Weak solution of a singular semilinear elliptic problem

Robert Dalmasso

(Received January 27, 2003)

Abstract

We study the singular semilinear elliptic equation $\Delta u+f(., u)=0$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right), N \geq 3 . \quad f: \mathbb{R}^{N} \times(0, \infty) \rightarrow[0, \infty)$ is such that $f(., u) \in L^{1}\left(\mathbb{R}^{N}\right)$ for $u>0$ and $u \rightarrow f(x, u)$ is continuous and nonincreasing for a.e. x in \mathbb{R}^{N}. We assume that there exists a subset $\Omega \subset \mathbb{R}^{N}$ with positive measure such that $f(x, u)>0$ for $x \in \Omega$ and $u>0$ and that $\int_{\mathbb{R}^{N}} f\left(x, c|x|^{2-N}\right) d x<\infty$ for some $c>0$. Then we show that there exists a unique solution u in the Marcinkiewicz space $M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$ such that $\Delta u \in L^{1}\left(\mathbb{R}^{N}\right)$, $u>0$ a.e. in \mathbb{R}^{N}.

Key words: singular elliptic equation, weak solution.

1. Introduction

We study the semilinear elliptic equation

$$
\begin{equation*}
\Delta u+f(., u)=0 \quad \text { in } \quad \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right) \tag{1.1}
\end{equation*}
$$

where $N \geq 3$ and f satisfies the following assumptions:
(H1) $f: \mathbb{R}^{N} \times(0, \infty) \rightarrow[0, \infty)$. For all $u>0, x \rightarrow f(x, u)$ is in $L^{1}\left(\mathbb{R}^{N}\right)$, and $u \rightarrow f(x, u)$ is continuous and nonincreasing for a.e. x in \mathbb{R}^{N};
(H2) There exists $\Omega \subset \mathbb{R}^{N}$ with positive measure such that $f(x, u)>0$ for $x \in \Omega$ and $u>0$;
(H3) There exists $c>0$ such that

$$
\int_{\mathbb{R}^{N}} f\left(x, c|x|^{2-N}\right) d x<+\infty .
$$

Definition $1 u \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$ is a solution of (1.1) if $u>0$ a.e. in $\mathbb{R}^{N}, \Delta u \in$ $L^{1}\left(\mathbb{R}^{N}\right)$ (in the sense of distributions) and

$$
\Delta u(x)+f(x, u(x))=0 \quad \text { a.e. in } \mathbb{R}^{N} .
$$

The aim of this paper is to give a general existence and uniqueness result under sufficiently weak conditions.

[^0]The particular case

$$
\begin{equation*}
f(x, u)=p(x) u^{-\lambda} \quad x \in \mathbb{R}^{N}, u>0 \tag{1.2}
\end{equation*}
$$

where $\lambda>0$ has been considered by several authors ([3, 4, 6, 7, 8, 9] and their references). More precisely Kusano and Swanson [7] treated the case $\lambda \in(0,1)$ when $p \in C_{\text {loc }}^{\alpha}\left(\mathbb{R}^{N}\right)$ for some $\alpha \in(0,1)$ and $p>0$ in $\mathbb{R}^{N} \backslash 0$. They established the existence of a classical solution $u \in C_{\mathrm{loc}}^{2, \alpha}\left(\mathbb{R}^{N}\right)$ under the following conditions:
(H4) There exists a constant $C>0$ such that $C \phi(|x|) \leq p(x)$ for $x \in \mathbb{R}^{N}$, where $\phi(t)=\max _{|x|=t} p(x), t \geq 0$;
(H5) $\int_{0}^{+\infty} t^{N-1+\lambda(N-2)} \phi(t) d t<\infty$.
Moreover they showed that

$$
\begin{equation*}
m \leq|x|^{N-2} u(x) \leq M \quad|x| \geq R, \tag{1.3}
\end{equation*}
$$

for some constants $R, M \geq m>0$.
This result was first generalized to all $\lambda>0$ in [3]. In both cases the upper and lower solution method was used.

