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Abstract. This paper is devoted to studying the growth and the oscillation of solu-

tions of the second order non-homogeneous linear differential equation

f
′′

+ A1(z)e
P (z)

f
′
+ A0(z)e

Q(z)
f = F,

where P (z), Q(z) are nonconstant polynomials such that deg P = deg Q = n and

Aj(z) ( 6≡ 0) (j = 0, 1), F 6≡ 0 are entire functions with ρ(Aj) < n (j = 0, 1). We

also investigate the relationship between small functions and differential polynomials

gf (z) = d2f ′′ + d1f ′ + d0f , where d0(z), d1(z), d2(z) are entire functions that are

not all equal to zero with ρ(dj) < n (j = 0, 1, 2) generated by solutions of the above

equation.

Key words: linear differential equations, entire solutions, order of growth, exponent of

convergence of zeros, exponent of convergence of distinct zeros.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna’s value
distribution theory (see [7], [10]). In addition, we will use λ(f) and λ(1/f)
to denote respectively the exponents of convergence of the zero-sequence
and the pole-sequence of a meromorphic function f , ρ(f) to denote the
order of growth of f , λ(f) and λ(1/f) to denote respectively the exponents
of convergence of the sequence of distinct zeros and distinct poles of f .
A meromorphic function ϕ(z) is called a small function with respect to
f(z) if T (r, ϕ) = o(T (r, f)) as r → +∞, where T (r, f) is the Nevanlinna
characteristic function of f .

To give the precise estimate of fixed points, we define:

Definition 1.1 ([3], [12], [13]) Let f be a meromorphic function and let
z1, z2, . . . (|zj | = rj , 0 < r1 ≤ r2 ≤ · · · ) be the sequence of the fixed points
of f , each point being repeated only once. The exponent of convergence of
the sequence of distinct fixed points of f(z) is defined by
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τ(f) = inf
{

τ > 0 :
+∞∑

j=1

|zj |−τ < +∞
}

.

Clearly,

τ(f) = limr→+∞
log N

(
r, 1

f−z

)

log r
, (1.1)

where N
(
r, 1

f−z

)
is the counting function of distinct fixed points of f(z) in

{|z| < r}.
Consider the second order linear differential equation

f ′′ + A1(z)eP (z)f ′ + A0(z)eQ(z)f = 0, (1.2)

where P (z), Q(z) are nonconstant polynomials, A1(z), A0(z) ( 6≡ 0) are
entire functions such that ρ(A1) < deg P (z), ρ(A0) < deg Q(z). Gundersen
showed in [6, p. 419] that if deg P (z) 6= deg Q(z), then every nonconstant
solution of (1.2) is of infinite order. If deg P (z) = deg Q(z), then (1.2)
may have nonconstant solutions of finite order. For instance f(z) = ez + 1
satisfies f ′′ + ezf ′ − ezf = 0.

In [9], Ki-Ho Kwon has investigated the hyper order of solutions of (1.2)
when deg P (z) = deg Q(z) and has proved the following:

Theorem A ([9]) Let P (z) =
∑n

i=0 aiz
i and Q(z) =

∑n
i=0 biz

i be non-
constant polynomials, where ai, bi (i = 0, 1, . . . , n) are complex numbers,
anbn 6= 0, let A1(z) and A0(z) ( 6≡ 0) be entire functions with ρ(Aj) < n

(j = 0, 1). If either arg an 6= arg bn or an = cbn (0 < c < 1), then every
nonconstant solution f of (1.2) has infinite order with ρ2(f) ≥ n.

Many important results have been obtained on the fixed points of gen-
eral transcendental meromorphic functions for almost four decades (see [14]).
However, there are a few studies on the fixed points of solutions of differ-
ential equations. It was in year 2000 that Z. X. Chen first pointed out the
relation between the exponent of convergence of distinct fixed points and
the rate of growth of solutions of second order linear differential equations
with entire coefficients (see [3]). In [2], Z. X. Chen and K. H. Shon have
investigated the fixed points of solutions, their 1st and 2nd derivatives and



Growth of solutions and oscillation of differential polynomials 129

the differential polynomials generated by solutions of second order linear
differential equations with meromorphic coefficients. In [13], Wang and Yi
investigated fixed points and hyper order of differential polynomials gener-
ated by solutions of some second order linear differential equations. In [11],
Laine and Rieppo gave improvement of the results of [13] by considering
fixed points and iterated order.

