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Large time behavior of solutions

for parabolic equations

with nonlinear gradient terms
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Abstract. In this paper we prove the global existence of mild solutions for the semi-

linear parabolic equation ut = ∆u+ a|∇u|q + b|u|p−1u, t > 0, x ∈ Rn, n ≥ 1, a ∈ R, b ∈
R, p > 1+(2/n), (n+2)/(n+1) < q < 2 and q ≤ p(n+2)/(n+p), with small initial data

with respect to a norm related to the equation. We also prove that some of these global

solutions are asymptotic to self–similar solutions of the equations ut = ∆u+ νa|∇u|q +

µb|u|p−1u, with ν, µ = 0 or 1. The values of ν and µ depend on the decaying of the

initial data and on the position of q with respect to 2p/(p+ 1).

Our results apply for the viscous Hamilton–Jacobi equation: ut = ∆u+ a|∇u|q and

hold without sign restriction neither on a nor on the initial data. We prove that if (n+

2)/(n + 1) < q < 2 and the initial data behaves, near infinity, like c|x|−α, (2 − q)/(q −
1) ≤ α < n, c is a small constant, then the resulting solution is global. Moreover, if

(2 − q)/(q − 1) < α < n, the solution is asymptotic to a self–similar solution of the

linear heat equation. Whereas, if (2 − q)/(q − 1) = α < n, the solution is asymptotic

to a self–similar solution of the viscous Hamilton–Jacobi equation. The asymptotics are

given, in particular, in W 1,∞(Rn).

Key words: Semilinear parabolic equations, Global solutions, Large time behavior, Self–

similar solutions, Nonlinear gradient term, Viscous Hamilton–Jacobi equation.

1. Introduction

In this paper we consider the semilinear parabolic equation

ut = ∆u+ a|∇u|q + b|u|p−1u, (1.1)

where u = u(t, x), t > 0, x ∈ Rn, n ≥ 1, a ∈ R, b ∈ R and p > 1, 1 < q < 2.
We are interested in the study of the global existence and the asymptotic
behavior of solutions of the problem (1.1) with initial data u(0, · ) = ϕ

small with respect to the norm N defined below by (1.2). In particular,
we consider initial values ϕ ∈ C0(Rn) such that ϕ(x) ∼ c|x|−2/(P1−1) as
|x| → ∞, in some appropriate sense, P1 > 1+(2/n) and c a small constant.
These initial values are in L∞(Rn) ∩ C(Rn) and are not in L1(Rn).
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The aim of this paper is to prove the existence of global solutions which
are asymptotic, as t → ∞, to self–similar solutions of equations related to
(1.1) and depending on P1, p, q. We note that, in general, the equation (1.1)
itself has no self–similar structure. The asymptotic equations are given by
(1.4) and (1.5) below and have self–similar structures.

Equation (1.1) for a 6= 0 and b 6= 0 is introduced in [8], for a mathe-
matical motivation. A physical meaning to this equation is given in [19].
A similar study to the present paper can be found in [17] where only the
critical case q = 2p/(p + 1) is considered. In this paper we complete this
study by considering the case q 6= 2p/(p + 1) and extend it, even for the
case q = 2p/(p + 1) by considering other class of initial values. This allow
us to obtain new asymptotic behavior. See Theorems 2, 3 and 4 below. In
fact, in [17], the condition q = 2p/(p + 1) is needed in the norm which is
used to prove the global existence. Here, we introduce an other norm N to
measure the size of the initial values. See (1.2) below.

Equation (1.1) for a = 0 and b 6= 0 is the standard nonlinear heat
equation. The global existence and the large time behavior of solutions
to the nonlinear heat equation, in the spirit of the present study, is done
in [7, 18]. The method used in this paper is inspired by the works in
[10, 5, 7, 17, 18, 16]. We refer the reader to the introduction of [7] and to
that of [18] for a more historical account of this method.

Equation (1.1) for a 6= 0 and b = 0 is typified as the viscous Hamilton–
Jacobi equation in the stochastic control theory and in other physical situ-
ations. Also it is known as the Kardar–Parizi–Zhang equation (KPZ equa-
tion) from the theory of growth and roughening of surfaces. See [4, 1, 11,
12, 13, 14, 3] and references therein. See also [4, 2] for other applications of
such an equation. The Large time behavior of solutions to this equation is
studied in particular in the recent works [4, 1, 11, 17]. In [1, 11] the initial
values are in L1(Rn) and we do not cover this case in this work. We improve
the results of [17] by exhibing new asymptotics, see Theorem 4 below. Also
our result, if a < 0, can be compared to that of [4]. In fact, we give more
refined asymptotics for large time. And unlike in [4], we didnot impose any
restriction on the sign of the initial data, but we require the smallness of
the initial value in some appropriate sense. See Theorem 4 below.

Let us present now an idea about the results obtained in this paper. We
first prove the global existence of solution to the integral equation related
to (1.1) for initial data ϕ small with respect to the norm



Large time behavior 313

N (ϕ) = sup
t>0

[
tβ1‖et∆ϕ‖r1 , tβ1+1/2‖∇et∆ϕ‖r1 ,

tβ2‖et∆ϕ‖r2 , tβ2+1/2‖∇et∆ϕ‖r2
]
, (1.2)

where here and in the rest of the paper, ‖ . ‖r denotes the norm in Lr(Rn),
et∆ is the heat semigroup, P1 and P2 are two real numbers satisfying

1+
2
n
< P1 ≤ min

(
p,

q

2− q

)
≤ max

(
p,

q

2− q

)
≤ P2.

If n ≥ 3, a 6= 0, b 6= 0, q 6= 2p/(p + 1) and p < 2 we have to impose
the condition q ≤ p(n + 2)/(n + p), see Remark 3.1 below. r1, r2 are two
Lebesgue numbers satisfying in particular

n(P1 − 1)
2

< r1 =
P1 − 1
P2 − 1

r2 <∞

and specified below in Lemma 2.3. β1, β2 are given by

β1 =
1

P1 − 1
− n

2r1
, β2 =

1
P2 − 1

− n

2r2
. (1.3)

See Theorem 1 below.
Later, we show that if N (ϕ) is small enough and ϕ ∼ c|x|−2/(P1−1) as

|x| → ∞, c ∈ R, then the resulting solution of (1.1) is asymptotic as t→∞
to a self–similar solution of the equation

wt = ∆w + aν|∇w|q + bµ|w|p−1w, (1.4)

where w = w(t, x), t > 0, x ∈ Rn; and a ∈ R, b ∈ R, p > 1, 1 < q < 2 are
the same parameters in Equation (1.1) and ν, µ are defined by

ν = lim
s→∞ s

−(1/(P1−1)−(2−q)/{2(q−1)}),

µ = lim
s→∞ s

−(1/(P1−1)−1/(p−1)).
(1.5)

Clearly since 1 < P1 ≤ min(p, q/(2− q)), the previous limits exist and are
finite. More precisely, we have ν = 0 or 1 and µ = 0 or 1. One can verify
that if w is a solution of (1.4) then

wλ(t, x) = λ2/(P1−1)w(λ2t, λx), λ > 0, (t, x) ∈ (0, ∞)× Rn

is also a solution of (1.4), for all λ > 0. A self–similar solution is a solution
for which

w(t, x) = wλ(t, x), ∀λ > 0, (t, x) ∈ (0, ∞)× Rn.
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The self–similar solutions, to which the solutions of (1.1) are shown to
converge, are constructed in [7, 17] and have in particular a slow spatial
decay, see [7, Theorem 6.2] and [17, Theorem 2.4]. For spatially rapidly
decaying self–similar solutions to the equation (1.4) see [4, 1, 3, 13, 25, 26]
and references therein.

The asymptotic equation (1.4) depends on the values of P1, p and q. If
1 < P1 < min(p, q/(2− q)), then Equation (1.4) is the linear heat equation,
that is (1.1) with a = b = 0. If P1 = min(p, q/(2−q)), we have the following
three cases:
( i ) if 1 < q < 2p/(p + 1) (hence P1 = q/(2 − q)), then Equation (1.4) is

the viscous Hamilton–Jacobi equation, that is (1.1) with b = 0,
( ii ) if q = 2p/(p + 1) (hence P1 = q/(2 − q) = p), then Equation (1.4) is

the equation (1.1),
(iii) if 2p/(p + 1) < q < 2 (hence P1 = p), then Equation (1.4) is the

nonlinear heat equation with one power nonlinearity, that is (1.1) with
a = 0.

See Theorems 2–4 below, for the asymptotic behavior results. In particular,
we give an estimate for the rate at which an asymptotically self-similar solu-
tion u converges, in W 1,r1(Rn), to a self–similar solution w. For the viscous
Hamilton-Jacobi equation, we show that ‖u(t) − w(t)‖r and

√
t‖∇u(t) −

∇w(t)‖r, r ∈ [r1, ∞] decrease as a negative power of t faster than the decay
of the self-similar solution w by itself. This gives more refined asymptotic
results than those of [4, Corollaries 2.2, 2.3 and Theorem 2.11].