Before going further we need a second definition.
Definition 2 Let $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$. The Marcinkiewicz space $M^{p}\left(\mathbb{R}^{N}\right)$ is the space of measurable functions u on \mathbb{R}^{N} such that $\|u\|_{M^{p}}<\infty$, where

$$
\begin{aligned}
\|u\|_{M^{p}}=\min \left\{C \in[0, \infty] ; \int_{K}|u(x)| d x\right. & \leq C|K|^{1 / p^{\prime}} \\
& \left.\forall K \subset \mathbb{R}^{N} \quad \text { measurable }\right\} .
\end{aligned}
$$

$(|K|$ is the Lebesgue measure of $K)$.
It is easy to verify that $M^{p}\left(\mathbb{R}^{N}\right)$ equipped with the $\|\cdot\|_{M^{p}}$ norm is a Banach space. Moreover $M^{p}\left(\mathbb{R}^{N}\right)$ is continuously imbedded in $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$ (see [1]).

The regularity assumption on p in (1.2) was weakened in [4] to
(H6) $p \in C\left(\mathbb{R}^{N}\right), p(x)>0$ for $x \in \mathbb{R}^{N} \backslash 0$.
If moreover
(H7) $\int_{\mathbb{R}^{N}}|x|^{\lambda(N-2)} p(x) d x<\infty$,
we established the existence of a unique solution u in the Marcinkiewicz space $M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$ satisfying $\Delta u \in L^{1}\left(\mathbb{R}^{N}\right)$, via the upper and lower solution method. Assumption (H4) was not required.

The positivity assumption on p and the decay condition (H5) were relaxed in [8]. The authors proved the existence and uniqueness of a classical solution vanishing at infinity under the following hypotheses:
(H8) $p \in C^{\alpha}\left(\mathbb{R}^{N}\right)$ for some $\alpha \in(0,1)$ and wherever $p\left(x_{0}\right)=0$ there exists $r>0$ such that $p(x)>0$ for $x \in \partial B\left(x_{0}, r\right)$ where $B\left(x_{0}, r\right)$ is the ball of radius r centered at x_{0};
(H9) $\int_{0}^{+\infty} t \phi(t) d t<\infty$.
It may be noted again that the above result does not require (H4).
Then Lair and Shaker [9] treated the term

$$
f(x, u)=p(x) g(u)
$$

where $p \in C\left(\mathbb{R}^{N}\right)$ is nontrivial and nonnegative and g is such that $g^{\prime}(s) \leq 0$ and $g(s)>0$ for $s>0$. Assuming (H9) they established the existence of a unique positive solution $u \in D(\Delta)$ decaying to zero at infinity $(D(\Delta)$ denotes the domain of the Laplace operator Δ, such that the images of its elements are in $\left.C\left(\mathbb{R}^{N}\right)\right)$.

Jin [6] considered the more general case $f(x, u)$ under some smoothness assumptions. Moreover the results obtained are complementary to the cases already mentioned. Finally Mâagli and Zribi [10] studied the case where $f(x, u)$ satisfies weaker regularity conditions. However their hypotheses, which are different from ours, lead to the existence and uniqueness of a continuous positive solution decaying to zero at infinity.

Now we can state our result.
Theorem 1 Let $f: \mathbb{R}^{N} \times(0, \infty) \rightarrow[0, \infty), N \geq 3$, satisfy (H1)-(H3). Then problem (1.1) has a unique solution $u \in M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$ such that $f(., u) \in L^{1}\left(\mathbb{R}^{N}\right), u>0$ a.e. in \mathbb{R}^{N}.

In Section 2 we give a preliminary result. Theorem 1 is proved in Section 3.

2. A preliminary result

We recall a variant of Kato's inequality (see [2] Lemma A1 in the Appendix).

