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Abstract. Let T be a semi-hyponormal operator on a complex separable Hilbert space.
In this paper, we give Helton-Howe type trace formulae of smooth functions associated
with the polar decomposition T' = U|T'| and improve Theorem 10 of [5] by this result.
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1. Introduction

Let H be a complex separable Hilbert space and {e;} be an orthonor-
mal basis of H. For a bounded positive semi-definite operator A, Tr(A)
denotes its trace, that is, Tr(A) = >_;(Aej, e;). Let C1 denote the trace
class. For operators A, B, their commutator is denoted by [A, B] (= AB —
BA). Let T = X 4+ iY be the Cartesian decomposition of a hyponormal
operator T' on ‘H with trace class self-commutator [T, T] (= 2i[X, Y]).
For a polynomial p(z, y) = 3 a;;z'y’ of two variables, an operator p(X, Y)
is defined by p(X,Y) = > a;;X*Y7. For polynomials p(z, y), q(z, y), it
is well-known that Helton-Howe type trace formula holds: There exists a
summable function g on R? such that, for polynomials p(z, v), q(z, y),

Tr([p(X, Y), ¢(X,Y)]) = %m// J(p, @) (x, y)g(x, y) dz dy,

where J(p, q)(z, y) be the Jacobian of p, g. The function g is called the
principal function of T'. This function g gives much information about the
structure of T' (see, for example, [2], [9], [10], [11], [12]). In particular, g sat-
isfies that g(z, y) = 0 for z+iy &€ o(T). Let B(H) be the set of all bounded
linear operators on H and 7" = U|T'| be the polar decomposition of 7. An
operator T' € B(H) is called p-hyponormal if (T*T)? > (TT*)? ([1], [3]). If
p =1 and 1/2, then T is called hyponormal and semi-hyponomal, respec-
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tively. By Lowner-Heinz inequality, if 0 < ¢ < p < 1 and T" is p-hyponormal,
then 7" is g-hyponormal. Under the assumption |T'| — U|T|U* € Cy, in [2],
[5] and [12] Helton-Howe type trace formulae associated with the polar de-
composition were studied for operators ¢(|T|, U) and ¢(|T|, U). In [5], for
polynomials p(-, -) and ¢(-, -) we gave Helton-Howe type trace formula
of p(|T'|, U) and ¢(|T|, U) under the assumption that U is unitary. In this
paper, using elementary polynomial approximation, we extend this result
to Helton-Howe type trace formulae for smooth functions and generalize
Theorem 10 of [5] by it.

For T € Cy, ||T'||1 denotes the trace norm of 7. Throughout this paper
let T = U|T| € B(H) be the polar decomposition of T. Hence it satisfies
ker(U) = ker(T).

2. Trace formula for smooth functions

We denote by A the linear space of all Laurent polynomials P(r, z)
with polynomial coefficients such that P(r, z) = Sy p(r)z¥, where N
is a non-negative integer and every px(r) is a polynomial of one variable.
For T'= U|T| with unitary U, put P(|T|, U) = ij:prk(|T|)Uk.

We denote by J(¢, ¥) the Jacobian of functions ¢(r, z) and ¥ (r, 2)
defined on R x C, that is,

T, ), €)= 2(r, %) (e, o) = 90, 60). T g, o),

Let T = {0 < 0 < 27}, ¥ be the set of all Borel sets in T and m be
a measure on the measure space (T, X) such that dm(6) = (1/27)df. Then
we have

Theorem A ([12, Chapter 7, Theorem 3.3],[5, Theorem 9]) Let T €
B(H) be semi-hyponormal and T = U|T| be the polar decomposition of T'.
Assume that U is unitary and [U, |T'|] € C1. Then there exists a summable
function gp such that, for P(r, z), Q(r, z) € A, it holds

Te([P(T]. U), (T, U)])
= /J(P, Q)(r, €)e gr (e, r)drdm(6).

The function g7 in Theorem A is called the principal function assoicated
with the polar decomosition 7' = U|T.
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We denote by C*°(R) the set of all smooth functions on R and by
C2°(R) the set of all functions in C*°(R) with compact support. We denote
by B the linear space of all Laurent polynomials ¢(r, z) such that ¢(r, z) =
Zivz_N fe(r)z*, where every f € C*(R). For T = U|T| with unitary U,

put ¢(|T|, U) = S0 _x fe(ITU* for ¢ € B.

In [2], Carey and Pincus proved a more general version of Theorem A.
It requires complicate calculations. Using polynomial approximation, we
improve Theorem A in the following form.

