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The Borel-de Siebenthal Theorem,
the classification of equi-rank groups, and related
compact and semi-compact dual pairs
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Abstract. Let G be a connected simple real Lie group with finite center and let K
be a maximal compact subgroup of G. Such a group is called an equi-rank group if
rk(G) = rk(K). In this paper we give a new proof of the classification of the equi-rank
groups (Borel-de Siebenthal Theorem). We also obtain some dual pairs inside gg (the Lie
algebra of G) such that at least one of the members of the dual pair is compact.
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1. Introduction

Let G be a connected simple real Lie group with finite center and let
K be a maximal compact subgroup of G. By a well known result of Harish-
Chandra ([HC]) the group G has a discrete series of representations if and
only if the rank of K is equal to the rank of G.

The list of such G’s, which we shall call equi-rank groups, has been
known for a long time, mostly from case by case examination of the list of
real simple Lie algebras (see for example [War]).

On the other hand there exists an intrinsic classification which is due
essentially to Borel and de Siebenthal [BdS] (more precisely what is now
called the Borel-de Siebenthal Theorem is Remarque 1, p.218 of [BdS]).
Their theorem was presented in terms of compact groups, then the tran-
scription to equi-rank groups was given by Murakami, who called these
equi-rank groups groups of interior type ([M], Theoréme 1 p.295). The
paper by Wallach ([Wal]) is also relevant.

Recently A. Knapp [K1], gave a quick proof of the classification of
real semi-simple Lie algebras which also relies on the Borel-de Sieben-
thal Theorem. In his book ([K2]), A. Knapp gave a proof of the theorem
(Thm. 6.96. p. 350) that uses the Lie algebra gg of G and its complexification
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g, together with the classification of roots into complex, imaginary, compact,
non-compact roots.

In the beginning of this paper we propose a new proof of the Borel-de
Siebenthal Theorem or to be more precise, a new classification of equi-
rank groups, which is totally complex (i.e. we work only at the level of
the complex Lie algebra g) and is based on Dynkin’s notion of elementary
operation ([D], see [T} for a nice résumé).

Our result avoids any case by case computation and allows an immediate
classification (§4).

The proof illustrates what one could call the parabolic and Z-graded
nature of the structures involved and this seems to be a rather new aspect
to us. In addition, our results give some new information about the different
“parabolic realizations” of the complexified Lie algebra € of K (§5) and lead
naturally to the construction of some families of dual pairs (&1, £2) inside
gR, where at least one of these subalgebras is compact (§6).

2. Maximal compact subalgebras and complex involutions

Let gr = tr @ pr be a Cartan decomposition of ggr relative to a Cartan
involution 8. Let g = ¢ ® p be the decomposition of g = gr ® C obtained
by complexification. We will denote by ¢ the complex linear extension of
6. Conversely, let us show the following (certainly well known) result:

Proposition 2.1 If one has a decomposition g = € @ p where £ (resp. p)
is the +1 (resp. —1) eigenspace of a complez involution o of g, then there
exists a real form gr of g whose mazximal compact subalgebra g is a real
form of €. Moreover all such real forms are conjugate under the group exp t.

Proof. First we need the following lemma.

Lemma 2.2 Let 61 and 0y be two Cartan involutions of the complex Lie
algebra g which commute with a given compler linear involution o whose
fized point set is denoted by €. Then there exists an element X € ¥ such
that 62 = (exp X )01 (exp —X).

To prove the lemma, we define a linear operator N by N = 66;. One
shows easily that if By, is defined by By, (X,Y) = —B(X,60:(Y)), then
the linear operator NN is symmetric with respect to Byg,. As By, is hermi-
tian positive definite, therefore N is diagonalizable with real eigenvalues A;.
Hence, for any t € R, one can define an operator P! whose eigenvalues are
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(A2)!. In particular P = N2, Of course P! is a one parameter subgroup
inside Aut(g), therefore there exists X € g such that P* = exp(tad X).
Moreover this one parameter subgroup commutes with ¢ (because it is so
for N), i.e. oPto™! = exp(tado(X)) = P! = exp(tad(X)) for all t € R.
Hence ad X = ad (X)), and one gets X = o(X). Therefore X is in .