We remark that the large time behavior of global solutions of (1.1)
depends on the position of q with respect to 2p/(p+1). If q < 2p/(p+1), the
term |u|p−1u has no effects on the large time behavior of solutions. Whereas
if q > 2p/(p+ 1), the term |∇u|q has no effects on the large time behavior
of solutions. It is pointed out in some previous works that the position of
q with respect to 2p/(p + 1) has an influence on the behavior of blowing
up solutions. For this, We refer the readers to [8, 9, 20, 21, 22, 23, 24] and
references therein.

The rest of this paper is organized as follows. In Section 2, we establish
some preliminaries which will be needed later in the proofs of the theorems.
In Section 3, we state and prove Theorem 1 concerning the existence of
global solutions. In Section 4, we state the asymptotic behavior results,
Theorems 2–4, and give their proofs. In this paper, we sometimes denote
u(t, · ) by u(t). C will designate a constant which may change from line to
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line and we also denote it by Cδ or C(δ) to indicate that it depends on a
real number δ.

2. Preliminary lemmas

In this paper we need the following well-known smoothing properties of
the heat semigroup:

‖et∆ϕ‖s2 ≤ (4πt)−(n/2)(1/s1−1/s2)‖ϕ‖s1 , (2.1)

‖∇et∆ϕ‖s2 ≤ Ht−1/2−(n/2)(1/s1−1/s2)‖ϕ‖s1 , (2.2)

for all 1 ≤ s1 ≤ s2 ≤ ∞ and t > 0. H is a positive constant. Recall
that (et∆ϕ)(x) =

(
E(t, · ) ? ϕ)

(x), where E(t, x) = (4πt)−n/2e−|x|2/(4t), t >
0, x ∈ Rn, is the heat kernel and ? denotes the convolution product. We
also use the Gagliardo-Nirenberg inequality,

‖u‖m ≤ G‖∇u‖Nr ‖u‖1−N
r , (2.3)

for u ∈ W 1, r(Rn), where 1/m = (1/r) − (N/n) and 0 < N < 1, see [15].
The last condition on N is equivalent to: r < m and m < nr/(n − r) if
r < n. We will use also the following interpolation inequality

‖u‖s ≤ ‖u‖θr1‖u‖1−θ
r2 , (2.4)

for u ∈ Lr1(Rn)∩Lr2(Rn), where s ∈ [r1, r2], θ ∈ [0, 1] with 1/s = (θ/r1)+
(1− θ)/r2.

In this section we establish some preliminary lemmas needed for the
proofs of the main results of this paper. The proofs of some of the following
lemmas is obvious and can be omitted.

Lemma 2.1 Let p > 1 and 1 < q < 2. Let P1 and P2 be two real numbers
satisfying

1 < P1 ≤ min
(
p,

q

2− q

)
≤ max

(
p,

q

2− q

)
≤ P2. (2.5)

Then we have the following:
( i ) P1/q − (P1 − 1)/2 ≤ 1, P1/p ≤ 1,
( ii ) {(P1−1)/(P2−1)}P2/q−(P1−1)/2 ≤ 1, {(P1−1)/(P2−1)}P2/p ≤ 1,
(iii) 1 ≤ {(P2−1)/(P1−1)}P1/q−(P2−1)/2, 1 ≤ {(P2−1)/(P1−1)}P1/p,
(iv) 1 ≤ P2/q − (P2 − 1)/2, 1 ≤ P2/p.
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Lemma 2.2 Let n be a positive integer and the real numbers p and q be
such that

1 +
2
n
< p and

n+ 2
n+ 1

< q < 2.

Let P1 be a real number such that

P1 > 1 +
2
n
. (2.6)

Then the following inequality

P1

n+ p
<

(P1 − 1)
2

(
(P1 − 1)

(
1− q

2

)
+ 1

)
, (2.7)

holds for all real numbers P1 satisfying (2.6) if and only if

q ≤ p
n+ 2
n+ p

. (2.8)

Proof. Equation (2.7) is equivalent to

f(P1 − 1) > 0, ∀P1 > 1 +
2
n
,

where f is a function given by

f(x) = x2
(
1− q

2

)
(n+ p) + x(n+ p− 2)− 2, x ∈ R.

Clearly, since q < 2, f is positive for large x. On the other hand, since f is
negative at zero, it has a positive root, and a negative root. Then (2.7) is
satisfied for all P1 − 1 > 2/n if and only if f(2/n) ≥ 0 and then if and only
if (2.8) is satisfied. This finishes the proof of the lemma. ¤

Lemma 2.3 Let the positive integer n and the real numbers p and q be
such that

1 +
2
n
< p,

n+ 2
n+ 1

< q ≤ p
n+ 2
n+ p

and q < 2.

Let P1, P2 be two real numbers satisfying (2.5). Assume that

n(P1 − 1)
2

> 1.

Then there exist two real numbers r1, r2 = [(P2 − 1)/(P1 − 1)]r1 satisfying:
( i ) n(P1 − 1)/2 < r1, n(P1 − 1)/(p+ 1) < r1, n(P1 − 1)(1− q/2) < r1,
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( ii ) (P1 − 1)(1− q/2) + 1 < r1,
( iii ) nP1/(p+ n) < r1,
( iv ) r1 <

(
n(P1 − 1)/2

)(
(P1 − 1)(1− q/2) + 1

)
,

( v ) r1 < n(P1 − 1)/(3− P1) if P1 < 3,
( vi ) n(P2 − 1)/2 < r2, n(P2 − 1)/(p+ 1) < r2, n(P2 − 1)(1− q/2) < r2
( vii ) (P2 − 1)(1− q/2) + 1 < r2,
(viii) nP2/(p+ n) < r2,
( ix ) r2 <

(
n(P2 − 1)/2

)(
(P2 − 1)(1− q/2) + 1

)
,

( x ) r2 < n(P2 − 1)/(3− P2) if P2 < 3.

We now state the following lemma.

Lemma 2.4 Let the positive integer n and the real numbers p, q, P1 and
P2 be as in Lemma 2.3. Let r1, r2 be the two real numbers given by Lemma
2.3. Then there exist two real numbers m1 and m2 such that

p < m1,
pr1
P1

< m1,
pr1n

n+ r1
< m1,

m1 < r1p, m1 <
n(P1 − 1)

2
p; m1 <

npr1
nP1 − pr1

if
pr1
P1

< n,

and

p < m2,
p(P2 − 1)r1
(P1 − 1)P2

< m2,
(P2 − 1)pr1n

n(P1 − 1) + r1(P2 − 1)
< m2,

m2 < r1p
P2 − 1
P1 − 1

, m2 <
n(P2 − 1)

2
p,

m2 <
npr1(P2 − 1)

n(P1 − 1)P2 − pr1(P2 − 1)
if

p(P2 − 1)r1
(P1 − 1)P2

< n.

Let us define the real numbers rij , βij for i, j ∈ {1, 2} by:

1
r11

=
P1 − 1
r1

( P1

q(P1 − 1)
− 1

2

)
,

β11 =
( P1

q(P1 − 1)
− 1

2

)
− n

2r11
, (2.9)

1
r12

=
1
r1

P1

p
,

β12 =
P1

p(P1 − 1)
− n

2r12
, (2.10)
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1
r21

=
P1 − 1
r1

( P2

q(P2 − 1)
− 1

2

)
,

β21 =
( P2

q(P2 − 1)
− 1

2

)
− n

2r21
, (2.11)

1
r22

=
P1 − 1
r1

P2

p(P2 − 1)
,

β22 =
P2

p(P2 − 1)
− n

2r22
. (2.12)

We state now the following Lemma which contains all the needed tools for
the proof of the global existence result.

Lemma 2.5 Let the positive integer n and the real numbers p, q, P1 and
P2 be as in Lemma 2.3. Let r1, r2 be the real numbers given by Lemma 2.3.
Let β1, β2, rij , βij , i, j ∈ {1, 2}, be given respectively by (1.3), (2.9)–(2.12).
Consider also the real numbers m1 and m2 given by Lemma 2.4. Then the
real numbers r1, r2, β1, β2, m1, m2, rij and βij satisfy the following:
( i ) β1 > 0, β2 > 0, rij ∈ [r1, r2], βij ∈ [β2, β1], ∀i, j ∈ {1, 2}. Also

there exist 0 ≤ θij ≤ 1, for i, j = 1, 2 such that

1
rij

=
θij
r1

+
1− θij
r2

; βij = θijβ1 + (1− θij)β2,

( ii ) 1 < r12 < m1, 1 < r22 < m2,
( iii ) m1 < nr12/(n− r12) if r12 < n and m2 < nr22/(n− r22) if r22 < n,
( iv ) 1 < r11/q < r1, 1 < r21/q < r2, 1 < m1/p < r1, 1 < m2/p < r2,
( v ) β1 − (n/2)(q/r11 − 1/r1)− (β11 + 1/2)q + 1 = 0,
( vi ) β1 − (n/2)(p/r12 − 1/r1)− pβ12 + 1 = 0,
( vii ) β2 − (n/2)(q/r21 − 1/r2)− (β21 + 1/2)q + 1 = 0,
(viii) β2 − (n/2)(p/r22 − 1/r2)− pβ22 + 1 = 0,
( ix ) n(q/r11 − 1/r1) < 1, (β11 + 1/2)q < 1,
( x ) n(q/r21 − 1/r2) < 1, (β21 + 1/2)q < 1,
( xi ) n(p/m1 − 1/r1) < 1, β12p+ (pn/2)(1/r12 − 1/m1) < 1,
( xii ) n(p/m2 − 1/r2) < 1, β22p+ (pn/2)(1/r22 − 1/m2) < 1.