Theorem 1 LetT € B(H) be semi-hyponormal and T = U|T| be the polar
decomposition of T'. Assume that U is unitary and (U, |T|] € C1. Then, for
¢, ¥ € B, it holds

Tr([o(IT], U), ¥(|T], U)]
/ J(p, V) (r, el )e gT( , 7)drdm(0).

In order to prove Theorem 1, we need some results. Let & denote the
Schwarz space of rapidly decreasing functions on R at infinity. For f € S,
put

f 725tf

gCIn

The function f is called the Fourier transform of f. It is known that f es
and f(z) = (1/V2m) [ f(t)dt. Let H be a self-adjoint operator. Let
{E.} be the spectral resolution of H. Then

H)—/f(x)dEx —/(\/%/emf(t)dQ dE,
:\/%7/ (/edew> f(t)dt = \/%/ei“qf(t)dt

First, we prepare the following proposition (see [9, p. 158 (3.3)]).

Proposition 2 Let A, {B;};j=1,.n be operators such that [A, B;] € C;
and ||Bj|| <r forallj (j=1,2,...,n). Then

I[A, BiBz -+ By, < nr" =" ma]|[4, By,

Let T'=U|T| € B('H) be the polar decomposition of 7. Assume that
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U is unitary and [U, |T|] € C;. Then we have

zt|T\ § :
7

n=1

By Proposition 2,
oo
: |t n|| T .
H[U’ eztITl]H1 < Z o H[U, |T] Hl <|t|- H[U, \T|]Hle|t| Il
n=1 ’
Definition 1 Under the assumption above, we define a constant ¢y of an
operator 1" = U|T| satisfying [U, |T'|] € C; by

er = maxH U, eltm]Hl

t]<1

Proof of the next proposition is based on an idea of the proof of [9, Lemma
3.2].

Proposition 3 Let T' = U|T| € B(H) be the polar decomposition of T'.
Assume that U is unitary and [U, |T|] € C1. Then, for f € S and an integer
n, it holds

lo™, £(TDI||, < Inl—— / (1t + 1))t

where cp is the constant of Definition 1.

Proof. The proposition is clear for n = 0. Let n > 0 and ¢ € R. Then by
Proposition 2 we have

o™, 4, < - s
Let m be a positive integer such that m—1 < [t| < m and put V = eit/mI71,
Then we have
[0, 0|, = W, v, < m- U, VI <me-er < er(t]+1).
Let n < 0. Then
I, e ||, = e~ v,
= ||, O < (=n) - er(jt] +1).

Therefore, we have

o, e[, < Inler (it + 1).
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Then

o, sarnil =, <= [ e iar
L [T gn ity 7
| o o],
<= [l e, o a
<tz [ enlitl+ 1) )

1

]
Proposition 4 Let F' be a compact set of R and f € C*°(R). Then there

exist a function f1 € C°(R), a sequence {p,} of polynomials and a sequence
{7V} in C°(R) such that

f(x) = fi(x), pn(x) =m(z) for z€lF,
Sup [ fi(y) = mn(y)] = 0 (n = o0),

ye

sup | £V (1) = v ()| = 0 (n— ),
yeF

sup [ f1(t) = 4n ()] = 0 (n — o0),
teR

and

sup ¢ - |f1(t) = An(t)] = 0 (n — o0).
teR

Proof. Let F' C [a, b] and we choose ¢ € C>°(R) such that ¢(z) = 1 for
x € F and real numbers a; and by such that [a;, b;] contains the support
of . Put c=a1—1,d =01+ 1, fo = f¢ and fi = fop. Then we have
fole) = f(gl)(c) = féQS(c) = fé3)(c) = (0. For a continuous function h on
[e, d], we define |||h||| by

|[R[[| = sup [h(z)].
c<z<d
There exists a sequence {pp3}°2; of polynomials such that

. 3
lim |||pns — £ = 0.
n—oo
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We define polynomials p,2, pp1 and p, (n =1, 2, ...) as follows:

pua(e) = [ paOdt, (@)= [ pualras
and pn(x):/xpnl(t)dt.

Then it is easy to check

Tim [l — folll =0 and  Tim [lpn; — £l =0 (i =1,2,3).
Therefore, we have

Tim [[pY — £l =0 (j=0,1,2,3).
Put v, = pno (n =1, 2, ...) and it is easy to see that

f(@) = fo(z) = fi(z) and pn(z) =m(z) (z€F).

