion relation of one
free boson associated with the Bose field under consideration. A typical
example of ω is ω(k) =

√
m2 + |k|2. Here m ≥ 0 is the mass of the boson.

As indicated in this example, we define the mass of the boson by

m := ess . inf
k∈Rd

ω(k).
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If m > 0 (resp. m = 0), we call the associated Bose field massive (resp. mass-
less). Let

Hb := dΓ(ω)

which acts on Fb(L2(Rd)). The free Hamiltonian of the Dereziński-Gérard
model is given by

H0 := A⊗ I + I ⊗Hb.

To define the interaction part of the Dereziński-Gérard model, we intro-
duce an analogue φ̃(v) of the Segal field operator for a bounded operator v

from L2(RN ) to L2(RN )⊗ L2(Rd). To do this, we first define the operator
ã∗(v), which is an analogue of the usual creation operator. The domain and
the operation of ã∗(v) are given by

D(ã∗(v)) :=
{

ψ = (ψ(n))∞n=0 ∈ F
∣∣∣∣

∞∑
n=0

n
∥∥(

IL2(RN ) ⊗ Sn

)(
v ⊗ I⊗n−1

s L2(Rd)

)
ψ(n−1)

∥∥2
< ∞

}
,

(ã∗(v)ψ)(0) := 0,

(ã∗(v)ψ)(n) :=
√

n
(
IL2(RN ) ⊗ Sn

)(
v ⊗ I⊗n−1

s L2(Rd)

)
ψ(n−1), n ≥ 1.

It is easy to see that D(ã∗(v)) ⊃ D0. Thus the operator ã∗(v) is densely
defined. We set

ã(v) := (ã∗(v))∗.

The domain and the operation of ã(v) is as follows:

D(ã(v)) :=
{

ψ = (ψ(n))∞n=0 ∈ F
∣∣∣∣

∞∑
n=0

(n + 1)
∥∥(

IL2(RN ) ⊗ Sn

)(
v∗ ⊗ I⊗n

s L2(Rd)

)
ψ(n+1)

∥∥2
< ∞

}
,

(ã(v)ψ)(n) :=
√

n + 1
(
IL2(RN ) ⊗ Sn

)(
v∗ ⊗ I⊗n

s L2(Rd)

)
ψ(n+1).
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It is easily verified that ã](v)(ã] = ã or ã∗) is closed and D0 is a core for
ã](v).

We define an analogue of the Segal field operator by

φ̃(v) :=
1√
2
(ã(v) + ã∗(v)).

The total Hamiltonian of the Dereziński-Gérard model is defined by

H := H0 + φ̃(v).

2.2. Properties of ã](v) and φ̃(v)
We devote this subsection to investigating properties of ã](v) and φ̃(v)

such as commutation relations, relative boundedness and so on. These prop-
erties are analogous to those of the usual annihilation/creation operator and
the Segal field operator on a Boson Fock space.

We introduce a function space L∞,2 = L∞,2(RN × Rd) by

L∞,2 :=
{

u

∣∣∣∣ ess . sup
x∈RN

∫

Rd

|u(x, k)|2dk < ∞
}

.

L∞,2 is a Banach space with the norm

‖u‖L∞,2 :=
(

ess . sup
x∈RN

∫

Rd

|u(x, k)|2dk

)1/2

.

For a function ṽ ∈ L∞,2, we define a bounded operator v from L2(RN )
into L2(RN )⊗ L2(Rd) by

(vf)(x, k) = ṽ(x, k)f(x), f ∈ L2(RN ). (2.1)

It is easily verified that the operator norm of v is given by

‖v‖ = ‖ṽ‖L∞,2

(cf. [10]). In what follows, we identify an operator v defined by (2.1) with
its corresponding function ṽ and denote both objects simply by v.
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For v ∈ L∞,2, the domain and the operation of ã∗(v) are given by

D(ã∗(v)) =
{

ψ ∈ F
∣∣∣∣
∞∑

n=1

1
n

∫

RN+dn

∣∣∣∣
n∑

j=1

v(x, kj)ψ(n−1)
(
x, k1, . . . , k̂j , . . . , kn

)∣∣∣∣
2

· dxdk1 · · · dkn < ∞
}

and

(ã∗(v)ψ)(n)(x, k1, . . . , kn)

=
1√
n

n∑

j=1

v(x, kj)ψ(n−1)
(
x, k1, . . . , k̂j , . . . , kn

)
n ≥ 1,

(ã∗(v)ψ)(0)(x) = 0,

whereˆdenotes the omission of the object wearing the hat.
Similarly, for v ∈ L∞,2, the domain and the operation of ã(v) are given

by

D(ã(v)) =
{

ψ ∈ F
∣∣∣∣
∞∑

n=1

(n + 1)
∫

RN+dn

∣∣∣∣
∫

Rd

v(x, k)ψ(n+1)(x, k, k1, . . . , kn)dk

∣∣∣∣
2

· dxdk1 · · · dkn < ∞
}

and

(ã(v))(n)(x, k1, . . . , kn) =
√

n + 1
∫

Rd

v(x, k)ψ(n+1)(x, k, k1, . . . , kn)dk,

where v(x, k) denotes the complex conjugate of v(x, k).
We define an operator 〈v(x, ·), w(x, ·)〉L2(Rd

k) on F as follows:

(〈v(x, ·), w(x, ·)〉L2(Rd
k)ψ

)(n)(x, k1, . . . , kn)

:= 〈v(x, k), w(x, k)〉L2(Rd
k)ψ

(n)(x, k1, . . . , kn).
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The operator 〈v(x, ·), w(x, ·)〉L2(Rd
k) is a bounded operaor on F . In what

follows, if there is no danger of confusion, we abbreviate 〈v(x, ·), w(x, ·)〉 as
〈〈v, w〉〉.