Proof. Part (i) follows by Lemma 2.3 part (i) and Lemma 2.1. The proof
of (ii)–(iv) and (ix)–(xii) follows by Lemmas 2.4 and 2.3. The properties
(v)–(vii) follow by (1.3) and (2.9)–(2.12). ¤

In the proof of existence of global solutions to (1.1), in the next section,
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the property (i) is related to the interpolation inequality, the properties
(ii)–(iii) are related to Gagliardo-Nirenberg inequality, the property (iv)
in Lemma 2.5 represents compatibility conditions for the heat semigroup,
that is et∆ maps between the appropriate Lebesgue spaces; properties (ix)–
(xii) are integrability conditions: to assure that the various integrals are
convergent; finally, properties (v)–(viii) will allow the contraction mapping
argument to be done on the time interval (0, ∞) directly.

The following technical lemma will be needed in the proof of the asymp-
totic behavior results, Theorems 2 and 4 in Section 4.

Lemma 2.6 Let the positive integer n and the real numbers p, q, P1 and
P2 be as in Lemma 2.3. Let r1, r2 be the real numbers given by Lemma 2.3.
Let β1, β2, rij , βij , i, j ∈ {1, 2}, be given respectively by (1.3), (2.9)–(2.12).
Consider also the real numbers m1 and m2 given by Lemma 2.4. Let ν and
µ be given by (1.5). Let δ > 0 and define r′1j , β

′
1j , j = 1, 2 and m′

1 by

1
r′11

=
1
r11

+ δ(1− ν)
( P1

P1 − 1
− q

2

)−1 1
r11

,

β′11 = β11 + δ(1− ν)
( P1

P1 − 1
− q

2

)−1
β11, (2.13)

1
r′12

=
1
r12

+ δ(1− µ)
P1 − 1
P1

1
r12

,

β′12 = β12 + δ(1 − µ)
P1 − 1
P1

β12, (2.14)

and
1
m′

1

=
1
m1

+ δ(1− µ).

Then there exists δ0 > 0 such that for all 0 < δ < δ0 we have
( i ) r′1j ∈ [r1, r2], β′1j ∈ [β2, β1], ∀j ∈ {1, 2},
( ii ) 1 < r′12 < m′

1,
( iii ) m′

1 < nr′12/(n− r′12) if r′12 < n,
( iv ) 1 < r′11/q < r1, 1 < m′

1/p < r1,
( v ) n(q/r′11 − 1/r1) < 1, (β′11 + 1/2)q + νδ < 1,
( vi ) n(p/m′

1 − 1/r1) < 1, β′12p+ (pn/2)(1/r′12 − 1/m′
1) + µδ < 1,

( vii ) β1 − (n/2)(q/r′11 − 1/r1)− (β′11 + 1/2)q + δ(1− ν) + 1 = 0,
(viii) β1 − (n/2)(p/r′12 − 1/r1)− pβ′12 + δ(1− µ) + 1 = 0,
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Proof. Since conditions (i)–(vi) are satisfied for δ = 0 by Lemma 2.5 they
are still satisfied for δ > 0 and small. δ0 is the largest δ such that the
previous conditions are satisfied for 0 < δ < δ0. (vii) follows by (2.9), (2.13)
and (viii) follows by (2.10), (2.14). ¤

3. Global existence

In this section we prove the global existence of a mild solution of the
equation (1.1). That is a solution of the integral equation associated to the
equation (1.1) which is

u(t) = et∆ϕ+ a

∫ t

0
e(t−σ)∆(|∇u(σ)|q)dσ

+ b

∫ t

0
e(t−σ)∆(|u(σ)|p−1u(σ))dσ. (3.1)

We have obtained the following result.

Theorem 1 (Global existence) Let the positive integer n and the real
numbers p and q be such that

1+
2
n
< p,

n+ 2
n+ 1

< q ≤ p
n+ 2
n+ p

and q < 2.

Let P1, P2 be two real numbers satisfying (2.5). Assume that

n(P1 − 1)
2

> 1.

Let r1, r2 be the real numbers given by Lemma 2.3 and consider the real
numbers m1 and m2 given by Lemma 2.4. Consider also the real numbers
β1, β2 and rij , βij , i, j ∈ {1, 2}, be given by (1.3), (2.9)–(2.12) respectively.
Suppose further that M > 0 satisfies the inequality

K1M
q−1 +K2M

p−1 < 1, (3.2)

where K1 and K2 are positive constants given by (3.23) and (3.24) below.
Choose R > 0 such that

R+K1M
q +K2M

p ≤M. (3.3)

Let ϕ be a tempered distribution such that

N (ϕ) = sup
t>0

[
tβ1‖et∆ϕ‖r1 , tβ1+1/2‖∇et∆ϕ‖r1 ,
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tβ2‖et∆ϕ‖r2 , tβ2+1/2‖∇et∆ϕ‖r2
] ≤ R. (3.4)

It follows that there exists a unique global solution u of (3.1) such that

sup
t>0

[
tβ1‖u(t)‖r1 , tβ1+1/2‖∇u(t)‖r1 ,

tβ2‖u(t)‖r2 , tβ2+1/2‖∇u(t)‖r2
] ≤ M. (3.5)

Furthermore,
( i ) limt→0 u(t) = ϕ in the sense of tempered distributions.
( ii ) u(t)− et∆ϕ ∈ C([0, ∞), Ls(Rn)) for max(m1/p, r11/q) ≤ s

< n(P1 − 1)/2 and max(m2/p, r21/q) ≤ s < n(P2 − 1)/2.
(iii) u(t)− et∆ϕ ∈ L∞(

(0, ∞);Ls(Rn)
)
, for n(P1 − 1)/2 ≤ s

≤ n(P2 − 1)/2.
In addition, if ϕ and ψ satisfy (3.4), and if u and v respectively are the

solutions of (3.1) with initial values ϕ and ψ, then

sup
t>0

[
tβ1‖u(t)− v(t)‖r1 , tβ1+1/2‖∇u(t)−∇v(t)‖r1 ,

tβ2‖u(t)− v(t)‖r2 , tβ2+1/2‖∇u(t)−∇v(t)‖r2
]

≤ (
1− (K1M

q−1 + K2M
p−1)

)−1N (
ϕ− ψ

)
. (3.6)

Remark 3.1 Assume that

1 +
2
n
< p and

n+ 2
n+ 1

< q < 2.

Then if q = 2p/(p+1) or p ≥ 2 the condition (2.8), i.e. q ≤ p(n+2)/(n+p),
is clearly satisfied. In particular, it does not appear for the critical case
q = 2p/(p + 1), for n = 1 and for n = 2. Observe also that when b = 0
or a = 0 the condition (2.8) is not needed. We remark also that all the
results of this paper still valid if we replace (2.8) by (2.7), see Lemma 2.2
above. Finally, we remark that the condition (2.8) seems to be technical,
see Lemma 2.3 parts (iii)–(iv). Also see the first and the sixth inequality in
Lemma 2.4 and Lemma 2.5 parts (iii)–(iv) and (ix).

Remark 3.2 As an example of initial values ϕ satisfying (3.4) we may
take ϕ ∈ Ln(P1−2)/2(Rn)∩Ln(P2−2)/2(Rn) with ‖ϕ‖n(P1−2)/2 and ‖ϕ‖n(P2−2)/2

sufficiently small. See also Proposition 4.1 below for other examples.

Proof of Theorem 1. Throughout the proof, we use the notation estab-
lished in Section 2. The proof is based on a contraction mapping argument
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on a suitable metric space. Let X be the set of Bochner measurable func-
tions u : (0, ∞) −→W 1, r1(Rn) ∩W 1, r2(Rn) such that

‖u‖X = sup
t>0

[
tβ1‖u(t)‖r1 , tβ1+1/2‖∇u(t)‖r1 ,

tβ2‖u(t)‖r2 , tβ2+1/2‖∇u(t)‖r2
]
< ∞, (3.7)

where β1, β2 are given by (1.3) and r1, r2 are given by Lemma 2.3. Let
M > 0 and define

XM :=
{
u ∈ X ∣∣ ‖u‖X ≤M

}
. (3.8)

XM endowed with the metric d(u, v) = ‖u−v‖X is a complete metric space.
Consider the mapping Fϕ defined by

Fϕ(u)(t) = et∆ϕ+ a

∫ t

0
e(t−σ)∆(|∇u(σ)|q)dσ

+ b

∫ t

0
e(t−σ)∆(|u(σ)|p−1u(σ))dσ, (3.9)

where ϕ is a tempered distribution satisfying (3.4). We will prove that Fϕ
is a strict contraction mapping on XM . Let ϕ and ψ satisfy (3.4) and u, v ∈
XM . For i = 1 or i = 2, we have

tβi‖Fϕ(u)(t)−Fψ(v)(t)‖ri ≤ tβi‖et∆(ϕ− ψ)‖ri
+ |a|tβi

∫ t

0

∥∥∥e(t−σ)∆
[|∇u(σ)|q − |∇v(σ)|q]

∥∥∥
ri
dσ

+ |b|tβi

∫ t

0

∥∥∥e(t−σ)∆
[|u(σ)|p−1u(σ)− |v(σ)|p−1v(σ)

]∥∥∥
ri
dσ.