Lemma 1 Let $\Omega \subset \mathbb{R}^{N}$ be any open set. Let $v \in L_{\mathrm{loc}}^{1}(\Omega)$ and $f \in L_{\mathrm{loc}}^{1}(\Omega)$ be such that

$$
\Delta v \geq f \quad \text { in } \mathcal{D}^{\prime}(\Omega)
$$

Then

$$
\Delta v^{+} \geq f \operatorname{sign}^{+} v \quad \text { in } \mathcal{D}^{\prime}(\Omega)
$$

Now we shall prove the following lemma which is a slight extension of LEMMA A8 in [1].

Lemma 2 Let $v \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$ be such that $\Delta v \geq 0$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)$. If v satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-N} \int_{n \leq|y| \leq 2 n}|v(x+y)| d y=0 \tag{2.1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{N}$, then $v \leq 0$ a.e. in \mathbb{R}^{N}.
Proof. By Lemma 1 we have

$$
\Delta v^{+} \geq 0 \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)
$$

i.e. v^{+}is subharmonic. If w is a function defined on \mathbb{R}^{N} and $a \in \mathbb{R}^{N}$, $\tau_{a} w$ denotes the translate of $w\left(\tau_{a} w(x)=w(x-a)\right)$. If w is integrable on the sphere $S_{R}=\left\{x \in \mathbb{R}^{N} ;|x|=R\right\}$ we will denote the average of w over S_{R} by w_{R}. Of course v^{+}also satisfies (2.1). Let $x \in \mathbb{R}^{N}$ be fixed. Since the average of $v^{+}(x+y)$ over $n \leq|y| \leq 2 n$ may be expressed as a weighted average of $\left(\tau_{-x} v^{+}\right)_{r}$ over $n \leq r \leq 2 n$, (2.1) implies that there is a sequence $r_{n} \rightarrow \infty$ such that $\left(\tau_{-x} v^{+}\right)_{r_{n}} \rightarrow 0$. Since v^{+}is subharmonic on \mathbb{R}^{N}, we deduce that

$$
v^{+}(x) \leq\left(\tau_{-x} v^{+}\right)_{r_{n}} \quad \text { for a.e. } x \in \mathbb{R}^{N}
$$

Letting $n \rightarrow \infty$ in the above inequality we get $v^{+}(x)=0$ for a.e. $x \in \mathbb{R}^{N}$. The proof of the Lemma is complete.

Remark 1 Notice that Lemma 2 is also valid for $N=1$ or 2 . If $v \in L^{1}\left(\mathbb{R}^{N}\right)$ or $v \in M^{p}\left(\mathbb{R}^{N}\right)$ for $1<p<\infty$, then v satisfies (2.1).

3. Proof of Theorem 1

1) Uniqueness. The proof is the same as in [4]. For completeness we provide the details. We shall need the following Lemma ([1, LEMMA A10]).

Lemma 3 Let $p \in C^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ be a nondecreasing function satisfying $p(0)=0$. For $u \in M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$ such that $\Delta u \in L^{1}\left(\mathbb{R}^{N}\right)$ we have

$$
\sqrt{p^{\prime}(u)}|\operatorname{grad} u| \in L^{2}\left(\mathbb{R}^{N}\right),
$$

and

$$
\int p^{\prime}(u)|\operatorname{grad} u|^{2}+\int \Delta u \cdot p(u) \leq 0
$$

Let $u_{1}, u_{2} \in M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$ be two solutions of problem (1.1) such that $\Delta u_{j} \in L^{1}\left(\mathbb{R}^{N}\right)$ for $j=1,2$. Let $u=u_{1}-u_{2}$ and $v=\Delta u$. Then $u \in M^{N /(N-2)}\left(\mathbb{R}^{N}\right), v \in L^{1}\left(\mathbb{R}^{N}\right)$ and $u v \geq 0$ a.e. in \mathbb{R}^{N} by (H1). Now let $p \in C^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ be a strictly increasing function satisfying $p(0)=0$. Then $p(u) v \geq 0$ a.e. in \mathbb{R}^{N} and Lemma 3 implies that $|\operatorname{grad} u|=0$. We deduce that u is a constant function in $M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$, hence $u=0$.
2) Existence. We begin with the following Lemma.