It is easy to see that

‖〈〈v, w〉〉‖ ≤ ‖v‖‖w‖. (2.2)

(2.2) is frequently used throughtout the present paper.
The following commutation relations are analogues of the usual canoni-

cal commutation relations (CCRs). They are easily proven by direct calcu-
lations. So we leave the proof to the reader.

Proposition 2.1 For all v, w ∈ L∞,2, the following commutation relations
hold on D0:

[ã(v), ã∗(w)] = 〈〈v, w〉〉, [ã(v), ã(w)] = 0, [ã∗(v), ã∗(w)] = 0. (2.3)

We next prove a relative boundedness for ã](v) and φ̃(v) with respect
to I ⊗N

1/2
b . (cf. [10, Lemma 4.8, 4.10]).

Proposition 2.2

(1) For v ∈ L∞,2, D(I ⊗N
1/2
b ) ⊂ D(ã](v)) and for ψ ∈ D(I ⊗N

1/2
b )

‖ã(v)ψ‖ ≤ ‖v‖∥∥I ⊗N
1/2
b ψ

∥∥, (2.4)

‖ã∗(v)ψ‖ ≤ ‖v‖∥∥I ⊗ (Nb + 1)1/2ψ
∥∥ (2.5)

hold.
(2) For v ∈ L∞,2, D(I ⊗N

1/2
b ) ⊂ D(φ̃(v)) and for ψ ∈ D(I ⊗N

1/2
b )

∥∥φ̃(v)ψ
∥∥ ≤

√
2‖v‖∥∥I ⊗N

1/2
b ψ

∥∥ +
1√
2
‖v‖‖ψ‖ (2.6)

holds.

Proof. Direct calculations. ¤

By using Proposition 2.2, we can prove the following theorem.

Theorem 2.3 For v ∈ L∞,2, any vectors belonging to D0 are entire vectors
for φ̃(v) and ã](v).
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Theorem 2.3 and the Nelson’s analytic vector theorem [11, Theorem
X.39] imply the following theorem.

Theorem 2.4 For v ∈ L∞,2, φ̃(v) is essentially self-adjoint on D0.

Note that the domain and the operation of I ⊗Hb are as follows:

D(I ⊗Hb)

=
{

ψ ∈ F
∣∣∣∣

∫

RN+dn

∣∣∣∣
n∑

i=1

ω(ki)ψ(n)(x, k1, . . . , kn)
∣∣∣∣
2

dxdk1 · · · dkn < ∞
}

and

(I ⊗Hbψ)(n)(x, k1, . . . , kn) =
n∑

i=1

ω(ki)ψ(n)(x, k1, . . . , kn).

Proposition 2.5 Let v be an element of L∞,2 such that v/ω is also an
element of L∞,2. Then the following commutation relations hold on D0 ∩
D(I ⊗Hb):

[ã∗(v/ω), I ⊗Hb] = −ã∗(v), (2.7)

[ã(v/ω), I ⊗Hb] = ã(v). (2.8)

Proof. Direct calculations. ¤

We need a relative boundedness of ã](v) and φ̃(v) with respect to the
operator I ⊗ H

1/2
b to prove Theorem 2.7 below. The proof of Proposition

2.6 below is similar to that of Proposition 2.2. So we omit the proof.

Proposition 2.6

(1) For v ∈ L∞,2 with v/
√

ω ∈ L∞,2, D(I ⊗ H
1/2
b ) ⊂ D(ã](v)) and for

ψ ∈ D(I ⊗H
1/2
b )

‖ã(v)ψ‖ ≤ ∥∥v/
√

ω
∥∥∥∥I ⊗H

1/2
b ψ

∥∥,

‖ã∗(v)ψ‖ ≤
∥∥v/

√
ω
∥∥∥∥I ⊗H

1/2
b ψ

∥∥ + ‖v‖‖ψ‖

hold.
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(2) For v ∈ L∞,2 with v/
√

ω ∈ L∞,2, D(I ⊗ H
1/2
b ) ⊂ D(φ̃(v)) and for

ψ ∈ D(I ⊗H
1/2
b )

∥∥φ̃(v)ψ
∥∥ ≤

√
2
∥∥v/

√
ω
∥∥∥∥I ⊗H

1/2
b ψ

∥∥ +
1√
2
‖v‖‖ψ‖

holds.

Proposition 2.6 implies the following theorem.

Theorem 2.7 (Relative boundedness) If v and v/
√

ω belong to L∞,2,
then the interaction φ̃(v) is infinitesimally small with respect to the free
Hamiltonian H0.

Self-adjointness of the total Hamiltonian H follows from Theorem 2.7
and the Kato-Rellich theorem [11, Theorem X.12].

Theorem 2.8 (Self-adjointness of the Hamiltonian) If v and v/
√

ω belong
to L∞,2, then the total Hamiltonian H is self-adjoint, bounded below and any
core for H0 is core for H.

2.3. Main Result
In this subsection, we state the main result of the present paper. To do

so, we first introduce some assumptions used throughtout.

(A.1) The operator A is of the form

A = −4+ V,

where 4 denote the Laplacian on L2(RN ) and V : RN → R is a
potential defined on RN .