Hence it is sufficient to prove two equalities for Fourier transforms. For
t € R, it holds

A |—\ [ ) — pale)otede
\ i / ~it2( fy (@) — pu(c))(x)da
<—=llfo = palll -1l
and
(W)* (fi(t) — An(®))
- e ((fola) = pula) (@) Ve
——— [ e (o)~ pula) 0¥
+3(f (@) = pui(2)) 6@ (2)
+3(£7 (@) — pa(@)) 6D (@) + (5 (@) — pus(2)) 8(x) ) da
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+3(f0 (@) = pV(2)) 6 ()
+3(f7 (@) = o2 (@) 0V (@) + (7 (@) = o (@) () ) da-
Hence we have
‘tg(fl(t) - ’?n(t))‘
d —
—5= (g0 = palll - N6+ 3175” — w1 - 1
+ 3011482 = paalll - N6V 4+ 1155 — paslll - 116]]])-
]

<

Proposition 5 Let T = U|T| be the polar decomposition. Assume that U
is unitary and [U, |T|] € C1. Then, for f, g € S and integers m, n, it holds

IThE™, 9T
<lnl 1fllgz [ er(il+ Dlgco)ae

— 00

1 [ A
Hlml - Nglly [ er(iel + Dife)

where cr is the constant of Definition 1 and |[|R[|| = sup,eq (1)) [M(2)]-
Proof. By Proposition 3, we have

LT g(ITHU™ = F(ITDe(ITHU™ "

= lFqrplom, (o™,

< || - [[Io™, g(Thil I

1 o
<lnl- 1fllz [ er(il + Dig(olat

Similarly, we have
lg(TpU™F(ITHU™ = 9(IT) FITHU™ ™|,
= lg(ITno™, f(ThHiU™|,
< |lg(TD|[ - [[lT™, fATHIl IT™]

1 [ A
<fml-lgll= [ er(el+ DIfolae
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Therefore, we have
[ rqrh. vmg(ITif|,

<l 1Az [ er(lel+ gl

1 [ A
+|m|-||\g\||%/ er (|t + VIS (B)]de.

0

Proof of Theorem 1. It is sufficient to prove the theorem for functions
B(r, 2) = f(r)2" and ¥(r, 2) = g(r)2™ of f, g € C*(R) and integers k, m.
Let a compact set F' of Proposition 4 be o(|T'|). For f (resp. g) and o(|T),
we choose f1 € C°(R) (resp. g1 € C°(R)), a sequence {py} (resp. {gn}) of
polynomials and a sequence {v,} C C*(R) (resp. {n,} C C°(R)) just as
Proposition 4. We denote sup,¢, () |k(2)| by [[|h[[|. Let er be the constant
of Definition 1. Then we have

[LAATHT*, 1 (ITHU™] = by (ITHUS, ma(ITHU™ [,
= [[I(AUT]) = (T)U*, g1 (ITHU™]
+ Iy (ITHUS, (91(IT]) = ma(ITH)U™]

o0

1 X
<Ml =l [ ere + Dlguola:

—0o0

1 & .
tlml ol [ e+ DA - 3ol

—00

1 [ N R
bl [ er+Dlaro) — an(olas

1 .
tlml -l mlllys [ erllel+ Du(olds

— 00

Put

1 [ .
Au=lfi =l [ exle + Dl 0)la,

—00

1 oe A
Ba=llalllys | erllel+ DIe) - nle)id

—00

1 [ N .
Co=llhnllyz [ exlel+ Dlan(®) - (o)l

— 00
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and
1 o0
Do=lllox - mallg= [ exlel+ Dln(o)i.
™ —00
By Proposition 4, we have lim,,_., A,, = 0, lim,,_. B,, = 0, lim,,_., C,, =0

and lim, ., D, = 0. In fact, it is easy to see that

lim A, =0.

n—oo

For any R > 0, it holds

1 .
Buslloll(5; [ er(e+ DIAG 5ol

1 t| +1
Py cr
21 Jiy>r [t

[P fa(E) — %(t)|dt>.

Hence we have

lim B, = 0.

n—oo

Similarly, we have

lim C,, = 0.

n—oo

Finally, it holds

oo

Dnéngl—nnIH%/ cr([t + 1) (1A (t) — @] + |1 (2)])dt

—00

<lllos = mll(5; [ _ er(e+ Do~ e

| L
|t|3 ‘t‘gh/n(t) - fl(t)‘dt

2 |t|>R
+gr [ enlll+ ln).
so that
lim D,, = 0.

n—oo

Therefore, it holds

ILANTHUE, i (ITHU™] = by (T DU, (ITHU™] 2 — 0



256 M. Cho and T. Huruya

(n — o0).