Lemma 4 Let $j \in \mathbb{N}^{\star}$. There exists a unique $u_{j} \in M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$ such that $f\left(., u_{j}+1 / j\right) \in L^{1}\left(\mathbb{R}^{N}\right), u_{j} \geq 0$ a.e. in \mathbb{R}^{N} and $\Delta u_{j}+f\left(., u_{j}+1 / j\right)=0$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)$.

Proof. Define

$$
\beta_{j}(x, u)=f\left(x, \frac{1}{j}\right)-f\left(x, u+\frac{1}{j}\right), \quad x \in \mathbb{R}^{N}, u \geq 0
$$

and

$$
\beta_{j}(x, u)=0, \quad x \in \mathbb{R}^{N}, u \leq 0
$$

Then we have:

- For all $u \in \mathbb{R}, x \rightarrow \beta_{j}(x, u)$ is in $L^{1}\left(\mathbb{R}^{N}\right)$;
$-\mathbb{R} \ni u \rightarrow \beta_{j}(x, u)$ is continuous and nondecreasing for a.e. x in \mathbb{R}^{N};
$-\beta_{j}(x, 0)=0$ for a.e. x in \mathbb{R}^{N}.
Since $f(., 1 / j) \in L^{1}\left(\mathbb{R}^{N}\right)$ Theorem 1 in [5] implies the existence of
a unique $u_{j} \in M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$ satisfying $\beta_{j}\left(., u_{j}\right) \in L^{1}\left(\mathbb{R}^{N}\right)$ and

$$
-\Delta u_{j}+\beta_{j}\left(., u_{j}\right)=f\left(., \frac{1}{j}\right) \quad \text { in } \quad \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)
$$

Since $\Delta u_{j} \leq 0$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)$, Remark 1 and Lemma 2 imply that $u_{j} \geq 0$ a.e. in \mathbb{R}^{N}. Therefore we have $f\left(., u_{j}+1 / j\right) \in L^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\Delta u_{j}+f\left(., u_{j}+\frac{1}{j}\right)=0 \quad \text { in } \quad \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)
$$

and the Lemma is proved.
Now let E_{N} be defined by

$$
E_{N}(x)=\frac{1}{(N-2) \Omega_{N}|x|^{N-2}}
$$

where Ω_{N} is the volume of the unit N-ball. We recall (see the appendix in [1]) that $E_{N} \in M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$ and that for any $g \in L^{1}\left(\mathbb{R}^{N}\right), v=E_{N} \star g \in$ $M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$ is the unique function in $M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$ satisfying $-\Delta v=g$. We have the following Lemma.

Lemma 5 Let $g \in L^{1}\left(\mathbb{R}^{N}\right)$ with compact support. Then

$$
\lim _{|x| \rightarrow \infty} \frac{E_{N} \star g(x)}{E_{N}(x)}=\int_{\mathbb{R}^{N}} g(y) d y
$$

Proof. We have

$$
\frac{E_{N} \star g(x)}{E_{N}(x)}=\int_{\mathbb{R}^{N}} \frac{|x|^{N-2}}{|x-y|^{N-2}} g(y) d y
$$

and the result easily follows from the Lebesgue dominated convergence theorem.