Set §' = P4191P“4L. This again is a Cartan involution of g. Let us show
that 8 and 0y commute. Notice first that 91Nt91_1 = 01929191'1 = 010y =
N-1, hence 6; Pt;! = P~. Then we have

00, = Pig,P~16,0,0, = PiPi0,0, = P:N"L.
On the other hand we have
020 = 02010, P56, P~5 = NP~ = PsN~! (because P = N?),

So we get 6/, = 0291’ . But1 two Cartan involutions which commute are
equal, therefore 6 = P16; P71 = exp(ad %X)Gl exp(— ad %X), with X €
e. O

We need a second lemma. We keep the same notation as in Lemma 2.2.

Lemma 2.3 Letg =u; ®iu; = uy @ tup be the Cartan decompositions of
g relatively to the Cartan involutions 61 and 0. Let gi (resp. gf{) be the
fized point algebra of o6y (resp. o8h). Then gk and g& are real forms of g
and there ezists k € exp(ad ®) such that go = kg1 .

Proof of the Lemma. As ¢ commutes with 67 and 82, one has the decom-
positions gk = €Nug @ pNiuy and gfg =EtNuy @ pNiug. The fact that 9]%@
and g% are real forms is now obvious. From the preceeding Lemma one has
02 = kO1k~* where k = exp(ad £X) (X € £). This implies that ku; = us.
As kt =t and kp = p, one gets kgk = g&. O

Let us now prove Proposition 2.1. There exists always a Cartan invo-
lution @ of g which commutes with o. Let g = u® iu be the corresponding
Cartan decomposition and let gg be the fixed point algebra of the involution
o6.. One has gr = 8 Nu @ p Niu and this is a Cartan decomposition of gg.
The Lie algebra gr is a real form of g and tg = €N u is a real form of &.
This proves the first assertion of the proposition.

Let now gg be another real form of g with Cartan decomposition g =
¥ @D pg such that & = ¥y @ ity. Then automatically p = pp @ ipp. Set v’ =
tp ®ipg. Then g = w' @i’ is a Cartan decomposition and the corresponding
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Cartan involution &' is easily verified to commute with o. By the preceeding
lemma, there exists k € exp(adt) such that g = kgr. a

3. The classification of equi-rank complex simple Lie algebras

Proposition 2.1, reduces the problem of classifying all equi-rank groups
to the classification of all Zy-gradations g = ¢®p ([¢, €] C &, [p,p] C &, [¢,p] C
p) of the complex simple Lie algebra g having the property rank(g) =
rank(€), up to conjugacy by an element of the adjoint group of g. The
required Lie algebras are simple because a simple equi-rank group is never
a complex group.

Henceforth g will denote a simple complex Lie algebra.

The data comnsisting of a simple complex Lie algebra together with a
Zo-gradation having the above mentioned properties is called an equi-rank
algebra.

Our main result is the following Theorem.

Theorem 3.1 Let g =t D p be an equi-rank algebra, with ¢ # g. Then
either

1) we have the following Z-gradation: g = g—1 ® go & g1. Here go P
g1 s a mazimal parabolic subalgebra, and ¢ = go, p = g_1 ® g1 is the
corresponding Zg-gradation. This corresponds exvactly to the case where £
is reductive not semi-simple, i.e. has a non-trivial center (necessarily one
dimensional). This is also ezactly the case where G/K is hermitian.

or 2) we have the following Z-gradation: g = g_2®g_1 Dgo D g1 P ga.
The parabolic subalgebra go ® g1 P g2 s again mazimal, and € =g o P go P
go and p = g_1 @ g1 is the corresponding Zo gmdatwn This corresponds
ezactly to the case where € is semi-simple.

Conversely given g together with o gradation of one of the preceeding
types, then the corresponding € and p (given as is 1) or 2)) determine an
equi-rank algebra.

Let us now prove this theorem. First of all we need to recall the follow-
ing definition due to Dynkin ([D]).

A subalgebra v of g is called a regular subalgebra if there exists a Cartan
subalgebra h of g such that [f,t] C «.

Lemma 3.2 Let v = 3 ® 1t be a reductive subalgebra of g where 3 is the
center of v and v/ = [r,t]. Suppose moreover that the rank of t is equal to
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the rank of g. Then 3 is the center of a Levi subalgebra l =3 &V of g, and
v/ is a regular subalgebra of U of mazimal rank, i.e. rank(') = rank(l').