(A.2) A is self-adjoint and bounded below.
(A.3) D(V ) ⊃ C∞0 (RN ) and C∞0 (RN ) is a core for A.
(A.4) Let Dj be the generalized partial differential operator with respect

to the variable xj and Ã := A−E0(A). For j = 1, . . . , N , D(Ã1/2) ⊂
D(Dj) and there exist constants aj , bj ≥ 0 such that for all u ∈
D(Ã1/2)

‖Dju‖ ≤ aj

∥∥Ã1/2u
∥∥ + bj‖u‖.

For the operator v, we impose the following assumptions.



Scaling limit for the Dereziński-Gérard model 271

(v.1) The function v = v(x, k) is twice differentiable with respect to x ∈
RN and satisfies

v, v/ω ∈ L∞,2,

∂jv/
√

ω, ∂jv/ω3/2 ∈ L∞,2,

4xv/ω,4xv/ω3/2 ∈ L∞,2.

Here ∂jv and 4x denote the partial derivative of the function v with respect
to the variable xj ∈ R and the Laplacian with respect to the variable x ∈ RN ,
respectively.

(v.2) The function x 7→ 〈v(x, ·)/ω,4xv(x, ·)/ω〉L2(Rd
k) is real-valued for

a.e. x ∈ RN .

Remark 1 The condition (v.2) is equivalent to the fact that φ̃(iv/ω) and
φ̃(i4xv/ω) strongly commute. See Corollary A.5.

For Λ > 0, we introduce a scaled Hamiltonian H(Λ) by

H(Λ) := A⊗ I + Λ2I ⊗Hb + ΛHI,

where

HI := φ̃(v).

We denote the orthogonal projection onto kerHb by P0. Note that kerHb =
L{Ω}, where L{Ω} denotes the subspace spanned by the set {· · · }.

For v, w ∈ L∞,2, we define a bounded operator 〈〈v, w〉〉0 on L2(RN ) as
follows:

(〈〈v, w〉〉0f)(x) := 〈v(x, k), w(x, k)〉L2(Rd
k)f(x), f ∈ L2(Rd).

The following theorem is the main theorem of the present papar.

Theorem 2.9 Suppose that (A.1)–(A.4) and (v.1)–(v.2) hold. Then, for
z ∈ C \ R or for z < 0 with |z| sufficiently large,

s- lim
Λ→∞

(H(Λ)− z)−1 = (A + Veff − z)−1 ⊗ P0, (2.9)
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where

Veff := −1
2
〈〈v/ω, v〉〉0.

3. Abstract Scaling Limit

In this section, we first explain an abstract scaling limit theorem. Sec-
ondary, we define the notion of the partial expectation of operators on a
tensor product Hilbert space. The notion of partial expectation enables us
to express the limit operator (K∞ − z)−1I ⊗ PB appearing in Theorem 3.3
below in more explicit way.

To begin with, we introduce the following notions which are useful for
describing a scaling limit theorem.

Definition 3.1 (Uniform Relative Boundedness, [13]) Let L be a Hilbert
space, L(Λ), M(Λ), N(λ) and O(λ) (Λ > 0, λ ∈ R \ {0}) linear operators
on L satisfying

∩Λ>0D(L(Λ)) 6= ∅, ∩λ∈R\{0}D(N(λ)) 6= ∅.

(1) We say that M(Λ) is uniformly L(Λ)-bounded near ∞ if there exist
constants Λ0 > 0 and a, b ≥ 0 such that for any Λ ≥ Λ0, D(M(Λ)) ⊃
D(L(Λ)) and

‖M(Λ)ψ‖ ≤ a‖L(Λ)ψ‖+ b‖ψ‖, ψ ∈ D(L(Λ)).

(2) We say that uniformly M(Λ) is L(Λ)-infinitesimally small near ∞ if for
any ε > 0, there exist constants Λ0(ε) > 0 and b(ε) ≥ 0 such that for
any Λ ≥ Λ0(ε), D(M(Λ)) ⊃ D(L(Λ)) and

‖M(Λ)ψ‖ ≤ ε‖L(Λ)ψ‖+ b(ε)‖ψ‖, ψ ∈ D(L(Λ)).

(3) We say that O(λ) is uniformly N(λ)-bounded near 0 if there exist con-
stants λ0 > 0 and a, b ≥ 0 such that for any λ ∈ R \ {0} with |λ| ≤ λ0,
D(O(λ)) ⊃ D(N(λ)) and

‖O(λ)ψ‖ ≤ a‖N(λ)ψ‖+ b‖ψ‖, ψ ∈ D(N(λ)).

(4) We say that O(λ) is uniformly N(λ)-infinitesimally small near 0 if for
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any ε > 0, there exist constants λ0(ε) > 0 and b(ε) ≥ 0 such that for
any λ ∈ R \ {0} with |λ| ≤ λ0, D(O(λ)) ⊃ D(N(λ)) and

‖O(λ)ψ‖ ≤ ε‖N(λ)ψ‖+ b(ε)‖ψ‖, ψ ∈ D(N(λ)).

Now we prepare a setting to state a scaling limit theorem.
Let H and K be Hilbert spaces and we set

X := H⊗K.

Let A and B be non-negative self-adjoint operators onH and K, respectively,
with

kerB 6= {0}.

We denote the orthogonal projection from K onto kerB by PB . We suppose
that a family of symmetric operators {CΛ}Λ>0 on X satisfies the following
conditions:

( i ) CΛ is uniformly (A⊗ I + ΛI ⊗B)-infinitesimally small near ∞.
(ii) There exists a symmetric operator C such that D(C) ⊃ D(A)⊗kerB

and

s- lim
Λ→∞

CΛ(A⊗ I + ΛI ⊗B − z)−1 = C(A− z)−1 ⊗ PB

holds for all z ∈ C \ [0,∞).