Now, we respectively use the smoothing property of the heat semigroup
(2.1) with respectively s2 = ri, s1 = ri1/q and s2 = ri, s1 = mi/p on the
second and the third term of the right-hand side of the last inequality, where
the real numbers ri, ri1 and mi are as in Lemma 2.5, to obtain

tβi‖Fϕ(u)(t)−Fψ(v)(t)‖ri ≤ tβi‖et∆(ϕ− ψ)‖ri
+ |a|tβi

∫ t

0

(
4π(t− σ)

)−(n/2)(q/ri1−1/ri)

×
∥∥|∇u(σ)|q − |∇v(σ)|q

∥∥
ri1/q

dσ
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+ |b|tβi

∫ t

0

(
4π(t− σ)

)−(n/2)(p/mi−1/ri)

× ∥∥|u(σ)|p−1u(σ)− |v(σ)|p−1v(σ)
∥∥
mi/p

dσ. (3.10)

By using the Hölder inequality, we have
∥∥|∇u|q − |∇v|q∥∥

ri1/q

≤ q
(‖∇u‖q−1

ri1 + ‖∇v‖q−1
ri1

)‖∇u−∇v‖ri1 , (3.11)

and
∥∥|u|p−1u− |v|p−1v

∥∥
mi/p

≤ p
(‖u‖p−1

mi
+ ‖v‖p−1

mi

)‖u− v‖mi . (3.12)

Also, by using the Gagliardo-Nirenberg inequality (2.3), with m = mi, r =
ri2 in the right–hand side of the inequality (3.12) and by Lemma 2.5 parts
(ii)–(iii) and (2.3), we obtain

∥∥|u|p−1u− |v|p−1v
∥∥
mi/p

≤ pGp
[‖∇u‖n(1/ri2−1/mi)(p−1)

ri2 ‖u‖[1−n(1/ri2−1/mi)](p−1)
ri2

+ ‖∇v‖n(1/ri2−1/mi)(p−1)
ri2 ‖v‖[1−n(1/ri2−1/mi)](p−1)

ri2

]

× ‖∇u−∇v‖n(1/ri2−1/mi)
ri2 ‖u− v‖[1−n(1/ri2−1/mi)]

ri2 . (3.13)

Now by using (3.11) and (3.13), we deduce from (3.10) that

tβi‖Fϕ(u)(t)−Fψ(v)(t)‖ri ≤ tβi‖et∆(ϕ− ψ)‖ri
+ |a|qtβi

[ ∫ t

0

(
4π(t− σ)

)−(n/2)(q/ri1−1/ri)

× (‖∇u(σ)‖q−1
ri1 + ‖∇v(σ)‖q−1

ri1

)‖∇u(σ)−∇v(σ)‖ri1dσ
]

+ |b|pGptβi

[ ∫ t

0

(
4π(t− σ)

)−(n/2)(p/mi−1/ri)

× [‖∇u(σ)‖n(1/ri2−1/mi)(p−1)
ri2 ‖u(σ)‖[1−n(1/ri2−1/mi)](p−1)

ri2

+ ‖∇v(σ)‖n(1/ri2−1/mi)(p−1)
ri2 ‖v(σ)‖[1−n(1/ri2−1/mi)](p−1)

ri2

]

× ‖∇u(σ)−∇v(σ)‖n(1/ri2−1/mi)
ri2

× ‖u(σ)− v(σ)‖[1−n(1/ri2−1/mi)]
ri2 dσ

]
. (3.14)

Using the interpolation inequality (2.4) with s = ri1 in the second term
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of the right hand-side of the last inequality and s = ri2 in the third term,
along with the fact that u, v belongs to XM , we obtain

tβi‖Fϕ(u)(t)−Fψ(v)(t)‖ri ≤ tβi‖et∆(ϕ− ψ)‖ri
+2ci1M q−1tβi−(n/2)(q/ri1−1/ri)−q(βi1+1/2)+1

×
(∫ 1

0
(1− σ)−(n/2)(q/ri1−1/ri)σ−q(βi1+1/2)dσ

)
‖u− v‖X

+2ci2Mp−1tβi−(n/2)(p/ri2−1/ri)−pβi2+1

×
(∫ 1

0
(1− σ)−(n/2)(p/mi−1/ri)σ−pβi2−(np/2)(1/ri2−1/mi)dσ

)
‖u− v‖X .

where

ci1 = |a|q(4π)−(n/2)(q/ri1−1/ri), (3.15)

and

ci2 = |b|pGp(4π)−(n/2)(p/mi−1/ri), (3.16)

where G is the constant appearing in (2.3). Then, due to Lemma 2.5 parts
(v)–(viii), we have

tβi‖Fϕ(u)(t)−Fψ(v)(t)‖ri
≤ tβi‖et∆(ϕ− ψ)‖ri + (Ci1M q−1 + Ci2M

p−1)‖u− v‖X , (3.17)

where

Ci1 = 2ci1
∫ 1

0
(1− σ)−(n/2)(q/ri1−1/ri)σ−q(βi1+1/2)dσ (3.18)

and

Ci2 = 2ci2
∫ 1

0
(1− σ)−(n/2)(p/mi−1/ri)

× σ−pβi2−(np/2)(1/ri2−1/mi)dσ, (3.19)

where the constants ci1 and ci2 are given respectively by (3.15) and (3.16).
Due to Lemma 2.5, the positive constants Ci1 and Ci2 are finite for i = 1, 2.

Also, by the inequality (2.2) we obtain analogously for i = 1, 2

tβi+1/2‖∇Fϕ(u)(t)−∇Fψ(v)(t)‖ri ≤ tβi+1/2‖∇et∆(ϕ− ψ)‖ri
+2|a|qHM q−1tβi−(n/2)(q/ri1−1/ri)−q(βi1+1/2)+1
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×
(∫ 1

0
(1− σ)−(n/2)(q/ri1−1/ri)−1/2σ−q(βi1+1/2)dσ

)
‖u− v‖X

+2|b|pHGpMp−1tβi−(n/2)(p/ri2−1/ri)−pβi2+1

×
(∫ 1

0
(1− σ)−(n/2)(p/mi−1/ri)−1/2σ−pβi2−(np/2)(1/ri2−1/mi)dσ

)

×‖u− v‖X ,
where G is the constant appearing in (2.3) and H is the constant appearing
in (2.2). Then, due to Lemma 2.5 parts (v)–(viii), we have

tβi+1/2‖∇Fϕ(u)(t)−∇Fψ(v)(t)‖ri ≤ tβi+1/2‖∇et∆(ϕ− ψ)‖ri
+ (Di1M

q−1 +Di2M
p−1)‖u − v‖X , (3.20)

where

Di1 = 2|a|qH
∫ 1

0
(1− σ)−(n/2)(q/ri1−1/ri)−1/2σ−q(βi1+1/2)dσ (3.21)

and

Di2 = 2|b|pHGp
∫ 1

0
(1− σ)−(n/2)(p/mi−1/ri)−1/2

× σ−pβi2−(np/2)(1/ri2−1/mi)dσ. (3.22)

Due to Lemma 2.5, the positive constants Di1 and Di2 are finite for i = 1, 2.
Let

K1 = max
i∈{1, 2}

(Ci1, Di1) (3.23)

and

K2 = max
i∈{1, 2}

(Ci2, Di2), (3.24)

where the constants Ci1, Ci2, Di1 and Di2 are given respectively by (3.18),
(3.19), (3.21) and (3.22). Now combining (3.17) with (3.20), we get by (3.4),

d
(Fϕ(u), Fψ(v)

)

≤ N (ϕ− ψ) + (K1M
q−1 + K2M

p−1)d(u, v). (3.25)

Setting ψ = 0 and v ≡ 0 in (3.25), we obtain

‖Fϕ(u)‖X ≤ N (ϕ) + (K1M
q−1 +K2M

p−1)‖u‖X , (3.26)
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and so by (3.3) and (3.4) Fϕ maps XM into itself.
Letting ϕ = ψ in (3.25), we get

d
(Fϕ(u), Fϕ(v)

) ≤ (K1M
q−1 +K2M

p−1)d(u, v). (3.27)

Hence inequality (3.2) gives that Fϕ is a strict contraction mapping from
XM into itself, so Fϕ has a unique fixed point u in XM which is solution of
(3.1).

We now prove that u(t)− et∆ϕ ∈ C(
[0, ∞);Ls(Rn)

)
for

max
(ri1
q
,
mi

p

)
≤ s <

n(Pi − 1)
2

, i = 1, 2. (3.28)

First, the existence of a such s is insured by Lemma 2.3 parts (iv) and (ix),
Lemma 2.4 and the expressions of r11 and r21 respectively given by (2.9)
and (2.11). Now, since continuity for t > 0 can be handled by well known
arguments, we only give the proof of (ii) at t = 0.

Let s be a positive real number satisfying (3.28), then

‖u(t)− et∆ϕ‖s≤ |a|
∫ t

0
‖e(t−σ)∆(|∇u(σ)|q)‖sdσ

+ |b|
∫ t

0
‖e(t−σ)∆(|u(σ)|p−1u(σ))‖sdσ.