Proof. As rank(t) = rank(g) one can choose a Cartan subalgebra § of g of
the form

h=3®bhe

where by is a Cartan subalgebra of t/. Let [ = Z,(3) be the centralizer of 3.
The Lie subalgebra [ is a Levi subalgebra of g and therefore of the form:

[=2Z,3)=caY,

where ¢ is the center of [ and I' = [[, []. Moreover, v/ Ct C I.
From the fact that ¢ is the centralizer of I in g, one deduces that 3 C ¢.
Let B be the Killing form of g. It is well known that ¢t N[ = I where
¢l is the orthogonal of ¢ with respect to B. Let by = ¢- Nh. Then

b:c@b[/.

One has hy C by, and therefore rank(l') < rank(x').

Let %(g, b) be the root system of the pair (g, h). For a € 2(g, b), let g*
be the corresponding root space. Then g* I h and hence g® L ¢. Therefore,
as t' C [, any root space in t/ is in fact in I, this implies that ¢/ C I, and
consequently rank(t’) < rank(l').

As the reverse inequality was proved earlier we get rank(t’) = rank(l').

Recall that 3 C ¢. From the equality

dim h = dim 3 + dim by = dim ¢ + dim by
one gets ¢ = 3. The lemma is proved. O
Let us return to the proof of Theorem 3.1.

First case: ¢t is reductive and not semi-simple.

From the previous lemma we have ¢ = 3 @ ¥ where ¥ is the derived
algebra of ¢ and where 3 is the center of a Levi subalgebra [ = 3 ® I with
¥ C ' and rank(¥') = rank(l').

Let 8 be a parabolic subalgebra of g with Levi factor [. One has [ =
[ & n, where n is the nilradical of 3. It is well known ([Bo2]) that one can
choose a system of simple roots ¥ C R = ) (g, h), and a subsystem I C ¥,
such that the set of roots (I') which are linear combinations of elements of



190 H. Rubenthaler

I" is the root system of (I, ), and such that

n= Z g%

a€RT\(T)+

where the sets of positive roots RT and (I')T are defined by ¥ and T’
respectively.
Let Ar be the unique element of 3 defined by the equations

alhr) =1 if a€ ¥\
alhr) =0 if ael.

For i € Z, set g; = {X € g | [hr, X] = :X}. Then one has the Z-gradation

9= @P;cz 9i, where [ =go and n =P, g:.
Let n be the greatest integer such that g, # {0}.

(3-1)

Lemma 3.3 Let g =8t p be a simple equi-rank algebra with ¢ reductive
- and not semi-simple. Then n =1 (i.e. the nilradical n is commutative) and
dimz =1.

Proof of the Lemma. The assertion dimj = 1 is an easy consequence of
n=1.

Suppose that n > 2. It is well known that then [g1, g;] # {0} (in fact
[91,91] = 92). Aspl =tand =g ., ® - g_ 108D - Dgn C P, one
should have [g1,g1] C [p,p] C &€ C I = go. If go # {0} this is not true.
Therefore n = 1. U

Note that the condition n = 1 just proved, implies (because g is simple)
that the parabolic subalgebra P = go @ g1 is maximal.

In order to prove Theorem 3.1. in the case where ¢ is reductive and not
semi-simple, it is now sufficient to prove that &€ = gg.

Let [ = £ @ p; where p; =[N p. Recall that then g=¢Dp; g1 D g1.

Put a=g_1 ®[g-1,91] D g1. It is easily seen that a is an ideal of g. As
g is simple, one has g = a.

Consider now the vector space [p1,¢1]. As p1 C p and g1 C p, one
has [p1,91] € & But p; C I = go, therefore [p1,91] C g1 C p. Hence
[p1,81] = {0}. The same arguments shows that [p1,g—1] = {0}, and hence
[p1,[9-1, 91]] = {0}; and finally that p; is central in g, and therefore p; =

{O}a b= g0, and p=g-19D g1
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Conversely suppose that one has a Z-gradation

g=g-1® 90D g1

Then the decomposition g = €@ p where 8 = ggp and p = g_1 & g1
determines an equi-rank algebra.
Thus Theorem 3.1. is proved in the first case.

Second case: t is semi-simple. .

Let us recall what is an elementary operation in the sense of Dynkin.

Let D be the Dynkin diagram of a simple Lie algebra g. Once a Cartan
subalgebra § is chosen, as well as a set of simple roots ¥, the vertices of D
are associated to the elements of ¥, and the different vertices are connected
by edges according to well known rules. Let w be the highest root with
respect to W. Then one gets the so-called extended Dynkin diagram D by
adding a vertex associated to —w and connecting this new vertex to the
other vertices by using the same rules.