Now we define

$$
c_{j}=\int_{\mathbb{R}^{N}} f\left(x, u_{j}(x)+\frac{1}{j}\right) d x, \quad j \in \mathbb{N}^{\star}
$$

Lemma 6 Let $j \in \mathbb{N}^{\star}$. Assume that $0<\gamma<c_{j}$. Then there exist $R_{j}>0$ and $a_{j}>0$ such that

$$
u_{j}(x) \geq \frac{\gamma}{(N-2) \Omega_{N}|x|^{N-2}} \quad \text { a.e. in }\left\{x \in \mathbb{R}^{N} ;|x| \geq R_{j}\right\}
$$

and

$$
\text { ess } \inf _{\left\{x ;|x| \leq R_{j}\right\}} u_{j}(x)>a_{j}
$$

Proof. Clearly (H2) implies that there exist $A_{j}>0$ and $M_{j}>0$ such that

$$
\begin{equation*}
\int_{|x| \leq A_{j}} \min \left(f\left(x, u_{j}(x)+\frac{1}{j}\right), M_{j}\right) d x>\gamma \tag{3.1}
\end{equation*}
$$

Now define

$$
\tilde{f}_{j}(x)=\min \left(f\left(x, u_{j}(x)+\frac{1}{j}\right), M_{j}\right) \mathbf{1}_{\left\{x ;|x| \leq A_{j}\right\}}(x), \quad x \in \mathbb{R}^{N}
$$

Since $-\Delta u_{j} \geq \tilde{f}_{j}$ a.e. in \mathbb{R}^{N} we obtain $u_{j} \geq E_{N} \star \tilde{f}_{j}$ a.e. in \mathbb{R}^{N}. We have $E_{N} \star \tilde{f}_{j} \in C^{1}\left(\mathbb{R}^{N}\right)$ and $E_{N} \star \tilde{f}_{j}>0$ on \mathbb{R}^{N}. By (3.1) and Lemma 5 there exists $R_{j}>0$ such that

$$
E_{N} \star \tilde{f}_{j} \geq \gamma E_{N} \text { on }\left\{x \in \mathbb{R}^{N} ;|x| \geq R_{j}\right\}
$$

and the Lemma follows.
Lemma 7 For every $j \in \mathbb{N}^{\star}$ we have $u_{j}+1 / j \geq u_{j+1}+1 /(j+1)$ a.e. in \mathbb{R}^{N}.

Proof. Let $u=\left(u_{j+1}+1 /(j+1)\right)-\left(u_{j}+1 / j\right)$. From Lemma 1 using (H1) we deduce that

$$
\Delta u^{+} \geq 0 \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)
$$

Now define $\Omega=\left\{x \in \mathbb{R}^{N} ; u(x)>0\right\}$. Since $u \leq u_{j+1}-u_{j}$ a.e. in \mathbb{R}^{N}, we obtain that $u^{+} \leq \mathbf{1}_{\Omega}\left(u_{j+1}-u_{j}\right)$ a.e. in \mathbb{R}^{N}, hence $u^{+} \in M^{N /(N-2)}\left(\mathbb{R}^{N}\right)$. Therefore Remark 1 and Lemma 2 imply that $u \leq 0$ a.e. in \mathbb{R}^{N} and the Lemma is proved.
Lemma 8 For every $j \in \mathbb{N}^{\star}$ we have $u_{j} \leq u_{j+1}$ a.e. in \mathbb{R}^{N}.
Proof. Using (H1) and Lemma 7 we get

$$
\begin{array}{r}
u_{j}-u_{j+1}=E_{N} \star\left(f\left(., u_{j}+\frac{1}{j}\right)-f\left(., u_{j+1}+\frac{1}{j+1}\right)\right) \leq 0 \\
\text { a.e. in } \mathbb{R}^{N}
\end{array}
$$

Now we claim that

$$
\begin{equation*}
\sup _{j \in \mathbb{N}^{\star}} c_{j}<\infty \tag{3.2}
\end{equation*}
$$

Indeed, assume the contrary. Then there exists $j_{0} \in \mathbb{N}^{\star}$ such that $c_{j_{0}}>$ $(N-2) \Omega_{N} c$ where c is given in (H3). By Lemma 6 there exist $R_{j_{0}}>0$ and $a_{j_{0}}>0$ such that

$$
\begin{equation*}
u_{j_{0}}(x) \geq \frac{c}{|x|^{N-2}} \quad \text { for a.e. } x \in\left\{x \in \mathbb{R}^{N} ;|x| \geq R_{j_{0}}\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { ess } \inf _{\left\{x ;|x| \leq R_{j_{0}}\right\}} u_{j_{0}}(x)>a_{j_{0}} \tag{3.4}
\end{equation*}
$$