The following lemma is used to prove Proposition 4.4 below. For the
proof of the lemma, see [12].

Lemma 3.2 Suppose that CΛ satisfies the condition (ii). Then, for z ∈
C \ [0,∞)

s- lim
Λ→∞

CΛ(A⊗ I + ΛI ⊗B − z)−1(I ⊗ (I − PB)) = 0.

Under the above setting, the following abstract scaling limit theorem
holds.

Theorem 3.3 ([1]) Let A,B, CΛ and C as above. Then the following hold.
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(a) For all Λ > Λ0 with some Λ0, the operator

KΛ := A⊗ I + ΛI ⊗B + CΛ

is self-adjoint on DAB and bounded below uniformly in Λ > Λ0. More-
over, it is essentially self-adjoint on any core for A⊗ I + I ⊗B.

(b) The operator

K∞ := A⊗ I + (I ⊗ PB)C(I ⊗ PB)

is self-adjoint on D(A⊗I) and bouned below. Moreover, it is essentially
self-adjoint on any core for A⊗ I.

(c) For all z ∈ [∩Λ>Λ0ρ(KΛ)] ∩ ρ(K∞),

s- lim
Λ→∞

(KΛ − z)−1 = (K∞ − z)−1(I ⊗ PB).

To express (K∞−z)−1(I⊗PB) in more explicit way, we need the notion
of partial expectation for operators. For this purpose, we now introduce a
class of operators on X .

We say that a densely defined operator S on X is in E(X ) if and only
if there exist dense subspaces DH(S) and DK(S) in H and K, respectively,
such that

DH(S) ⊗̂DK(S) ⊂ D(S).

For S ∈ E(S), f ∈ H, g ∈ DK(S) and v ∈ DH(S), we define the
antilinear functional Lf,g on H by

Lf,g(u) := 〈u⊗ f, S(v ⊗ g)〉.

Lf,g is bounded with

∥∥Lf,g(u)
∥∥ ≤ ‖u‖‖f‖‖S(v ⊗ g)‖.

Therefore, by the Riesz lemma, there exists a unique vector Ef,g(S)v ∈ H
such that

Lf,g(u) =
〈
u,Ef,g(S)v

〉
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and
∥∥Ef,g(S)v

∥∥ ≤ ‖f‖‖S(v ⊗ g)‖.

The map Ef,g(S) : v 7→ Ef,g(S)v ∈ H is linear. Hence, Ef,g(S) is a densely
defined operator on H with D(Ef,g) = DH(S). We also define an operator
Ef (S) on H by

Ef (S) := Ef,f (S).

We call the operator Ef,g(S) (resp. Ef (S)) the partial expectation of S with
respect to {f, g} (resp. f).

Theorem 3.4 ([1]) Let C be an element of E(X ). Suppose that kerB =
L{f0} with ‖f0‖ = 1 and DK(C) ⊃ kerB. Then, for z ∈ C \R or for z < 0
with |z| sufficiently large,

s- lim
Λ→∞

(KΛ − z)−1 = (Keff − z)−1 ⊗ PB ,

where

Keff := A + Ef0(C).

4. Proof of the Main Result

In this section, we prove Theorem 2.9. The strategy to prove Theorem
2.9 is to apply Theorems 3.3 and 3.4. Our argument is similar to that of
Suzuki [12], [13].

4.1. Dressing transformation
We set

S := φ̃(iv/ω).

S is essentially self-adjoint on D0 as stated in Subsection 2.2. We denote
the closure of S by the same symbol S. Let U be the one-parameter unitary
group generated by S:

U(t) := eitS , t ∈ R.



276 A. Ohkubo

We introduce a subspace Ffin(ω) of Fb(L2(Rd)) by

Ffin(ω) := L{
Ω, a(f1)∗ · · · a(fn)∗Ω | n ≥ 1, fj ∈ D(ω), j = 1, 2, . . . , n

}
.

We define a subspace Dω of F by

Dω := C∞0 (RN ) ⊗̂ Ffin(ω).

Let A be an algebra. For any element X in A, we define a map adn(X)
from A into A inductively by

ad0(X)Y := Y, adn(X)Y := [X, adn−1(X)Y ].

The following lemma is fundamental in our argument below.

Lemma 4.1 For any t ∈ R, the following operator equality hold :

U(t)(I ⊗Hb)U(t)−1 = I ⊗Hb + tHI +
t2

2
〈〈v/ω, v〉〉, (4.1)

U(t)HIU(t)−1 = HI + t〈〈v/ω, v〉〉. (4.2)

We need the following well-known lemma to prove Lemma 4.1. Lemma
4.2 is also used to prove Lemma 4.9 below.

Lemma 4.2 Let H and K be Hilbert spaces. Let T and S be symmetric
operators on H and K, respectively. Suppose that S is essentially self-adjoint
on a dense subspace D of K. Suppose that a unitary operator U from H onto
K satisfies the following conditions:

( i ) U−1D ⊂ D(T ),
(ii) For ψ ∈ D, UTU−1ψ = Sψ holds.

Then, T is essentially self-adjoint on U−1D and the operator equality

UTU−1 = S

holds.

Proof of Lemma 4.1. Let ψ ∈ D0∩D(I⊗Hb). Then, ψ is an entire vector
for S. Hence, we have
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U(t)−1ψ =
∞∑

n=0

(−it)n

n!
Snψ. (4.3)

For m ∈ N, we define φm by

φm :=
m∑

n=0

(−it)n

n!
Snψ.