It turns out that D is not a Dynkin Diagram, but if one removes any
vertex from it, as well as the edges connected to this vertex, then one gets
a, possibly disconnected, new Dynkin diagram D; (with of course the same
number of vertices as D).

This new Dynkin diagram D, is said to be obtained from D by an
elementary operation.

Let now (X_q, Ha, Xo)aep, be the collection of the usual sly-triples in
g associated to the roots corresponding to the vertices in Dy.

This collection of triples generates a semi-simple Lie subalgebra a; of g
whose Dynkin diagram is precisely Dy ([D], [T]). The Lie algebra a; is said
to be obtained from g by an elementary operation.

Another way to understand this algebra a; is as follows. Let g be the
root which is removed by the elementary operation, and let I' = ¥ \ {og}.
This subset I' defines, as in the proof of the first case, a (maximal) parabolic
subalgebra and therefore a Z-gradation

i=k
s=D,__ o (3-2)
One can prove that

ar =gk D go D gk
(see [Bol] Exercice 4, Chap. VI, par. 4, p.229 and [Bo2] Exercice 2,
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Chap. VIII par. 3, p.223).

But now, one can make a new elementary operation on any of the
connected components of D;. Of course each time that a diagram of type
Ap, occurs, any elementary operation does not change the algebra.

Any semi-simple Lie algebra of maximal rank of a simple Lie algebra
is obtained by a finite number of elementary operations (see [D], Th. 5.3.
page 145 or [T}).

As t is maximal rank, ¢ can be obtained this way; namely, one has a
chain of subalgebras

g=ap20; 2 - 2am=E¢,

where each a; is obtained from a;_; by an elementary operation.
Let us focus on a;. As we explained before there exists a Z-gradation
of g as in (3-2) coming from a maximal parabolic subalgebra such that

- a; = g—k D go D gk.
As £ C gy one has
p=t'Dg 1@ B 13D gr1.

If & > 3, that is if K — 1 > 2, one should have [g1,81] C g2 C p and also
[91,01] C€Ca; =gk P go P gx. This is impossible since [g1, g1] # {0}

Hence k£ < 2. This means in fact that & = 2, because the case k¥ = 1
would lead to a; = g which is excluded since € # g.

Now we are in the following situation:

g=g-2@g-1PgoP g1 P g,
tCa, =g_2DgoD g2, g-1®g1 Cp.

As g is simple one has [g_1,81] = go and hence go C &.

Moreover the gradation is defined by the eigenvalues of an element hp
as in (3-1) where ' = ¥\ {ap} for some simple root ¢g (the parabolic
subalgebra P = go @ g1 ® g2 is maximal).

"~ This implies that

E=g2NEPgoDga Nt (3-3)

We shall need the following Lemma.
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Lemma 3.4 Let B be a mazimal parabolic subalgebra of g. Let g = g, ®
DY 1 DG D gL D D gn be the associated Z-gradation (as in (3-2)).
Then for any i = 1,...,n the space g; is an irreducible go-module.

Proof of the Lemma. It is well known that the result is true for ¢ = 1 (see
for example [Rul]). As P is maximal, the center of gy is one dimensional.
Let us consider g’ = ®p€Z gps- This algebra is certainly reductive. If it has
a non trivial center, then this center is the one dimensional center of gg.
But it does not act trivially on the g;’s, therefore g’ is semi-simple.

On the other hand P’ = @pzo gpi is a parabolic subalgebra of g’ which
is maximal, again because the center of the Levi factor go is one dimensional.

Then by the result cited at the beginning of the proof, the action of gg
by ad on the first step (here g;) is irreducible. O

From the Lemma we can conclude that the representation by ad of gg
on g—» and go is irreducible. Recall that £ is gg-stable because gg C ¢.
Therefore one has

ggﬂE:{O} or gs
g2Nt={0} or g_o.

The case g_oN€ = goNt = {0} is impossible because (3-3) would imply
that € = go and here £ is semi-simple.

The case goN€ = {0} and g_oNE = g_, (as well as the symmetric case)
is also impossible because it would imply that € = g._o & go and hence not
semi-simple.

Finally t =g o P go® g2 and hence p =g_1 B g;.