Let $j \geq j_{0}$. Using (3.3), (3.4) and Lemma 8 we deduce that

$$
c_{j} \leq \int_{|x| \leq R_{j_{0}}} f\left(x, a_{j_{0}}\right) d x+\int_{|x| \geq R_{j_{0}}} f\left(x, c|x|^{2-N}\right) d x
$$

and (H3) gives a contradiction.
Now we can prove the existence. By (H1) and Lemma $7 j \rightarrow f\left(., u_{j}+1 / j\right)$ is nondecreasing. (3.2) and the Beppo Levi theorem for monotonic sequences imply that there exists $g \in L^{1}\left(\mathbb{R}^{N}\right)$ such that

$$
f\left(., u_{j}+\frac{1}{j}\right) \rightarrow g \quad \text { in } L^{1}\left(\mathbb{R}^{N}\right) \quad \text { when } j \rightarrow \infty
$$

Therefore

$$
\begin{aligned}
& u_{j}=E_{N} \star f\left(., u_{j}+\frac{1}{j}\right) \rightarrow E_{N} \star g=u \\
& \quad \operatorname{in~} M^{N /(N-2)}\left(\mathbb{R}^{N}\right) \quad \text { when } j \rightarrow \infty
\end{aligned}
$$

(see [1] Lemma A4) and

$$
-\Delta u=g \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{N}\right)
$$

By Lemma 8 and the Fischer-Riesz theorem $u_{j} \rightarrow u$ a.e. in \mathbb{R}^{N}. Lemma 6 and Lemma 8 imply that $u>0$ a.e. in \mathbb{R}^{N}. Clearly we have $g=f(., u)$. The proof is complete.

References

[1] Benilan P., Brezis H. and Crandall M.G., A semilinear elliptic equation in $L^{1}\left(\mathbb{R}^{N}\right)$. Ann. Scuola Norm. Sup. Pisa 2 (1975), 523-555.
[2] Brezis H., Semilinear equations in \mathbb{R}^{N} without condition at infinity. Appl. Math. Optim. 12 (1984), 271-282.
[3] Dalmasso R., Solutions d'équations elliptiques semi-linéaires singulières. Ann. Mat. pura Appl. 153 (1988), 191-201.
[4] Dalmasso R., Solutions positives globales d'équations elliptiques semi-linéaires singulières. Bull. Sc. math. 112 (1988), 65-76.
[5] Gallouet Th. and Morel J.M., Resolution of a semilinear equation in L^{1}. Proc. R. Soc. Edin. 96A (1984), 275-288.
[6] Jin Z., Solutions for a class of singular semilinear elliptic equations. Nonlinear Anal., T. M. A. 31 (1998), 475-492.
[7] Kusano T. and Swanson C.A., Entire positive solutions of singular semilinear elliptic equations. Japan J. Math. 11 (1985), 145-155.
[8] Lair A.V. and Shaker A.W., Entire solution of a singular semilinear elliptic problem. J. Math. Anal. Appl. 200 (1996), 498-505.
[9] Lair A.V. and Shaker A.W., Classical and weak solutions of a singular semilinear elliptic problem. J. Math. Anal. Appl. 211 (1997), 371-385.
[10] Mâagli H. and Zribi M., Existence and estimates of solutions for singular nonlinear elliptic problems. J. Math. Anal. Appl. 263 (2001), 522-542.

Laboratoire LMC-IMAG
Equipe EDP, Tour IRMA, BP 53
F-38041 Grenoble Cedex 9, France
E-mail: Robert.Dalmasso@imag.fr

[^0]: 2000 Mathematics Subject Classification : Primary 35J60.