By a direct calculation, we have

I ⊗Hbφm =
m∑

n=0

(−it)n

n!

n∑

j=1

Sj−1[I ⊗Hb, S]Sn−jψ +
m∑

n=0

(−it)n

n!
SnI ⊗Hbψ

=
m∑

n=0

(−it)n

n!

n∑

j=1

Sj−1iφ̃(v)Sn−jψ +
m∑

n=0

(−it)n

n!
SnI ⊗Hbψ.

(4.4)

Here, we use the identity [I ⊗ Hb, S]ψ = iφ̃(v)ψ. By (2.6) and the ratio
test for series, the first term of (4.4) converges as m → ∞. The second
term of (4.4) also converges as m → ∞ because I ⊗ Hbψ ∈ D0. Thus,
I ⊗ Hbφm converges as m → ∞. By the closedness of I ⊗ Hb, we have
U(t)−1ψ ∈ D(I ⊗Hb) and

I ⊗HbU(t)−1ψ =
∞∑

n=0

(−it)n

n!
I ⊗HbSnψ. (4.5)

By (4.3) and (4.5), for φ ∈ D0, we have

〈φ,U(t)I ⊗HbU(t)−1ψ〉

=
∞∑

N=0

(it)N

N !

N∑

k=0

(
N

k

)
(−1)k〈SN−kφ, I ⊗HbSkψ〉

=
∞∑

N=0

(it)N

N !
〈φ, adN (S)I ⊗Hbψ〉.

One can easily calculate that
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ad0(S)I ⊗Hbψ = I ⊗Hbψ,

ad1(S)I ⊗Hbψ = −iφ̃(v)ψ,

ad2(S)I ⊗Hbψ = −〈〈v/ω, v〉〉,
adn(S)I ⊗Hbψ = 0, for n ≥ 3.

Therefore, we obtain

〈φ,U(t)I ⊗HbU(t)−1ψ〉 =
〈

φ,

(
I ⊗Hb + tφ̃(v) +

t2

2
〈〈v/ω, v〉〉

)
ψ

〉
.

Since D0 is dense in F , we have

U(t)I ⊗HbU(t)−1ψ =
(

I ⊗Hb + tφ̃(v) +
t2

2
〈〈v/ω, v〉〉

)
ψ. (4.6)

From Lemma 4.2 and (4.6), we obtain the operator equality (4.1). The proof
of the operator equality (4.2) is same as that of (4.1). ¤

We set

δA(t) := U(t)A⊗ IU(t)−1 −A⊗ I.

From the definition of δA(t) and (4.1), we have

U(t)[A⊗ I + αI ⊗Hb + βHI]U(t)−1ψ

=
[
A⊗ I + αI ⊗Hb + (αt + β)HI + δA(t)−

(
αt2

2
+ βt

)
〈〈v/ω, v〉〉

]
ψ.

(4.7)

Substituting Λ2, Λ and −1/Λ into α, β and t, respectively, in (4.7), we
obtain

U(1/Λ)−1H(Λ)U(1/Λ)ψ = [A⊗ I + Λ2I ⊗Hb + CΛ]ψ, (4.8)

where

CΛ = δA(−1/Λ) +
1
2
〈〈v/ω, v〉〉.
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We need the following two propositions to apply Theorems 3.3 and 3.4
to our case.

Proposition 4.3 Suppose that (A.1)–(A.4) and (v.1)–(v.2) hold. Then,
CΛ is H0(Λ)-infinitesimally small near ∞.

Proposition 4.4 Suppose that (A.1)–(A.4) and (v.1)–(v.2) hold. Then,
for z ∈ C \ [E0(A),∞),

s- lim
Λ→∞

CΛ

(
A⊗ I + Λ2I ⊗Hb − z

)−1 = C(A− z)−1 ⊗ P0,

where

C :=
1
2

ad2(S)I ⊗Hb.

4.2. Proof of Propositions 4.3 and 4.4
To prove Proposition 4.3, we need some lemmas.

Lemma 4.5 U(t)(I ⊗Hb)U(t)−1 is uniformly (I ⊗Hb)-bounded near 0.

Proof. By Lemma 4.1, for ψ ∈ Dω, we have

‖U(t)(I ⊗Hb)U(t)−1ψ‖

≤ ‖I ⊗Hbψ‖+ |t|∥∥φ̃(v)ψ
∥∥ +

t2

2
‖v/ω‖‖v‖‖ψ‖

≤ ‖I ⊗Hbψ‖+
√

2|t|
∥∥v/

√
ω
∥∥∥∥I ⊗H

1/2
b ψ

∥∥

+
|t|√
2
‖v‖‖ψ‖+

t2

2
‖v/ω‖‖v‖‖ψ‖.

This proves the lemma. ¤

The following lemma follows from Lemma 4.5 and Theorem B.2.

Lemma 4.6

( i ) For v ∈ L∞,2 with v/
√

ω ∈ L∞,2, U(t)φ̃(v)U(t)−1 is uniformly (I ⊗
Hb)-infinitesimally small near 0.

(ii) For v ∈ L∞,2 with v/
√

ω ∈ L∞,2 and w ∈ L∞,2 with
√

ωw, w/
√

ω ∈
L∞,2, U(t)φ̃(v)φ̃(w)U(t)−1 is uniformly (I ⊗Hb)-bounded near 0.
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The following lemma is the most important lemma to prove Propositions
4.3 and 4.4. Before proving the lemma, note the following fact:

U(t)Dω ⊂ D(A⊗ I).

This is shown in the same way as in the proof of Lemma 4.1.