Conversely, suppose that one has a Z-gradation of the following type:

g=9g 29919 g D91 D g2

Then it is easy to see that the decomposition g = ¢ P p, where E =g _o @
go P ge and p = g_1 & g3, corresponds to an equi-rank subalgebra. The
proof of Theorem 3.1. is completed. O

Definition 3.5 Let g = t D p be an equi-rank algebra. Then any Z-
gradation g = g1 @ go @ g1 (if € = go is reductive and not semi-simple) or
g=g2®Pg_1DPgoDg1Dgo (if t = g_2Pgo D go is semi-simple) as described
in Theorem 3.1. is called a parabolic realization of the equi-rank algebra.
(It follows from the condition g is simple that the parabolic subalgebras
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g0 D g1 or go @ g1 D g2 are maximal).

4. The list of equi-rank complex simple Lie algebras

Let us first recall how parabolic subalgebras of a simple g may be
described by weighted Dynkin diagrams. Each parabolic subalgebra is
uniquely defined (up to conjugacy) by a subset I' of the set ¥ of simple
roots. We make the convention that such a data is described by the Dynkin
diagram of g where the roots in ¥ \ I" are circled.

For example consider the following diagram:

Dy —(OH—>O—eo—()>—0—o—0

This diagram describes a parabolic subalgebra of g ~ Dg where the
Levi factor is of type A; x A; x Dy x C3.
~ We will now give a diagrammatical description of an elementary oper-
ation. The vertex corresponding to —w where w is the highest root will be
denoted by v/, and the vertex which corresponds to the removed root will
be marked by a cross.

For example the diagram

—e—e—8—e¢—o—0

describes an elementary operation in F- where the resulting algebra is of
type A7. Remember from the previous paragraph that this A7-algebra is also
obtained by considering the parabolic subalgebra associated to the diagram

5

More precisely as the circled root has coefficient 2 in the highest root
the corresponding parabolic realization is of type

Er=9g 20g-19go®91Dg2
and

A7=9g_2®Dgo ® go.
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As we explained is the previous paragraph this gives E7 the structure
of an equi-rank algebra where & = A7.

Theorem 3.1, now gives a very easy way to classify all equi-rank complex
Lie algebras. They split into two distinct families.

The first family is obtained by taking for € the Levi factor of a maximal
parabolic subalgebra with an abelian nilradical. This family corresponds to
weighted Dynkin diagrams where the unique circled root has coefficient 1
in the highest root. This is the hermitian symmetric case.

The second family corresponds to elementary operations where the re-
moved root (marked by a cross on the extended Dynkin diagram) has coef-
ficient 2 in the highest root.

These remarks lead very easily to the following table. In this table we
have already taken into account the isomorphisms of the (extended or not)
Dynkin diagram.

Table 1

First Type (Hermitian Case)

(1'1) o—eo: - 0—()—e- - -0—@ An g = Ap__l X An._.p X C
al ap an

(1—2) O—® i *——0—a>» B’I’L E == Bn_l X (C

(1-3) @—@ - -t o—o—a=x=(») Cn E = An_]_ X (C

(1-4) O—e® vt 0—0—0—@ Dn Ean_:[X(C

(1-5) .____...............__._._@ Dn E=An_1><(c

(1-6} —o—o— o (O EG t= D5 x C

(1-7) o—0o—0—0—0—0 E7 = E6 x C
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(2-1)

(2-2)

(2-3)
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Second Type (Non Hermitian Case)

x

v

——e—0—0—90 0

—o—e—¢ o oo

Bp

Fy

Fy

Ga

p=22 €=D,x B, ,

p<n—-1 t=C,xCprp

2<p<n-2
E=D, xDpn_yp
t=A) x A5
?—A1XD6
t= Ay
E—A1XE7
t=Dg
E—A1XC3
t=DBy
?—A1XA1
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5. Distinct parabolic realizations of the same equi-rank algebra

In this paragraph we will give some examples of distinct parabolic re-
alizations of the same equi-rank algebra.

5.1. This first example will show that the description by means of a max-
imal parabolic subalgebra and the associate Z-gradation given in Theo-
rem 3.1. may be rather different for the same equi-rank algebra.

Let us consider the following three elementary operations in Fg

*—N—0 —0—0 —0—0 —N—0 *—o—6 —0—90

x

v v v

These three diagrams are obviously conjugate under an isomorphism
of the extended Dynkin diagram, which induces an isomorphism of FEjg.
Therefore the corresponding equi-rank algebras are conjugate. In each case
t = A; x As and the corresponding equi-rank Lie algebra is the case (2-4)
of the table in the previous paragraph.