Let i = 1 or 2. The using (2.1) in the right-hand side of the last inequality
with s1 = ri1/q; s2 = s for the first term and s1 = mi/p; s2 = s for the
second term, we obtain

‖u(t)− et∆ϕ‖s≤ |a|(4π)−(n/2)(q/ri1−1/s)

×
∫ t

0
(t− σ)−(n/2)(q/ri1−1/s)‖∇u(σ)‖qri1dσ

+ |b|(4π)−(n/2)(p/mi−1/s)

×
∫ t

0
(t− σ)−(n/2)(p/mi−1/s)‖u(σ)‖pmi

dσ.

We now use the Gagliardo-Nirenberg inequality (2.3) with m = mi and
r = ri2 in the third term of the last inequality. Then, by the interpolation
inequality (2.4) and the inequality (3.5), we get

‖u(t)− et∆ϕ‖s ≤ |a|(4π)−(n/2)(q/ri1−1/s)
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×
∫ t

0
(t− σ)−(n/2)(q/ri1−1/s)σ−(βi1+1/2)qM qdσ

+|b|(4π)−(n/2)(p/mi−1/s)Gp

×
∫ t

0
(t− σ)−(n/2)(p/mi−1/s)σ−βi2p−(pn/2)(1/ri2−1/mi)Mpdσ,

which leads to

‖u(t)− et∆ϕ‖s ≤ Ci1t−(n/2)(q/ri1−1/s)−q(βi1+1/2)+1

+ Ci2t−(n/2)(p/mi−1/s)−p[βi2+(n/2)(1/ri2−1/mi)]+1, (3.29)

where, for i = 1, 2;

Ci1 = |a|(4π)−(n/2)(q/ri1−1/s)M q

×
∫ 1

0
(1− σ)−(n/2)(q/ri1−1/s)σ−(βi1+1/2)qdσ, (3.30)

and

Ci2 = |b|(4π)−(n/2)(p/mi−1/s)GpMp

×
∫ 1

0
(1− σ)−(n/2)(p/mi−1/s)σ−βi2p−(np/2)(1/ri2−1/mi)dσ, (3.31)

where G is the constant appearing in (2.3). One can easily see, owing to
Lemma 2.5, that Ci1 and Ci2 for i = 1, 2 are finite constants.

Now, due to the expression of rij and βij given by (2.9)–(2.12), the
inequality (3.29) becomes

‖u(t)− et∆ϕ‖s ≤ (Ci1 + Ci2)tn/(2s)−1/(Pi−1). (3.32)

Then, due to (3.28), the right-hand side of Inequality (3.32) converges to
zero as t↘ 0. This proves the statements (i) and (ii) of Theorem 1. State-
ment (iii) for the particular case s = n(Pi − 1)/2, i = 1, 2 follows from
(3.32) which still holds if s = n(Pi − 1)/2. Statement (iii) follows then by
interpolation.

Finally, the inequality (3.6) of Theorem 1 follows by considering Fϕ(u)
= u and Fψ(v) = v in the estimate (3.25). This inequality expresses the
continuous dependence of the solution on the initial data. This finishes the
proof of Theorem 1. ¤
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4. Asymptotic behavior

In this section we prove that some of the solutions of the equation (1.1)
are asymptotic, as t→∞, to self-similar solutions of the integral equation
associated to the equation (1.4), which is

w(t) = et∆ϕ+ aν

∫ t

0
e(t−σ)∆(|∇w(σ)|q)dσ

+ bµ

∫ t

0
e(t−σ)∆(|w(σ)|p−1w(σ))dσ, (4.1)

where a, b, p and q are the same parameters appearing in Equation (1.1)
and µ and ν are given by (1.5). We have obtained the following result.

Theorem 2 (Asymptotic behavior) Let the positive integer n and the real
numbers p and q be such that

1+
2
n
< p,

n+ 2
n+ 1

< q ≤ p
n+ 2
n+ p

and q < 2.

Let P1, P2 be two real numbers satisfying (2.5). Assume that

n(P1 − 1)
2

> 1.

Let r1, r2 be the real numbers given by Lemma 2.3 and consider the real
numbers m1 and m2 given by Lemma 2.4. Consider also the real numbers
β1, β2 and rij , βij , i, j ∈ {1, 2}, be given by (1.3), (2.9)–(2.12) respectively.

Let ψ be a tempered distribution satisfying (3.4), where we also assume
(3.2) and (3.3), let u be the solution of (3.1) with initial data ψ, constructed
by Theorem 1 and let w be the solution of (4.1) (also constructed by Theo-
rem 1) with initial data ψ. Then, for all δ, 0 < δ < δ0, and with M perhaps
smaller, there exists Cδ > 0 such that

‖u(t)− w(t)‖r1 ≤ Cδt
−β1−δ, ∀t > 0, (4.2)

‖∇u(t)−∇w(t)‖r1 ≤ Cδt
−β1−1/2−δ, ∀t > 0, (4.3)

where δ0 is given by Lemma 2.6.

Proof of Theorem 2. Throughout the proof, we use the notation estab-
lished in Section 2 and Lemma 2.6. From the equations (3.1) and (4.1), we
have
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u(t)− w(t) = a

∫ t

0
e(t−σ)∆

[|∇u(σ)|q − ν|∇w(σ)|q]dσ

+ b

∫ t

0
e(t−σ)∆

[|u(σ)|p−1u(σ)− µ|w(σ)|p−1w(σ)
]
dσ. (4.4)

Then

‖u(t)− w(t)‖r1 ≤ |a|
∫ t

0

∥∥e(t−σ)∆
[|∇u(σ)|q − ν|∇w(σ)|q]∥∥

r1
dσ

+ |b|
∫ t

0

∥∥e(t−σ)∆
[|u(σ)|p−1u(σ)− µ|w(σ)|p−1w(σ)

]∥∥
r1
dσ. (4.5)

Now, we use the smoothing property of the heat semigroup (2.1) with s2 =
r1, s1 = r′11/q and s2 = r1, s1 = m′

1/p respectively in the first and the
second term of the right-hand side of the last inequality, where the real
numbers r1, r′11 and m′

1 are as in Lemma 2.5 and Lemma 2.6, to obtain

tβ1+δ‖u(t)−w(t)‖r1
≤ |a|tβ1+δ

∫ t

0

(
4π(t− σ)

)−(n/2)(q/r′11−1/r1)

×∥∥|∇u(σ)|q − ν|∇w(σ)|q∥∥
r′11/q

dσ

+ |b|tβ1+δ

∫ t

0

(
4π(t− σ)

)−(n/2)(p/m′1−1/r1)

×
∥∥|u(σ)|p−1u(σ)− µ|w(σ)|p−1w(σ)

∥∥
m′1/p

dσ, (4.6)

where δ > 0 is as in Lemma 2.6. Using the following inequality,
∥∥|f |γ−1f − α|g|γ−1g

∥∥
s/γ

≤ γ
(‖f‖γ−1

s + α‖g‖γ−1
s

)‖f − αg‖s, (4.7)

where 1 < γ < s, α = 1 or α = 0, we deduce from the inequality (4.6) that

tβ1+δ‖u(t)− w(t)‖r1
≤ |a|qtβ1+δ

∫ t

0

(
4π(t− σ)

)−(n/2)(q/r′11−1/r1)

× (‖∇u(σ)‖q−1
r′11

+ ν‖∇w(σ)‖q−1
r′11

)‖∇u(σ)− ν∇w(σ)‖r′11dσ

+ |b|ptβ1+δ

∫ t

0

(
4π(t− σ)

)−(n/2)(p/m′1−1/r1)

× (‖u(σ)‖p−1
m′1

+ µ‖w(σ)‖p−1
m′1

)‖u(σ)− µw(σ)‖m′1dσ. (4.8)
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Now, by using the Gagliardo-Nirenberg inequality (2.3), with m = m′
1 and

r = r′12 in the second term of the right-hand side of the inequality (4.8), the
interpolation inequality (2.4) and inequality (3.5) we obtain

tβ1+δ‖u(t)− w(t)‖r1
≤ c1t

β1+δ

∫ t

0
(t− σ)−(n/2)(q/r′11−1/r1)

× σ−(β′11+1/2)(q−1)‖∇u(σ)− ν∇w(σ)‖r′11dσ

+ c2t
β1+δ

∫ t

0
(t− σ)−(n/2)(p/m′1−1/r1)

× σ−β
′
12(p−1)−{n(p−1)/2}(1/r′12−1/m′1)

× ‖u(σ)− µw(σ)‖1−N
r′12

‖∇u(σ)− µ∇w(σ)‖Nr′12dσ, (4.9)

where, N = n(1/r′12 − 1/m′
1) and

c1 = |a|q(1 + ν)(4π)−(n/2)(q/r′11−1/r1)M q−1 (4.10)

c2 = |b|pGp−1(1 + µ)(4π)−(n/2)(p/m′1−1/r1)Mp−1 (4.11)

where G is the constant appearing in (2.3).
Let T > 0 be an arbitrary real number. Then we have

tβ1+δ‖u(t)− w(t)‖r1
≤ c1t

β1+(1−ν)δ−(n/2)(q/r′11−1/r1)−q(β′11+1/2)+1

×
∫ 1

0
(1− σ)−(n/2)(q/r′11−1/r1)σ−q(β

′
11+1/2)−νδdσ

× sup
t∈(0,T ]