Lemma 4.7 The operator δA(t) is uniformly (A ⊗ I + I ⊗ Hb)-
infinitesimally small near 0 and for ψ ∈ Dω

lim
t→0

δA(t)ψ = 0 (4.9)

holds.

Proof. Let ψ ∈ Dω. By the Taylor expansion, there exists a number ξ(t)
between 0 and t such that

δA(t)ψ = itU(ξ(t)) ad(S)[A⊗ I]U(ξ(t))−1ψ.

Note that

ad(S)[A⊗ I] = φ̃(i4xv/ω) + 2
N∑

j=1

φ̃(i∂jv/ω)(Dj ⊗ I)

on Dω. Hence, we have

‖δA(t)ψ‖ ≤ |t|∥∥φ̃(i4xv/ω)U(ξ(t))−1ψ
∥∥

+ 2|t|
N∑

j=1

∥∥φ̃(i∂jv/ω)(Dj ⊗ I)U(ξ(t))−1ψ
∥∥. (4.10)

By the strong commutativity between φ̃(i4v/ω) and U(ξ(t))−1, the first
term of (4.10) is estimated as follows:

|t|∥∥φ̃(i4xv/ω)U(ξ(t))−1ψ
∥∥

= |t|
∥∥φ̃(i4xv/ω)ψ

∥∥

≤
√

2|t|
∥∥4xv/ω3/2

∥∥∥∥I ⊗H
1/2
b ψ

∥∥ +
|t|√
2
‖4xv/ω‖‖ψ‖.
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We next estimate the second term of (4.10).
By a similar argument as above, there exists a number η(t) betweeen 0

and ξ(t) such that for all ψ ∈ Dω

U(ξ(t))φ̃(i∂jv/ω)(Dj ⊗ I)U(ξ(t))−1ψ

= φ̃(i∂jv/ω)(Dj ⊗ I)ψ

+ iξ(t)U(η(t)) ad1(S)φ̃(i∂jv/ω)(Dj ⊗ I)U(η(t))−1ψ.

Therefore, we have

∥∥φ̃(i∂jv/ω)(Dj ⊗ I)U(ξ(t))−1ψ
∥∥

≤ ∥∥φ̃(i∂jv/ω)(Dj ⊗ I)ψ
∥∥

+ |ξ(t)|
∥∥ ad1(S)φ̃(i∂jv/ω)(Dj ⊗ I)U(η(t))−1ψ

∥∥. (4.11)

The first term of (4.11) is estimated as follows:

∥∥φ̃(i∂jv/ω)(Dj ⊗ I)ψ
∥∥

≤
√

2
∥∥∂jv/ω3/2

∥∥∥∥(I ⊗H
1/2
b )(Dj ⊗ I)ψ

∥∥ +
1√
2
‖∂jv/ω‖‖(Dj ⊗ I)ψ‖

≤
(∥∥∂jv/ω3/2

∥∥ +
ε√
2
‖∂jv/ω‖

)∥∥(Ã⊗ I + I ⊗Hb)ψ
∥∥

+
1

4
√

2ε
‖∂jv/ω‖‖ψ‖.

Here we used the facts that

∥∥(I ⊗H
1/2
b )((Dj ⊗ I)ψ

∥∥ ≤ 1√
2

∥∥(Ã⊗ I + I ⊗Hb)ψ
∥∥

and

‖(Dj ⊗ I)ψ‖ ≤ ε
∥∥(Ã⊗ I + I ⊗Hb)ψ

∥∥ +
1
4ε
‖ψ‖.

It is easy to see that
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ad1(S)φ̃(i∂jv/ω)(Dj ⊗ I)

= iIm〈〈iv/ω, i∂jv/ω〉〉(Dj ⊗ I)− φ̃(i∂jv/ω)φ̃(i∂jv/ω)

on Dω. Therefore, the second term of (4.11) is estimated as follows:

∥∥ ad1(S)φ̃(i∂jv/ω)(Dj ⊗ I)U(η(t))−1ψ
∥∥

≤ ‖v/ω‖‖i∂jv/ω‖∥∥(Dj ⊗ I)U(η(t))−1ψ
∥∥

+
∥∥φ̃(i∂jv/ω)φ̃(i∂jv/ω)U(η(t))−1ψ

∥∥.

In the same way as in the proof of Lemma 4.1, U(η(t))(Dj ⊗ I)U(η(t))−1

is (A ⊗ I + I ⊗ Hb)-infinitesimally small near 0. The operator
U(η(t))φ̃(i∂jv/ω)φ̃(i∂jv/ω)U(η(t))−1 is (I ⊗ Hb)-bounded uniformly near
0 by Lemma 4.6. This proves the lemma. ¤

Proposition 4.3 is a direct consequence of Lemma 4.7.
We next prove Proposition 4.4. To prove Proposition 4.4, we need the

following lemma.

Lemma 4.8 For ψ ∈ Dω,

lim
Λ→∞

CΛψ = Cψ. (4.12)

Proof. Let ψ ∈ Dω. By (4.9), we have

lim
Λ→∞

δA(−1/Λ)ψ = 0.

This proves the lemma. ¤

We are now ready to prove Proposition 4.4.

Proof of Proposition 4.4. For z ∈ C \ [E0(A),∞), note that

(A⊗ I − z)−1I ⊗ P0 = (A⊗ I + Λ2I ⊗Hb − z)−1I ⊗ P0. (4.13)

From (4.13), we have

CΛ(A⊗ I + Λ2I ⊗Hb − z)−1

= CΛ(A⊗ I − z)−1I ⊗ P0 + CΛ(A⊗ I + Λ2I ⊗Hb − z)−1I ⊗ (I − P0).
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By Lemma 3.2, it follows that

s- lim
Λ→∞

CΛ(A⊗ I + Λ2I ⊗Hb − z)−1I ⊗ (I − P0) = 0.