The first two diagrams are in fact conjugate under an automorphism of
the Dynkin diagram itself and therefore the parabolic realizations basically
only differ by a distinct numbering of the simple roots.

Let us consider the parabolic subalgebras corresponding to the first and
third case:

(a) o—(—e—o—0 (b) *—o0o—0—0—o

I

Of course in each case the circled root has coefficient 2 in the highest
root.
Consider now the associate parabolic realizations:

(a) Es=g ,00L,90;90] 093 (b) Eo=g2,09% @000 g}

From Theorem 3.1, one knows that
B A x A5~ gl, @ gy @0y ~ 9%, © 05 © 0

and the corresponding Z-gradations of € are described by the following di-
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agrams:
(a) o O—e—o0o—0—o (b) O e—eo—e—0o—o

In the (a) case, one has dimgi = 5 (“natural” representation of A4 =
sls) and g} ~ C x A; x As. Whereas in the (b) case, dimgZ = 1 (this is
a general result if the removed root in the elementary operation is the one
connected to —w, in fact the subalgebra g2 @ g3 is known to be a Heisenberg
algebra) and g2 ~ C x As.

Of course the spaces g} and g? have the same dimension (= %dimp =
20) but they are distinct in Eg.

5.2. Consider the following two elementary operations in E7:

(a) VX —e—¢—0—0—0 (b) —e—o—0—0o—K—0

As the removed roots have coefficient 2 in the highest root, these dia-
grams correspond to parabolic realizations of two equi-rank algebra struc-
tures on E7 which are obviously conjugate under an extended diagram au-
tomorphism.

As in 5.1. the associate parabolic realizations

(a) Er=gl,00 000 og) (b) Er=g2,@92, 00500] 003

are different.
For example, the corresponding gradation of £ ~ A; x Dg are given by
the following diagrams

(a) O e—e—0o—0—o (b) o o—eo—0o—0o—(O

This shows that in the case (a) dimgd = 1, whereas in the case (b)
dim g3 = 10.

5.3. The proof of the converse part of Theorem 3.1. 2) shows that if one
has any Z-gradation of the form

g=9209-1DgoD g1 D g2, (5-3-1)

then, even if the parabolic subalgebra P = go P g1 D g2 is not maximal (that
is even if (5-3-1) is not a parabolic realization), one can define an equi-rank
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algebra structure on g by taking

tE=g_o®go Dy p=g-1® 0.

This situation occurs if ¥\ ' = {aj, as} (notations as in paragraph 3)
where a1 and as have coeflicient 1 in the highest root.
For example this is the case in the following diagram:

O—e—o—o—0 (5-3-2)

In this case it is easy to see that € = g_o @ go ® g2 ~ C x Ds (think
in terms of the extended diagram). Hence the Lie algebra ¢ is reductive
and not semi-simple. Therefore by Theorem 3.1, there exists a parabolic
realization of the type

Es=g_,09 @9

where ¢ = gj.
The only possibilities to get a maximal Levi factor of type C X Ds
correspond to the following diagrams

O—eo—o——0—0 —eo—o—o—(

which are conjugate.

Of course the vector spaces g1 and g] are isomorphic (of dimension 2¢ =
16), but g is t-stable (as a representation of Ds it is the Spin representation)
whereas g is not f-stable.

Let €1 (resp. §22) be the set of positive roots o which can be expressed
in the form o = a3 mod (I") (resp. & = ag mod (I')) where ay (resp. as) is
the first (resp. second root) circled in (5-3-2).

Let

91:1: Z g* and Elzjcl= Z g%

N act a€+8y
Then

g1=gi®g? and g;=g0¢%

and in this picture there are the spaces g} @ gt and g% @ g?, which are
t-invariant (here ¢ =g_o @ go @ g2).
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6. Associated compact and semi-compact dual pairs

Let gr be a real form of g whose maximal compact subalgebra fg is a
real form of €. Recall from Proposition 2.1. that such a real form exists and
is unique up to conjugacy by exp .

Let us also recall that a dual pair in gr is a pair (ag, br) of reductive
subalgebras of ggr, such that bg = Zg, (ag) and ag = Z (br), where Zy, (a)
(resp. Zg (b)) denotes the centralizer of a (resp. b) in gg.