The first main purpose of this paper is to study the growth and the os-
cillation of solutions of the second order non-homogeneous linear differential
equation

f ′′ + A1(z)eP (z)f ′ + A0(z)eQ(z)f = F. (1.3)

We will prove the following results:

Theorem 1.1 Let P (z) =
∑n

i=0 aiz
i and Q(z) =

∑n
i=0 biz

i be non-
constant polynomials where ai, bi (i = 0, 1, . . . , n) are complex numbers,
anbn 6= 0 such that arg an 6= arg bn or an = cbn (0 < c < 1). Let Aj(z) (6≡ 0)
(j = 0, 1) and F 6≡ 0 be entire functions with max{ρ(Aj)(j = 0, 1), ρ(F )} <

n. Then every solution f of equation (1.3) has infinite order and satisfies

λ(f) = λ(f) = ρ(f) = ∞. (1.4)

Remark 1.1 If ρ(F ) ≥ n, then equation (1.3) can posses solution of
finite order. For instance equation f ′′ + e−zf ′ + ezf = 1 + e2z satisfies
ρ(F ) = ρ(1 + e2z) = 1 and has finite order solution f(z) = ez − 1.

Theorem 1.2 Let P (z), Q(z), A1(z), A0(z) satisfy the hypotheses of
Theorem 1.1, and let F be an entire function such that ρ(F ) ≥ n. Then
every solution f of equation (1.3) satisfies (1.4) with at most one finite order
solution f0.

The second main purpose of this paper is to study the relation between
small functions and some differential polynomials generated by solutions of
second order linear differential equation (1.3). We obtain some estimates of
their distinct fixed points. Let us denote by

α1 = d1 − d2A1e
P , α0 = d0 − d2A0e

Q, (1.5)

β1 = d2A
2
1e

2P − (
(d2A1)′ + P ′d2A1 + d1A1

)
eP − d2A0e

Q + d0 + d′1, (1.6)
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β0 = d2A0A1e
P+Q − (

(d2A0)′ + Q′d2A0 + d1A0

)
eQ + d′0, (1.7)

h = α1β0 − α0β1 (1.8)

and

ψ =
α1

(
ϕ′ − (d2F )′ − α1F

)− β1(ϕ− d2F )
h

. (1.9)

Theorem 1.3 Let P (z), Q(z), A1(z), A0(z), F satisfy the hypotheses of
Theorem 1.1. Let d0(z), d1(z), d2(z) be entire functions that are not all
equal to zero with ρ(dj) < n (j = 0, 1, 2), ϕ(z) is an entire function with
finite order. If f(z) is a solution of (1.3), then the differential polynomial
gf (z) = d2f

′′ + d1f
′ + d0f satisfies λ(gf − ϕ) = ∞. In particularly the

differential polynomial gf (z) = d2f
′′ + d1f

′ + d0f has infinitely many fixed
points and satisfies λ(gf − z) = τ(gf ) = ∞.

Theorem 1.4 Let P (z), Q(z), A1(z), A0(z), F satisfy the hypotheses of
Theorem 1.2. Let d0(z), d1(z), d2(z) be entire functions that are not all
equal to zero with ρ(dj) < n (j = 0, 1, 2), ϕ(z) is an entire function with
finite order such that ψ(z) is not a solution of equation (1.3). If f(z) is a
solution of (1.3), then the differential polynomial gf (z) = d2f

′′ + d1f
′ + d0f

satisfies λ(gf − ϕ) = ∞ with at most one finite order solution f0.

In the next, we investigate the relation between infinite order solutions
of a pair non-homogeneous linear differential equations and we obtain the
following result:

Theorem 1.5 Let P (z), Q(z), A1(z), A0(z), dj(z), (j = 0, 1, 2) satisfy
the hypotheses of Theorem 1.3. Let F1 6≡ 0 and F2 6≡ 0 be entire functions
such that max{ρ(Fj) : j = 1, 2} < n and F1 − CF2 6≡ 0 for any constant C,
ϕ(z) is an entire function with finite order. If f1 is a solution of equation

f ′′ + A1(z)eP (z)f ′ + A0(z)eQ(z)f = F1 (1.10)

and f2 is a solution of equation

f ′′ + A1(z)eP (z)f ′ + A0(z)eQ(z)f = F2, (1.11)

then the differential polynomial gf1−Cf2(z) = d2(f ′′1 −Cf ′′2 )+d1(f ′1−Cf ′2)+
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d0(f1 − Cf2) satisfies λ(gf1−Cf2 − ϕ) = ∞ for any constant C.