(
tβ
′
11+νδ‖u(σ)− νw(σ)‖r′11 ,

tβ
′
11+1/2+νδ‖∇u(σ)− ν∇w(σ)‖r′11

)

+ c2t
β1+(1−µ)δ−pβ′12−(n/2)(p/r′12−1/r1)+1

×
∫ 1

0
(1− σ)−(n/2)(p/m′1−1/r1)σ−β

′
12p−(np/2)(1/r′12−1/m′1)−µδdσ

× sup
t∈(0,T ]

(
tβ
′
12+µδ‖u(σ)− µw(σ)‖r′12 ,

tβ
′
12+1/2+µδ‖∇u(σ)− µ∇w(σ)‖r′12

)
. (4.12)

Then by Lemma 2.5 and Lemma 2.6 we have
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tβ1+δ‖u(t)− w(t)‖r1
≤ C1 sup

t∈(0,T ]

(
tβ
′
11+νδ‖u(σ)− νw(σ)‖r′11 ,

tβ
′
11+1/2+νδ‖∇u(σ)− ν∇w(σ)‖r′11

)

+ C2 sup
t∈(0,T ]

(
tβ
′
12+µδ‖u(σ)− µw(σ)‖r′12 ,

tβ
′
12+1/2+µδ‖∇u(σ)− µ∇w(σ)‖r′12

)
, (4.13)

where

C1 = c1

∫ 1

0
(1− σ)−(n/2)(q/r′11−1/r1)σ−q(β

′
11+1/2)−νδdσ, (4.14)

C2 = c2

∫ 1

0
(1− σ)−(n/2)(p/m′1−1/r1)

×σ−β′12p−(np/2)(1/r′12−1/m′1)−µδdσ, (4.15)

where c1 and c2 are given respectively by (4.10) and (4.11). By Lemma 2.6,
C1, C2 are finite positive constants. By similar calculations as above, but
by using (2.2), we obtain

tβ1+1/2+δ‖∇u(t)−∇w(t)‖r1
≤ D1 sup

t∈(0,T ]

(
tβ
′
11+νδ‖u(σ)− νw(σ)‖r′11 ,

tβ
′
11+1/2+νδ‖∇u(σ)− ν∇w(σ)‖r′11

)

+ D2 sup
t∈(0,T ]

(
tβ
′
12+µδ‖u(σ)− µw(σ)‖r′12 ,

tβ
′
12+1/2+µδ‖∇u(σ)− µ∇w(σ)‖r′12

)
, (4.16)

where

D1 = |a|qH(1 + ν)M q−1

∫ 1

0
(1− σ)−(n/2)(q/r′11−1/r1)−1/2

×σ−q(β′11+1/2)−νδdσ, (4.17)

D2 = |b|pHGp−1(1 + µ)Mp−1

∫ 1

0
(1− σ)−(n/2)(p/m′1−1/r1)−1/2

×σ−β′12p−(np/2)(1/r′12−1/m′1)−µδdσ. (4.18)

By Lemma 2.6, D1 and D2 are finite positive constants. Now, by using
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(4.13) and (4.16) we have

sup
t∈(0,T ]

(
tβ1+δ‖u(t)− w(t)‖r1 , tβ1+1/2+δ‖∇u(t)−∇w(t)‖r1

)

≤ max(C1, D1) sup
t∈(0,T ]

(
tβ
′
11+νδ‖u(σ)− νw(σ)‖r′11 ,

tβ
′
11+1/2+νδ‖∇u(σ)− ν∇w(σ)‖r′11

)

+ max(C2, D2) sup
t∈(0,T ]

(
tβ
′
12+µδ‖u(σ)− µw(σ)‖r′12 ,

tβ
′
12+1/2+µδ‖∇u(σ)− µ∇w(σ)‖r′12

)
. (4.19)

We have to distinguish the cases ν, µ = 0 or 1. As one can remark if ν or
µ = 0, then the corresponding term in the right-hand side of the inequality
(4.19) is bounded by M > 0. Otherwise, if ν = 1 then r′11 = r11 = r1
and β′11 = β11 = β1 and the corresponding term in the right-hand side of
the last inequality is the term in left-hand side, up to a constant. If µ = 1
then r′12 = r12 = r1 and β′12 = β12 = β1 and the corresponding term in the
right-hand side of the last inequality is the term in left-hand side, up to a
constant. See (1.5), (2.9)–(2.10) and (2.13)–(2.14). Then, for M perhaps
smaller, we obtain

sup
t∈(0,T ]

(
tβ1+δ‖u(t)− w(t)‖r1 , tβ1+1/2+δ‖∇u(t)−∇w(t)‖r1

) ≤ C(δ),

where C(δ) is a positive constant not depending on T . Then the previous
inequality is valid for any T > 0 and we have

‖u(t)− w(t)‖r1 ≤ C(δ)t−β1−δ, ∀t > 0, (4.20)

‖∇u(t)−∇w(t)‖r1 ≤ C(δ)t−β1−1/2−δ, ∀t > 0, (4.21)

for 0 < δ < δ0. This finishes the proof of the theorem. ¤

We now establish the following result.

Proposition 4.1 Let the positive integer n and the real numbers p and q
be such that

1+
2
n
< p,

n+ 2
n+ 1

< q ≤ p
n+ 2
n+ p

and q < 2.

Let P1, P2 be two real numbers satisfying (2.5). Assume that
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n(P1 − 1)
2

> 1.

Let r1, r2 be the real numbers given by Lemma 2.3 and the real numbers
β1, β2 be given by (1.3).

Let ϕ be a tempered distribution which is also homogeneous of degree
−2/(P1 − 1) and such that

ϕ(x) = ω(x)|x|−2/(P1−1), (4.22)

where ω ∈ Lr2(Sn−1) is homogeneous of degree 0. Then

sup
t>0

(
tβ1‖et∆ϕ‖r1 , tβ1+1/2‖∇et∆ϕ‖r1

)
<∞. (4.23)

Also, for any L∞ cut-off function η (identically equal to 1 near the origin
and with compact support), we have
( i ) supt>0

(
tβ1+δ‖et∆(ηϕ)‖r1 , tβ1+1/2+δ‖∇et∆(ηϕ)‖r1

)
<∞,

for 0 < δ < n/2− 1/(P1 − 1),
(ii) N [

(1− η)ϕ
]
<∞.

The proof of the previous proposition is similar to that of [7, Lemma
4.2], [17, Theorem 2.7] and [18, Proposition 4.2] and so is omitted. We note
that for a tempered distribution φ, by the smoothing properties of the heat
semigroup, N (φ) is equivalent to supt>0

(
tβ1‖et∆φ‖r1 , tβ2‖et∆φ‖r2

)
.

We give now the self-similar asymptotic behavior.

Theorem 3 (Asymptotically self-similar solutions) Let the positive inte-
ger n and the real numbers p and q be such that

1+
2
n
< p,

n+ 2
n+ 1

< q ≤ p
n+ 2
n+ p

and q < 2.

Let P1, P2 be two real numbers satisfying (2.5). Assume that

n(P1 − 1)
2

> 1.

Let r1, r2 be the real numbers given by Lemma 2.3 and consider the real
numbers m1 and m2 given by Lemma 2.4. Consider also the real numbers
β1, β2 and rij , βij , i, j ∈ {1, 2}, be given by (1.3), (2.9)–(2.12) respectively.

Let ϕ be a tempered distribution which is also homogeneous of degree
−2/(P1 − 1) and such that

ϕ(x) = ω(x)|x|−2/(P1−1), (4.24)
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where ω ∈ Lr2(Sn−1) is homogeneous of degree 0. Let ψ = (1− η)ϕ where η
is any L∞ cut-off function (identically equal to 1 near the origin and with
compact support). If necessary, we multiply ϕ by some constant such that
supt>0

(
tβ1‖et∆ϕ‖r1 , tβ1+1/2‖∇et∆ϕ‖r1

)
and N (ψ) are smaller.

Let u be the solution of (3.1) with initial data ψ, constructed by The-
orem 1. Let v be the self-similar solution of (4.1) with initial data ϕ con-
structed by Theorem 2.7 in [17]. Then, for all δ, 0 < δ < δ′0, and with M
perhaps smaller, there exists Cδ > 0 such that

‖u(t)− v(t)‖r1 ≤ Cδt
−β1−δ, ∀t > 0, (4.25)

‖∇u(t)−∇v(t)‖r1 ≤ Cδt
−β1−1/2−δ, ∀t > 0, (4.26)

and

‖t1/(P1−1)u(t, ·
√
t)− v(1, · )‖r1 ≤ Cδt

−δ, ∀t > 0, (4.27)

‖t1/(P1−1)+1/2∇u(t, ·
√
t)−∇v(1, · )‖r1 ≤ Cδt

−δ, ∀t > 0, (4.28)

where δ′0 can explicitly be computed.
In particular, there exist d1 > 0, d2 > 0 two constants, such that

d1t
−β1 ≤ ‖u(t)‖r1 ≤ d2t

−β1 ,

d1t
−β1−1/2 ≤ ‖∇u(t)‖r1 ≤ d2t

−β1−1/2,

for large t.