In this paragraph, we will describe three families of compact or semi-
compact dual pairs (this means that at least one of the two algebras ag and
br is compact) inside gg which are naturally associated to the corresponding
equi-rank algebra.

6.1. This first family is associated to the first type of equi-rank algebras
(described in the first part of Theorem 3.1, and listed as the first type in
Table 1). The obvious remark to make is that as £ is a Levi subalgebra of g
then (8, Z(€)) (where Z(¥) is the center of £) is a dual pair in g. Therefore
(tr, Z(tgr)) is a dual pair in gg. Here Z(fg) is one dimensional because
£ is the Levi factor of a maximal parabolic subalgebra. Hence Z(tr) is
isomorphic to s0(2). This leads easily to the following table.

Table 2

(The numbering of the different cases is as in Table 1, the notations for
the real simple Lie algebras are the same as in Helgason’s book, Table V,
page 518 [He])

(1-1) (s0(2) x su(p) x su(n+ 1 —p),s0(2)) Csu(p,n+1—p)
(s0(2) x s0(2n — 1),50(2)) C s0(2,2n — 1)

(s0(2) x su(n),s0(2)) C sp(n,R)

(s0(2) x su(n),s0(2)) C s0*(2n)

)
) )
) )
(1-4) (s0(2) x s0(2n — 2),50(2)) C s0(2,2n — 2)
) )
) (s0(2) x 50(10),50(2)) C eg(-14)
) )

(50(2) X eg(—78),50(2)) C er(—25)
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6.2. The second family is a family of semi-compact dual pairs, which is
also associated to the first type of equi-rank algebras, or to be more precise
to those equi-rank algebras which correspond to hermitian symmetric spaces
of tube type.

The definition of these pairs is more involved than in the previous case.
In fact these pairs are real forms of very basic complex dual pairs which have
been used by the author as “primitive objects” from which all complex dual
pairs in g can be built ([Ru2]).

Here we shall consider only equi-rank algebras of the first type such
that the underlying hermitian pair (g, tr) is of tube type.

Let g = g_1 ®goD g1 be a parabolic realization of such an algebra. Let
H be the element of gg which defines the gradation (i.e. which has eigenvalue
i on g;, see (3-1)). It is known that the tube type condition is equivalent
to the fact that the element 2H can be put into an sls-triple. More pre-
cisely there exist X € g1 and Y € g_; such that (¥, H, X) is an sly-triple
([Y,X] = H, [H,X] = 2X, [H,Y] = —2Y). For a proof see for example
[KW]. Moreover, the elements H, X, Y can be described in the following
way. Let ag, a9, ..., ar be a maximal set of strongly orthogonal roots such
that the corresponding root spaces g* are in g;. Let (X_q,, Ho;, Xo;) be
a classical sla-triple associated to each root. Here H,, is the co-root of oy,
Xo; € g% and X_o, € g7%. Then 2H = Zf:l H,, and one can take X =
Zle Xo, and Y = ZLl X_o; (see for example [MRS]).

The algebra €g has a non-trivial center, which is necessarily iRH be-
cause the restriction of the Killing form must be negative definite. As there
exists a Cartan subalgebra contained in £g, on which all the roots take purely
imaginary values, one has for any root g* = g~%, where bar denotes the con-
jugation with respect to gr. Therefore there exists a non-zero constant c;
such that X, = ¢;X_qo,. As X,, € p, one has B(X_,,, X,,) > 0, where B
is the Killing form. On the other hand, from the invariance of the Killing
form, one gets B(X_q;, Xa;) = —3B(Ha,;, Hy,;). Hence B(X,,, Xo,) =
¢iB(X—a;, Xo;) = —3B(H_q,, Hy,)c; > 0. This implies ¢; < 0.

Let Eq, = |ci| "2 Xa,. Then Ea, = |ci|"2Xa,, and (~Eq,, Ha,, Ba,) is
an sly-triple. Define X = 3% | E,, and ¥ = % | —F,,. Then (V,2H, X)
is again an slo-triple. This triple generates an sly subalgebra a of g which
is stable under conjugation with respect to gg; therefore, ag = gr Nais a



202 H. Rubenthaler

real form of a. One can take as a basis of ag the elements

k k k
U= (Bo;+Eap), V=) (Bay—Eq), T=1) Hq,.
=] i=1

i=1

The relations are then [T,U] = -2V, [T, V] = 2U and [V,U] = —2T.
This proves that ar is isomorphic to sla(R). The existence of this sly(R)
subalgebra in the tube type case is due to Koranyi and Wolf ([KW], Prop.
3.12.)