2. Preliminary Lemmas

We need the following lemmas in the proofs of our theorems.

Lemma 2.1 ([5]) Let f be a transcendental meromorphic function of finite
order ρ, let Γ = {(k1, j1), (k2, j2), . . . , (km, jm)} denote a finite set of distinct
pairs of integers that satisfy ki > ji ≥ 0 for i = 1, . . . , m and let ε > 0 be a
given constant. Then, there exists a set E1 ⊂ [0, 2π) that has linear measure
zero, such that if ψ ∈ [0, 2π)−E1, then there is a constant R1 = R1(ψ) > 1
such that for all z satisfying arg z = ψ and |z| ≥ R1 and for all (k, j) ∈ Γ,
we have

∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε). (2.1)

Lemma 2.2 ([1]) Let P (z) = anzn + · · · + a0, (an = α + iβ 6= 0) be a
polynomial with degree n ≥ 1 and A(z) ( 6≡ 0) be a meromorphic function with
ρ(A) < n. Set f(z) = A(z)eP (z), z = reiθ, δ(P, θ) = α cos nθ − β sinnθ.
Then for any given ε > 0, there exists a set E2 ⊂ [0, 2π) that has linear
measure zero, such that if θ ∈ [0, 2π)\(E2 ∪ E3), where E3 = {θ ∈ [0, 2π) :
δ(P, θ) = 0} is a finite set, then for sufficiently large |z| = r, we have

(i) If δ(P, θ) > 0, then

exp{(1− ε)δ(P, θ)rn} ≤ |f(z)| ≤ exp{(1 + ε)δ(P, θ)rn}, (2.2)

(ii) If δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} ≤ |f(z)| ≤ exp{(1− ε)δ(P, θ)rn}. (2.3)

Lemma 2.3 ([4]) Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order mero-
morphic functions. If f is a meromorphic solution with ρ(f) = ∞ of the
equation

f (k) + Ak−1f
(k−1) + · · ·+ A1f

′ + A0f = F, (2.4)

then λ(f) = λ(f) = ρ(f) = ∞.
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Lemma 2.4 ([1]) Let P (z) =
∑n

i=0 aiz
i and Q(z) =

∑n
i=0 biz

i be non-
constant polynomials where ai, bi (i = 0, 1, . . . , n) are complex numbers,
anbn 6= 0 such that arg an 6= arg bn or an = cbn (0 < c < 1). We denote
index sets by

Λ1 = {0, P},
Λ2 = {0, P, Q, 2P, P + Q}.

(i) If Hj(j ∈ Λ1) and HQ 6≡ 0 are all meromorphic functions of orders that
are less than n, setting Ψ1(z) =

∑
j∈Λ1

Hj(z)ej, then Ψ1(z) + HQeQ 6≡
0.

(ii) If Hj(j ∈ Λ2) and H2Q 6≡ 0 are all meromorphic functions of orders that
are less than n, setting Ψ2(z) =

∑
j∈Λ2

Hj(z)ej, then Ψ2(z)+H2Qe2Q 6≡
0.

Lemma 2.5 Let P (z) =
∑n

i=0 aiz
i and Q(z) =

∑n
i=0 biz

i be nonconstant
polynomials where ai, bi (i = 0, 1, . . . , n) are complex numbers, anbn 6= 0
such that arg an 6= arg bn or an = cbn (0 < c < 1). Let Aj(z) ( 6≡ 0)
(j = 0, 1) be entire functions with ρ(Aj) < n (j = 0, 1). We denote

Lf = f ′′ + A1(z)eP (z)f ′ + A0(z)eQ(z)f. (2.5)

If f 6≡ 0 is a finite order entire function, then ρ(Lf ) ≥ n.

Proof. We suppose that ρ(Lf ) < n and then we obtain a contradiction.

(i) If ρ(f) < n, then f ′′ + A1(z)eP (z)f ′ + A0(z)eQ(z)f − Lf = 0 has the
form of Ψ1(z)+HQeQ = f ′′+A1(z)eP (z)f ′−Lf +A0(z)eQ(z)f = 0 and
this is a contradiction by Lemma 2.4 (i).