Thus, it is sufficient to prove

s- lim
Λ→∞

CΛ(A⊗ I − z)−1I ⊗ P0 = C(A− z)−1 ⊗ P0. (4.14)

By Proposition 4.3, CΛ(A⊗ I− z)−1(I⊗P0) is uniformly bounded with
respect to Λ. Since D is a core for A, (A − z)D is a dense subspace of
L2(RN ). Thus, to prove (4.14), we only to prove

lim
Λ→∞

CΛ(A⊗ I − z)−1I ⊗ P0Ψ = C(A− z)−1 ⊗ P0Ψ, (4.15)

for all Ψ ∈ (A− z)D ⊗̂ Fb(L2(Rd)).
Let ψ ∈ D and φ ∈ Fb(L2(Rd)). By Lemma 4.8, we have

(
CΛ(A⊗ I − z)−1(I ⊗ P0)− C(A− z)−1 ⊗ P0

)
((A− z)ψ ⊗ φ)

= (CΛ − C)(ψ ⊗ P0φ) → 0 as Λ →∞.

Thus, (4.15) is proved. Therefore, (4.14) follows. This completes the proof
of the proposition. ¤
4.3. Proof of Theorem 2.9

By Proposition 4.3 and the Kato-Rellich theorem, the operator A⊗ I +
Λ2I ⊗Hb + CΛ is self-adjoint for sufficiently large Λ. Therefore, from (4.8)
and Lemma 4.2, we obtain the following theorem.

Theorem 4.9 Suppose (A.1)–(A.4) and (v.1)–(v.2) hold. Then, A⊗ I +
Λ2I ⊗Hb + CΛ is self-adjoint on D(A ⊗ I) ∩D(I ⊗Hb) and the following
operator equality holds:

U(1/Λ)H(Λ)U(1/Λ)−1 = A⊗ I + Λ2I ⊗Hb + CΛ. (4.16)

We are now in position to prove Theorem 2.9.

Proof of Theorem 2.9. By Proposition 4.3 and 4.4, we can apply Theorem
3.3 to our case. To apply Theorem 3.4, we need to calculate the partial
expectation of the operator C with respect to the Fock vacuum Ω.
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On D0 ∩D(I ⊗Hb), we have

C = −1
2
〈〈v/ω, v〉〉.

Therefore, for any u1, u2 ∈ L2(RN ), we obtain

〈u1 ⊗ Ω, C(u2 ⊗ Ω)〉 = −1
2
〈u1 ⊗ Ω, 〈〈v/ω, v〉〉(u2 ⊗ Ω)〉

= −1
2
〈u1, 〈〈v/ω, v〉〉0u2〉.

Hence, the partial expectation of the operator C with respect to the Fock
vacuum Ω is equal to −1/2〈〈v/ω, v〉〉0. Therefore, we obtain

s- lim
Λ→∞

(
A⊗ I + Λ2I ⊗Hb + CΛ − z

)−1 = (A + Veff − z)−1 ⊗ P0. (4.17)

On the other hand, by (4.16), we have

U(1/Λ)(H(Λ)− z)−1U(1/Λ)−1 =
(
A⊗ I + Λ2I ⊗Hb − CΛ − z

)−1
.

Therefore, we obtain

s- lim
Λ→∞

(H(Λ)− z)−1 = s- lim
Λ→∞

(
A⊗ I + Λ2I ⊗Hb + CΛ − z

)−1
. (4.18)

Since

s- lim
t→0

U(t) = I,

(4.17) and (4.18) imply (2.9). This completes the proof of Theorem 2.9. ¤

5. Example

As an application of our theory developed in the present paper, we
consider a scaling limit for the Nelson model, which describes an interaction
between quantum particles and a quantum scalar field. In this section, we
write an element x ∈ Rdn by x = (x1, . . . , xn), xj ∈ Rd.

We consider a quantum system consisting of n quantum particles with
mass m > 0 moving in the Euclidean space Rd under the influence of a
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potential V . A Hamiltonian of such a system is given by

A := −
n∑

j=1

1
2m

4xj
+ V,

where 4xj is the Laplacian with respect to the variable xj . In what follows,
we assume that the operator A satisfies the assumption (A.1)–(A.4).

We define a function ω on Rd by

ω(k) :=
√

µ2 + |k|2,

where µ ≥ 0 is the mass of a boson. The function ω denotes the kinetic
energy of a boson with momentum k.

Let gj ∈ L2(Rd) with ωgj ∈ L2(Rd) and gj/ω ∈ L2(Rd) (j = 1, . . . , n).
We define a function vNelson on Rdn × Rd by

vNelson(x, k) :=
n∑

j=1

e−ixj ·kgj(k),

where xj · k denote the Euclidean inner product of xj and k. It is easily
verified that vNelson satisfies the assumption (v.1)–(v.2).

We define an operator HNelson on a Hilbert space FNelson := L2(Rdn)⊗
Fb(L2(Rd)) by

HNelson := A⊗ I + I ⊗Hb + φ̃(vNelson).

For Λ > 0, we define the scaled Hamiltonian by

HNelson(Λ) := A⊗ I + Λ2I ⊗Hb + Λφ̃(vNelson).