Remark 4.2 For the particular case where ν = µ = 1 in (4.1), that is q =
2p/(p+1) and P1 = p, the previous result is established in [17, Theorem 2.8].
If ν = µ = 0 in (4.1), that is P1 < min(p, q/(2− q)), then (4.1) is the linear
heat equation and in this case the self-similar solution v in the previous
theorem is given by

v(t, x) = et∆
(
ω(x)|x|−2/(P1−1)

)
, P1 > 1 +

2
n
.

Proof of Theorem 3. We begin by remarking that the existence of u is in-
sured by Theorem 1 and Proposition 4.1 part (ii). The existence of v is
insured by [17, Theorem 2.7]. We remark that one can prove the existence
of v using the first two terms of the norm (1.2), that is using the norm:
supt>0

(
tβ1‖et∆ϕ‖r1 , tβ1+1/2‖∇et∆ϕ‖r1

)
, as in the proof of Theorem 1 and

using similar idea as in [17]. We note that if ν = 1, µ = 0 or if ν =
0, µ = 1, we do not need all the conditions on the Lebesgue number r1
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in [17, Lemma 2.1, p. 1294]. Precisely, we only need to require the con-
ditions related to the corresponding nonlinear term. See [17, Lemma 2.2,
Corollary 2.3].

Let now w be the solution of (4.1) with initial data ψ. If we write

‖u(t)− v(t)‖r1 ≤ ‖u(t)− w(t)‖r1 + ‖w(t)− v(t)‖r1 ,
we obtain by (4.2) in Theorem 2 and by [17, Theorem 2.8]

‖u(t)− v(t)‖r1 ≤ Cδt
−β1−δ + C ′δt

−β1−δ (4.29)

where 0 < δ < δ0 and 0 < δ < δ1. δ0 > 0 is given by Lemma 2.6 and
δ1 = δ1(ν, µ) > 0 is given by:

δ1(0, 0) =
n

2
− 1
P1 − 1

, δ1(0, 1) =
np

2m1
− 1
P1 − 1

δ1(1, 0) =
n

2r1

[
(P1 − 1)

(
1− q

2

)
+ 1

]
− 1
P1 − 1

and

δ1(1, 1)=min
(
np

2m1
− 1
P1−1

,
n

2r1

[
(P1−1)

(
1− q

2

)
+1

]
− 1
P1−1

)
.

See [17, Theorem 2.8]. Hence (4.29) gives (4.25) for 0 < δ < min(δ0, δ1) :=
δ′0. (4.26) is obtained by similar arguments. (4.27) and (4.28) follow by
dilation arguments. This finishes the proof of Theorem 3. ¤

We now turn to prove the W 1,∞ result for the viscous Hamilton-Jacobi
equation.

Theorem 4 (W 1,∞-Asymptotic) Let the positive integer n and the real
number q be such that

n+ 2
n+ 1

< q < 2. (4.30)

Let P1, P2 be two real numbers satisfying

1 < P1 ≤ q

2− q
≤ P2. (4.31)

Assume that

n(P1 − 1)
2

> 1.
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Assume b = 0 in (1.1). Let r1, r2 be the real numbers given by Lemma 2.3
and consider the real numbers m1 and m2 given by Lemma 2.4. Consider
also the real numbers β1, β2 and rij , βij , i, j ∈ {1, 2}, be given by (1.3),
(2.9)–(2.12) respectively (we may take p = q/(2 − q)). Define β1(r), β2(r)
by

β1(r) :=
1

P1 − 1
− n

2r
, β2(r) :=

1
P2 − 1

− n

2r
, ∀r > 1. (4.32)

Assume (3.2)–(3.4). Let u be the solution of (3.1) with b = 0 constructed
by Theorem 1. Then we have

sup
t>0

[
tβ1(r)‖u(t)‖r, tβ1(r)+1/2‖∇u(t)‖r

]
<∞, ∀r ∈ [r1, ∞], (4.33)

sup
t>0

[
tβ2(r)‖u(t)‖r, tβ2(r)+1/2‖∇u(t)‖r

]
<∞, ∀r ∈ [r2, ∞]. (4.34)

Let ϕ be a tempered distribution which is also homogeneous of degree
−2/(P1 − 1) and such that

ϕ(x) = ω(x)|x|−2/(P1−1), (4.35)

where ω ∈ Lr2(Sn−1) is homogeneous of degree 0. Let ψ = (1− η)ϕ where η
is any L∞ cut-off function (identically equal to 1 near the origin and with
compact support). If necessary, we multiply ϕ by some constant such that
supt>0

(
tβ1‖et∆ϕ‖r1 , tβ1+1/2‖∇et∆ϕ‖r1

)
and N (ψ) are smaller.

Let v be the solution of (3.1) with b = 0 and with initial data ψ, con-
structed by Theorem 1. Let w be the self-similar solution of (4.1) with b = 0
and with initial data ϕ constructed by Theorem 2.7 in [17]. Then, for all δ,
0 < δ < δ′′0 , and with M perhaps smaller, there exists Cδ > 0 such that

‖v(t)− w(t)‖r ≤ Cδt
−β1(r)−δ, ∀t > 0, (4.36)

‖∇v(t)−∇w(t)‖r ≤ Cδt
−β1(r)−1/2−δ, ∀t > 0, (4.37)

and

‖t1/(P1−1)v(t, ·
√
t)− w(1, · )‖r ≤ Cδt

−δ, ∀t > 0, (4.38)

‖t1/(P1−1)+1/2∇v(t, ·
√
t)−∇w(1, · )‖r ≤ Cδt

−δ, ∀t > 0, (4.39)

∀r ∈ [r1, ∞], where δ′′0 can explicitly be computed.
In particular, there exist d′1 > 0, d′2 > 0 two constants, such that

d′1t
−β1(r) ≤ ‖v(t)‖r ≤ d′2t

−β1(r),
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d′1t
−β1(r)−1/2 ≤ ‖∇v(t)‖r ≤ d′2t

−β1(r)−1/2,

for large t and for all r1 ≤ r ≤ ∞.

Proof of Theorem 4. The result of Theorem 1 is established for all b ∈ R
and then in particular for b = 0. In the particular case where b = 0, we
may take an arbitrary value of p and in particular p = q/(2− q). With this
choice of p, we remark that if q > (n + 2)/(n + 1), then p > 1 + 2/n and
the condition (2.5), satisfied by P1 and P2, becomes the condition (4.31).
On the other hand the condition q ≤ p(n + 2)/(n + p) is satisfied, since
q > (n+2)/(n+1), q = 2p/(p+1). See Remark 3.1. Thus by (3.5) we have
(4.33) for r = r1 and (4.34) for r = r2.

We turn now to prove the W 1,∞-estimates. We apply an iterative argu-
ment as in [18]. This iterative argument was used in [3, Proposition 2.3, p.
253] for the KPZ equation. Here we prove other estimates. Let us denote the
real numbers r1, r2, r11, r21, β11, β21 respectively by s0, s

′
0, s01, s

′
01, β01,

β′01. Choose the real numbers s1, s′1 such that

s′1 =
P2 − 1
P1 − 1

s1

s0 < s1, 1 <
s01

q
< s1, n

( q

s01
− 1
s1

)
< 1

and

s′0 < s′1, 1 <
s′01

q
< s′1, n

( q

s′01

− 1
s′1

)
< 1.

Precisely a choice of such s1, s
′
1 is possible thanks to Lemma 2.5. With

these notations, we have from (3.5) that

sup
t>0

[
tβ1(s0)‖u(t)‖s0 , tβ1(s0)+1/2‖∇u(t)‖s0 ,

tβ2(s′0)‖u(t)‖s′0 , t
β2(s′0)+1/2‖∇u(t)‖s′0

] ≤ M.

In the sequel of the proof, C denotes a constant which may vary form
line to line. Sometimes we make precise its dependence on the parameters.
We write now

u(t) = e(t/2)∆u
( t

2

)
+ a

∫ t

t/2
e(t−σ)∆(|∇u(σ)|q)dσ.
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It follows from the smoothing properties of the heat semigroup (2.1), that

‖u(t)‖s1 ≤C
( t

2

)−(n/2)(1/s0−1/s1)
‖u(t/2)‖s0

+C

∫ t

t/2
(t− σ)−(n/2)(q/s01−1/s1)‖∇u(σ)‖qs01dσ.

By using the interpolation inequality (2.4) and the inequality (3.5) we have

tβ1(s1)‖u(t)‖s1 ≤C
( t

2

)β1(s0)∥∥∥u
(
t/2

)∥∥∥
s0

+M qCtβ1(s1)−(n/2)(q/s01−1/s1)−(β01+1/2)q+1

×
∫ 1

1/2
(1− σ)−(n/2)(q/s01−1/s1)σ−(β01+1/2)qdσ.

By the hypotheses on s1, the previous integral is finite. Note that the
integral does not present a singularity at σ = 0. By Lemma 2.5 part (v)
and the definition of β01 given by (2.9), we have that

β1(s1)− n

2

( q

s01
− 1
s1

)
−

(
β01 +

1
2

)
q + 1

= β1(s0)− n

2

( q

s01
− 1
s0

)
−

(
β01 +

1
2

)
q + 1

= 0.