(ii) If ρ(f) ≥ n, we rewrite

Lf

f
=

f ′′

f
+ A1(z)eP (z) f

′

f
+ A0(z)eQ(z). (2.6)

Case 1 Suppose first that arg an 6= arg bn. Then arg an, arg bn, arg(an +
bn) are three distinct arguments. Set ρ(Lf ) = β < n. Then, for any given ε

(0 < ε < n− β), we have for sufficiently large r

|Lf | ≤ exp
{
rβ+ε

}
. (2.7)
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From Wiman-Valiron theory (see [8, p. 344]), we know that there exists a
set E with finite logarithmic measure such that for a point z satisfying
|z| = r /∈ E and |f(z)| = M(r, f), we have

vf (r) < [log µf (r)]2, (2.8)

where µf (r) is a maximum term of f . By Cauchy’s inequality, we have
µf (r) ≤ M(r, f). This and (2.8) yield

vf (r) <
[
log |f(z)|]2, (r /∈ E). (2.9)

By f is transcendental function we know that vf (r) → ∞. Then for suffi-
ciently large |z| = r we have |f(z)| = M(r, f) ≥ 1, then

∣∣∣∣
Lf

f

∣∣∣∣ ≤ |Lf | ≤ exp{rβ+ε}. (2.10)

Also, by Lemma 2.1, for the above ε, there exists a set E1 ⊂ [0, 2π) that has
linear measure zero, such that if θ ∈ [0, 2π) − E1, then there is a constant
R1 = R1(θ) > 1 such that for all z satisfying arg z = θ and |z| ≥ R1, we
have

∣∣∣∣
f (k)(z)
f(z)

∣∣∣∣ ≤ |z|k(ρ(f)−1+ε), (k = 1, 2). (2.11)

By Lemma 2.2, there exists a ray arg z = θ ∈ [0, 2π)\E1 ∪ E2 ∪ E3, E3 =
{θ ∈ [0, 2π) : δ(P, θ) = 0 or δ(Q, θ) = 0} ⊂ [0, 2π), E1 ∪ E2 having linear
measure zero, E3 being a finite set, such that δ(P, θ) < 0, δ(Q, θ) > 0 and
for any given ε (0 < ε < n− β), we have for sufficiently large |z| = r

∣∣A0e
Q

∣∣ ≥ exp{(1− ε)δ(Q, θ)rn}, (2.12)
∣∣∣∣
f ′

f
A1e

P

∣∣∣∣ ≤ rρ(f)−1+ε exp{(1− ε)δ(P, θ)rn} < rρ(f)−1+ε. (2.13)

By (2.6), (2.10)–(2.13), we have

exp{(1− ε)δ(Q, θ)rn} ≤ |A0e
Q| ≤ exp{rβ+ε}+ rρ(f)−1+ε + r2(ρ(f)−1+ε).

(2.14)
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This is a contradiction by β + ε < n. Hence ρ(Lf ) ≥ n.

Case 2 Suppose now an = cbn (0 < c < 1). Then for any ray arg z = θ,
we have

δ(P, θ) = cδ(Q, θ).

Then, by Lemma 2.1 and Lemma 2.2, for any given ε (0 < ε <

min( 1−c
2(1+c) , n − β)), there exist Ej ⊂ [0, 2π) (j = 1, 2, 3) such that E1, E2

having linear measure zero and E3 being a finite set, where E1, E2 and E3

are defined as in the Case 1 respectively. We take the ray arg z = θ ∈
[0, 2π)\E1 ∪E2 ∪E3 such that δ(Q, θ) > 0 and for sufficiently large |z| = r,
we have (2.11), (2.12) and

∣∣∣∣
f ′

f
A1e

P

∣∣∣∣ ≤ rρ(f)−1+ε exp{(1 + ε)cδ(Q, θ)rn}. (2.15)

By (2.6), (2.10)–(2.12) and (2.15)

exp{(1− ε)δ(Q, θ)rn} ≤ |A0e
Q|

≤ exp{rβ+ε}+ rρ(f)−1+ε exp{(1 + ε)cδ(Q, θ)rn}+ r2(ρ(f)−1+ε). (2.16)

By ε
(
0 < ε < min

(
1−c

2(1+c) , n− β
))

, we have as r → +∞

exp{rβ+ε}
exp{(1− ε)δ(Q, θ)rn} → 0, (2.17)

rρ(f)−1+ε exp{(1 + ε)cδ(Q, θ)rn}
exp{(1− ε)δ(Q, θ)rn} → 0, (2.18)

r2(ρ(f)−1+ε)

exp{(1− ε)δ(Q, θ)rn} → 0. (2.19)

By (2.16)–(2.19), we get 1 ≤ 0. This is a contradiction. Hence ρ(Lf ) ≥ n.