Since | Tr(A)| < ||AJj1 for A € C; ([8, Theorem 111.8.5]) and
[1(|T))U*, g1(JT|)U™] € C1 by Proposition 5, we have

Te([A(THUS, g1((THU™]) = lim T ([ (ITHU*, (I THU™).

Then for every n, it holds p,(x) = v,(z) and g,(x) = n,(x) for z € o(|T]).
Let Py (z, y) = pu(z)y* and Q,,(z, y) = ¢, (x)y™. Then it holds

Tr (v (ITHU, 9 (ITHU™]) = Te([Pu(T1, U), Qu(IT1, U))).
Since p, and g, are polynomials, by Theorem A we have
Tx([Pa(|T], U), Qu(|T1, U)])
— [[ 1Pa Qu)ir. ) gr(e?, vyirdm(s).

Since f(z) = fi(z) and g(z) = g1(z) for x € o(|T), f(|T]) = f1(|T]) and
g(|T|) = ¢1(|T'|). By Proposition 4, we have unifromly lim, . p,(z) =

f(z), limy, o gn(z) = g(2), limn—wop%(x) = f/(I) and limy,— oo q;(l‘) -
g (z) for x € o(|T|). Then we have lim, .~ Pn(z, y) = ¢(z, y) and
limy, 00 Qn(z, y) = Y(z, y) for z € o(|T|). Therefore, we have

Te([f(ITU*, g(ITHU™)
= T ([A(T)U*, g:(IT))U™)
= lim Te([Pa(IT], U), Qu(IT], U)])

- lim // (Pr Q) (r, )P gr(ei®, ¥)drdm(6)
— lim T( /U P Q0 ¢)e g (e, r)dr)dm(@)

n—oo

B / </U<T|> 7@, ), )etar(e”, r)dr> am(9)

/ J(¢p, ) (r, et )e! gT( , 7)drdm(8).

Next we apply this result to p-hyponormal operators (0 < p < 1/2).
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Definition 2 Let 7" = U|T| be p-hyponormal with unitary U. Put S =
U|T|?. Then S is semi-hyponormal with unitary U. Hence there exists the
Pincus principal function gg of S and we define the principal function gr
of T' by

gr(e”, r) = gs(e®, r'/C0)
(see [, Definition 3]).
We finally give a generalization of Theorem 10 of [5].
Theorem 6 Let T = U|T| be an invertible p-hyponormal operator. If
|T|?* —U|T|*U* € Cy, then for P(r, z), Q(r, z) € A it holds
Te([P(T, U), (7|, U)])
/ J(P, Q)(r, €)e gr(e®, r)drdm(h).

Proof. Since T is invertible, U is unitary. Define S = U|T|?’. Then S is
semi-hyponormal with unitary U and it holds o(S) = {r?Pe®: re? c o(T)}
([6, Theorem 3]). Since 0 & o(|T|), we have 0 ¢ o(|S|) and hence f(r) =
r1/(P) is smooth on ¢(|S]). Then we choose a function n € C2(R) such
that n(z) = f(z) for z € o(|S]). Put P(r, z) = P(n(r), z) and Q(r, z) =
Q(n(r), z). Hence we have P, Q € B. By Theorem 1, it holds

Tr([P(IS]. U), Q(IS]. U)]

¢ o(9) (see, for example, [5, Theroem 1,

Since gs(e?, s) = 0 for se
Definition 3] )

/ J(P, Q)(s, €")e?gs(e?, s)dsdm(0)
// J(P, Q)(s, €)e?gs(e, s)dsdm(0).
(S)

Since |S| = |T'|?P, we have
Te([P(ISI, U), Q(S|. U)]) = Te([P(IT]. U), QUT!, U))).

Hence
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Te([P(IT]. U), QIT|, U
// (3: eie)eiags(ew, s)dsdm(0).

For se? € o(9), it holds

J(P, Qs, ) = J(P, Q)(s"/*) ew);psl/@p)—l and

gr(e?, r) = gs(e, /),

From the translation s = 7?7, we have

Te([P(T], ) (|71, U)])

// Q)(s, €)e?gg(e®, s)dsdm(0)

o1 .
= [, 7P Q. ) s g, s

// J(P, Q)(r, €' )eiogT(eie, r)drdm(0)

= // J(P, Q)(r, eie)eiegT(eie, r)drdm(0).
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