In this case, we have

〈vNelson(x, k)/ω(k), vNelson(x, k)〉L2(Rd
k)

=
n∑

i,j=1

∫

Rd

ei(xi−xj)·k

ω(k)
gi(k)gj(k)dk. (5.1)

We set the right hand side of (5.1) by E(x). The multiplication operator by
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the function E on L2(Rdn) is denoted by the same symbol E. Therefore, we
obtain

〈〈v/ω, v〉〉0 = E.

By Theorem 2.9, we obtain the following theorem.

Theorem 5.1 Let A, vNelson and E as above. Then, for z ∈ C \ R or
z < 0 with |z| sufficiently large,

s- lim
Λ→∞

(HNelson(Λ)− z)−1 = (A + E − z)−1 ⊗ P0

holds.

A. Weyl relations for φ̃(v)

In this appendix, we derive the Weyl relations for φ̃(v) (Theorem A.4).
As a corollary of the Weyl relations, we obtain a necessary and sufficient
condition that φ̃(v) and φ̃(w) strongly commute.

Lemma A.1 Let A be an algebra and X, Y, Z be elments of A. Suppose
that Z commutes with X and Y , and that X and Y satisfy the following
commutation relation:

[X, Y ] = Z. (A.1)

Then, the following equation holds:

n∑

k=0

nCkXn−kY k =
∑

k,r≥0,k+2r=n

n!
k!r!

(
Z

2

)r

(X + Y )k. (A.2)

Proof. One can easily verify the lemma by induction. So we omit the
proof. ¤

The following lemma is important to prove the Weyl relations for φ̃(v).
It is proved in the same way as in the proof of Theorem 2.3.

Lemma A.2 For any z ∈ C, ψ ∈ D0 and v, w ∈ L∞,2, ezφ̃(v)ψ is an entire
vector for φ̃(w). Moreover, for any ζ ∈ C,
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ezφ̃(v)eζφ̃(w)ψ =
∞∑

n,m=0

znζm

n!m!
φ̃(v)nφ̃(w)mψ. (A.3)

Here, the right hand side of (A.3) is absolutely convergent.

Proposition A.3

(1) Let ψ ∈ D0 and z ∈ C. Then,

ezφ̃(v+w)ψ = e−iz2Im〈〈v,w〉〉/2ezφ̃(v)ezφ̃(w)ψ.

(2) The following operator equalities hold :

eiφ̃(v+w) = eiIm〈〈v,w〉〉/2eiφ̃(v)eiφ̃(w), (A.4)

eiφ̃(v)eiφ̃(w) = e−iIm〈〈v,w〉〉eiφ̃(w)eiφ̃(v). (A.5)

Proof.

(1) Direct calculations by using Lemmas A.1 and A.2.
(2) (2) follows from (1). ¤

Theorem A.4 (Weyl relations for φ̃(v)) For all s, t ∈ R,

eisφ̃(v)eitφ̃(w) = eistIm〈〈v,w〉〉eitφ̃(w)eisφ̃(v). (A.6)

Proof. Replacing v with sv and w with tw respectively in (A.5), we obtain
(A.6). ¤

We would like to seek a necessary and sufficient condition that φ̃(v) and
φ̃(w) strongly commute. Remember that two self-adjoint operators strongly
commute if and only if their spectral measures commute. This condition is
rephrased by the condition that thier strongly one-parameter unitary groups
commute. Therefore, we obtain the following corollary of Theorem A.4.

Corollary A.5 Let v, w ∈ L∞,2. Then φ̃(v) and φ̃(w) strongly commute
if and only if 〈v(x, k), w(x, k)〉L2(Rd

k) ∈ R for almost every x ∈ RN .
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B. Relative Boundedness of φ̃(v)φ̃(w)

In this appendix, we establish a relative boundedness of φ̃(v)φ̃(w)
(v, w ∈ L∞,2) with respect to I ⊗Hb. To do so, we need a lemma.

Lemma B.1

( i ) For v ∈ L∞,2 with v/
√

ω ∈ L∞,2, D(I ⊗Hb) ⊂ D(I ⊗H
1/2
b ã(v)) and

for ψ ∈ D(I ⊗Hb),

∥∥I ⊗H
1/2
b ã(v)ψ

∥∥ ≤
∥∥v/

√
ω
∥∥‖I ⊗Hbψ‖.

(ii) For v ∈ L∞,2 with
√

ωv, v/
√

ω ∈ L∞,2, D(I⊗Hb) ⊂ D(I⊗H
1/2
b ã∗(v))

and for ψ ∈ D(I ⊗Hb),

∥∥I ⊗H
1/2
b ã∗(v)ψ

∥∥2

≤ (1 + ε)
(‖v/

√
ω‖2‖I ⊗Hbψ‖2 + ‖v‖2

∥∥I ⊗H
1/2
b ψ

∥∥2)

+
(

1 +
1
ε

)(‖v‖2
∥∥I ⊗H

1/2
b ψ

∥∥2 + ‖√ωv‖2‖ψ‖2),

where ε is an arbitrary positive constant.

Proof. Direct calculations. ¤

The desired relative estimate of φ̃(v)φ̃(w) immediately follows from
Lemma B.1

Theorem B.2 For v ∈ L∞,2 with v/
√

ω ∈ L∞,2 and w ∈ L∞,2 with√
ωw, w/

√
ω ∈ L∞,2, D(φ̃(v)φ̃(w)) ⊃ D(I ⊗ Hb) and there exist constants

a(v, w), b(v, w) ≥ 0 such that for ψ ∈ D(I ⊗Hb)

∥∥φ̃(v)φ̃(w)ψ
∥∥ ≤ a(v, w)‖I ⊗Hbψ‖+ b(v, w)‖ψ‖

holds.
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