Recall now the following result.

Theorem 6.2.1 ([Ru2], Th. 4.3.) Let b = Zy(a) be the centralizer of a
ing. Then (a,b) is a dual pair in g.

As a is split relative to gg, the Lie algebra b is also split relative to gg,
i.e. bg = bNg is a real form of b.
The following corollary is then straightforward.

Corollary 6.2.2 The pair (ag, br) is a dual pair in ggr. The Lie algebra
ag is isomorphic to sla(R) and br is a subalgebra of ¥r, hence is compact.

This leads to the following table of dual pairs.

Table 3

(The numbering of the different cases is as in Table 1; the notations for
the real simple Lie algebras are the same as in Helgason’s book, Table V,
page 518 [Hel; the type of the compact algebra br is deduced from [Ru2],
6.13. Table 5.).

(1-1) (n=2p-1)  (sk(R),su(p)) C su(p,p)
(1-2)  (sh(R),s0(2n — 2)) C s0(2,2n— 1)
) (s2(R), s0(n)) C sp(n, R)
) (sla(R),s0(2n — 3)) C 50(2,2n — 2)
(1-5)  (neven) (sla(R),sp(n)) C s0*(2n)
)

(512(R), fa(—s52)) C e7(—25)
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Remark 6.2.3 The dual pair (sl3(R),s0(n)) C sp(n,R) from the pre-
ceeding table was of great historical importance. It gives rise to the corre-
spondence between spherical harmonics of so(n) and some highest weight
modules (discrete series) of sl2(R). (see [H], and [KV] for a more general
situation). This pair belongs also to another family of dual pairs of type
(sl2(R), s0(p, q)) C sp(p+g¢, R) for which the so-called Howe correspondence
was investigated by S. Rallis and G. Schiffmann [RS].

6.3. The dual pairs in the third family are compact dual pairs associated
to the second type of equi-rank algebras.
Recall the following result.

Proposition 6.3.1 ([Ru2], Prop. 5.15.) Letg be a simple Lie algebra over
C. Let a and b be two semi-simple subalgebras of g such that anb = {0}
and such that a x b is a regular mazimal subalgebra of g (this implies that
a x b is obtained by a single elementary operation). Then (a,b) is a dual
pair in g.

Remark 6.3.2 As noted in the previous proposition, all maximal semi-
simple regular subalgebras are obtained by a single elementary operation,
the converse is true only if the coefficient of the root which is removed has a
prime coefficient in the highest root (see the remark following Theorem 3.5,
in [T], exercise 4, par. 4, p.229 in [Bol] and exercise 2, par. 3, p.222 in
[Bo2]).

Corollary 6.3.3 In all equi-rank algebras of the second type where the
subalgebra ¥ can be written as a product € = a X b with a and b simple
algebras, the pair (a,b) is a dual pair in g.

Proof. As explained in paragraph 3 and 4, the equi-rank algebras of the
second type are obtained by a single elementary operation where the re-
moved root has coefficient 2 in the highest root. O

Corollary 6.3.4 Let g be an equi-rank algebra of the second type where
t can be written as a product £ = a x b with a and b simple algebras. Let
ag =grMa and bg = gr N b, then (ag, br) is a dual pair in gg.

This leads easily to the following table.
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Table 4

(The numbering of the different cases is as in Table 1; the notations for
the real simple Lie algebras are the same as in Helgason’s book, Table V,
page 518 [He].)

p>2 (s0(2p),s0(2n —2p+ 1)) C s0(2p,2n—2p+ 1)
p<n—1  (sp(p),sp(n —p)) Csp(p,n—p)
2<p<n-2 (s0(2p),s0(2n — 2p)) C s0(2p, 2n — 2p)

su(2),5u(6)) C eg(2)

su(2),50(12)) C ez(—s)

(su(2), s
(su(2)
(5u(2), e7(~133)) C eg(—24)
(5u(2), 80(3)) C fa(a)
(5u(2)

5u(2),51(2)) C ga(2)

Remark 6.3.5 In the cases from the preceeding table where ¥ has an
su(2) factor, Gross and Wallach have studied the discrete series of some
groups corresponding to gr ([GW]).
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