Then, we obtain

tβ1(s1)‖u(t)‖s1 ≤ C(M),

where C(M) is a constant depending on M .
On the other hand, we have that

∇u(t) = e(t/2)∆∇u
( t

2

)
+ a

∫ t

t/2
∇e(t−σ)∆(|∇u(σ)|q)dσ.

By using the smoothing properties of the heat semigroup (2.1) on the first
term of the right-hand side of the previous equality and (2.2) on the second
term followed by an interpolation argument, we obtain

tβ1(s1)+1/2‖∇u(t)‖s1
≤ C

( t
2

)β1(s1)+1/2−(n/2)(1/s0−1/s1)∥∥∥∇u
( t

2

)∥∥∥
s0
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+ Ctβ1(s1)+1/2

∫ t

t/2
(t− σ)−(n/2)(q/s01−1/s1)−1/2‖∇u(σ)‖qs01dσ

≤ C
( t

2

)β1(s0)+1/2∥∥∥∇u
( t

2

)∥∥∥
s0

+M qCtβ1(s1)−(n/2)(q/s01−1/s1)−(β01+1/2)q+1

×
∫ 1

1/2
(1− σ)−(n/2)(q/s01−1/s1)−1/2σ−(β01+1/2)qdσ.

By the hypotheses on s1, the last integral is finite. We deduce by Lemma 2.5
and the estimates (3.5) that

tβ1(s1)+1/2‖∇u(t)‖s1 ≤ C(M),

where C(M) is a constant depending on M . By a similar argument we
obtain

tβ2(s′1)‖u(t)‖s′1 ≤ C(M), tβ
′
1(s′1)‖∇u(t)‖s′1 ≤ C(M),

where C(M) is a constant depending on M . Finally,

sup
t>0

[
tβ1(s1)‖u(t)‖s1 , tβ1(s1)+1/2‖∇u(t)‖s1 ,

tβ2(s′1)‖u(t)‖s′1 , t
β2(s′1)+1/2‖∇u(t)‖s′1

] ≤ C(M).

We iterate this procedure and define, for all positive integer k, the
sequences sk, s′k such that

s′k =
P2 − 1
P1 − 1

sk

sk < sk+1, 1 <
sk1
q
< sk+1, n

( q

sk1
− 1
sk+1

)
< 1

and

s′k < s′k+1, 1 <
s′k1
q
< s′k+1, n

( q

s′k1
− 1
s′k+1

)
< 1,

where
1
sk1

=
P1 − 1
sk

( P1

q(P1 − 1)
− 1

2

)
,

βk1 =
( P1

q(P1 − 1)
− 1

2

)
− n

2sk1
, (4.40)
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1
s′k1

=
P2 − 1
s′k

( P2

q(P2 − 1)
− 1

2

)
,

β′k1 =
( P2

q(P2 − 1)
− 1

2

)
− n

2sk1
. (4.41)

One can check that we can construct a suitable sequence (sk)k such that we
may take sk0+1 = ∞ for some finite k0. This proves (4.33) and (4.34) for r =
∞. For the other values of r, (4.33) and (4.34) follow by an interpolation
argument.

We turn now to prove the asymptotic behavior results. Let v be the
solution of (3.1) with b = 0 and with initial data ψ. Then v satisfies (4.33)–
(4.34). Let w be the self-similar solution of (4.1) with b = 0 and with
initial data ϕ. We remark also that one can prove (4.33) for the self-similar
solution w by iterative argument as for v but only by using the two first
terms of the norm (1.2), i.e.: supt>0

[
tβ1‖et∆ϕ‖r1 , tβ1+1/2‖∇et∆ϕ‖r1

]
as for

the proof of its existence.
We first prove the W 1,∞-asymptotic. Let T > 0 be an arbitrary real

number and let δ > 0 be sufficiently small. Define θ′11 by

θ′11 = θ11 + δ(1− ν)θ11

( P1

P1 − 1
− q

2

)−1
.

We note that
θ11

P1 − 1
+

1− θ11

P2 − 1
=

P1

q(P1 − 1)
− 1

2
.

Also, we remark that if ν = 1, then by (1.5) we have θ′11 = θ11 = 1. Using
an interpolation argument combined with (4.33)–(4.34) we have that

sup
t>0

(
tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+1/2‖∇v(t)‖∞

) ≤ C(M). (4.42)

Write

v(t)− w(t) = e(t/2)∆

(
v
( t

2

)
− w

( t
2

))

+ a

∫ t

t/2
e(t−σ)∆(|∇v(σ)|q − ν|∇w(σ)|q)dσ.

Then, by using the smoothing properties of the heat semigroup (2.1), also
by using (4.7) with s = ∞ and γ = q and (4.42), we obtain
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t1/(P1−1)+δ‖v(t)−w(t)‖∞ ≤ t1/(P1−1)+δ

∥∥∥∥e(t/2)∆

(
v
( t

2

)
−w

( t
2

))∥∥∥∥
∞

+ |a|t1/(P1−1)+δ

∫ t

t/2

∥∥e(t−σ)∆
(|∇v(σ)|q − ν|∇w(σ)|q)

∥∥
∞dσ,

hence

t1/(P1−1)+δ‖v(t)− w(t)‖∞ ≤ Ctβ1+δ
∥∥∥v

( t
2

)
− w

( t
2

)∥∥∥
r1

+C(M)|a|t1/(P1−1)+δ

(∫ t

t/2
σ−q(θ

′
11/(P1−1)+(1−θ′11)/(P2−1))−q/2−νδdσ

)

×
(

sup
t∈(0, T ]

[
tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+νδ‖v(t)− νw(t)‖∞,

tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+1/2+νδ‖∇v(t)− ν∇w(t)‖∞

])

and

t1/(P1−1)+δ‖v(t)− w(t)‖∞ ≤ Ctβ1+δ
∥∥∥v

( t
2

)
− w

( t
2

)∥∥∥
r1

+C(M)|a|t1/(P1−1)−q(θ′11/(P1−1)+(1−θ′11)/(P2−1))−q/2+(1−ν)δ+1

×
(∫ 1

1/2
σ−q(θ

′
11/(P1−1)+(1−θ′11)/(P2−1))−q/2−νδdσ

)

×
(

sup
t∈(0, T ]

[
tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+νδ‖v(t)− νw(t)‖∞,

tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+1/2+νδ‖∇v(t)− ν∇w(t)‖∞

])
.

We note that if ν = 1 hence θ′11 = 1 then (4.42) is verified by w. Otherwise,
if ν = 0, clearly we do not need it for w.

Now, by using (4.25) and the definition of θ′11 we get

t1/(P1−1)+δ‖v(t)− w(t)‖∞ ≤ C(δ) + C(M, δ)

×
(

sup
t∈(0, T ]

[
tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+νδ‖v(t)− νw(t)‖∞,

tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+1/2+νδ‖∇v(t)− ν∇w(t)‖∞

])
. (4.43)

Write

∇v(t)−∇w(t) = e(t/2)∆

(
∇v

( t
2

)
−∇w

( t
2

))
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+ a

∫ t

t/2
∇e(t−σ)∆(|∇v(σ)|q − ν|∇w(σ)|q)dσ.

Then, by using the smoothing properties of the heat semigroup (2.1)–(2.2)
and inequality (4.26), we get

t1/(P1−1)+1/2+δ‖∇v(t)−∇w(t)‖∞ ≤ C(δ) + C(M, δ)

×
(

sup
t∈(0, T ]

[
tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+νδ‖v(t)− νw(t)‖∞,

tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+1/2+νδ‖∇v(t)− ν∇w(t)‖∞

])
. (4.44)

Now, if ν = 1 then θ′11 = θ11 = 1, we obtain

sup
t∈(0, T ]

(
tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+νδ‖v(t)− νw(t)‖∞,

tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+1/2+νδ‖∇v(t)− ν∇w(t)‖∞

)

= sup
t∈(0, T ]

(
t1/(P1−1)+δ‖v(t)− w(t)‖∞,

t1/(P1−1)+1/2+δ‖∇v(t)−∇w(t)‖∞
)
.

On the other hand, if ν = 0 then by using (4.33)–(4.34) and an interpolation
argument, we obtain

sup
t∈(0, T ]

(
tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+νδ‖v(t)− νw(t)‖∞,

tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+1/2+νδ‖∇v(t)− ν∇w(t)‖∞

)

= sup
t∈(0, T ]

(
tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)‖v(t)‖∞,

tθ
′
11/(P1−1)+(1−θ′11)/(P2−1)+1/2‖∇v(t)‖∞

) ≤ C(M).

Then by using (4.43)–(4.44) and for M perhaps smaller we get, for arbitrary
T > 0,

sup
t∈(0, T ]

(
t1/(P1−1)+δ‖v(t)− w(t)‖∞,

t1/(P1−1)+1/2+δ‖∇v(t)−∇w(t)‖∞
) ≤ C(δ, M).

Since the constant C does not depend on T , one can take the supremum
over (0, ∞). Hence we obtain (4.36) and (4.37) for r = ∞. For the other
values of r, the result follows by using (4.25)–(4.26) and an interpolation
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argument. The estimates (4.38) and (4.39) follow by a dilation argument.
This finishes the proof of the theorem. ¤

References
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