3. Proof of Theorem 1.1

Assume that f is a solution of equation (1.3). We prove that f is of
infinite order. We suppose the contrary ρ(f) < ∞. By Lemma 2.5, we have
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n ≤ ρ(Lf ) = ρ(F ) < n and this is a contradiction. Hence, every solution
f of equation (1.3) is of infinite order. By Lemma 2.3, every solution f of
equation (1.3) satisfies (1.4).

4. Proof of Theorem 1.2

Assume that f0 is a solution of (1.3) with ρ(f0) = ρ < ∞. If f1 is a
second finite order solution of (1.3), then ρ(f1 − f0) < ∞, and f1 − f0 is
a solution of the corresponding homogeneous equation (1.2) of (1.3), but
ρ(f1− f0) = ∞ from Theorem A, this is a contradiction. Hence (1.3) has at
most one finite order solution f0 and all other solutions f1 of (1.3) satisfy
(1.4) by Lemma 2.3.

5. Proof of Theorem 1.3

We first prove ρ(gf ) = ρ(d2f
′′ + d1f

′ + d0f) = ∞. Suppose that f is a
solution of equation (1.3). Then by Theorem 1.1, we have ρ(f) = ∞. First
we suppose that d2 6≡ 0. Substituting f ′′ = F − A1e

P f ′ − A0e
Qf into gf ,

we get

gf − d2F =
(
d1 − d2A1e

P
)
f ′ +

(
d0 − d2A0e

Q
)
f. (3.1)

Differentiating both sides of equation (3.1) and replacing f ′′ with f ′′ =
F −A1e

P f ′ −A0e
Qf , we obtain

g′f − (d2F )′ − (
d1 − d2A1e

P
)
F

=
[
d2A

2
1e

2P − (
(d2A1)′ + P ′d2A1 + d1A1

)
eP − d2A0e

Q + d0 + d′1
]
f ′

+
[
d2A0A1e

P+Q − (
(d2A0)′ + Q′d2A0 + d1A0

)
eQ + d′0

]
f. (3.2)

Then, by (1.5)–(1.7), (3.1) and (3.2), we have

α1f
′ + α0f = gf − d2F, (3.3)

β1f
′ + β0f = g′f − (d2F )′ − (

d1 − d2A1e
P

)
F. (3.4)

Set
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h = α1β0 − α0β1

=
(
d1 − d2A1e

P
)[

d2A0A1e
P+Q − (

(d2A0)′ + Q′d2A0 + d1A0

)
eQ + d′0

]

− (
d0 − d2A0e

Q
)[

d2A
2
1e

2P − (
(d2A1)′ + P ′d2A1 + d1A1

)
eP

− d2A0e
Q + d0 + d′1

]
. (3.5)

Now check all the terms of h. Since the term d2
2A

2
1A0e

2P+Q is eliminated,
by (3.5) we can write h = Ψ2(z) − d2

2A
2
0e

2Q, where Ψ2(z) is defined as in
Lemma 2.4 (ii). By d2 6≡ 0, A0 6≡ 0 and Lemma 2.4 (ii), we see that h 6≡ 0.
By (3.3), (3.4) and (3.5), we obtain

f =
α1

(
g′f − (d2F )′ − α1F

)− β1(gf − d2F )
h

. (3.6)

If ρ(gf ) < ∞, then by (3.6) we get ρ(f) < ∞ and this is a contradiction.
Hence ρ(gf ) = ∞.

Set w(z) = d2f
′′ + d1f

′ + d0f − ϕ. Then, by ρ(ϕ) < ∞, we have
ρ(w) = ρ(gf ) = ρ(f) = ∞. In order to prove λ(gf − ϕ) = ∞, we need to
prove only λ(w) = ∞. Using gf = w + ϕ, we get from (3.6)

f =
α1

(
w′ + ϕ′ − (d2F )′ − α1F

)− β1(w + ϕ− d2F )
h

. (3.7)

So,

f =
α1w

′ − β1w

h
+ ψ, (3.8)

where ψ is defined in (1.9). Substituting (3.8) into equation (1.3), we obtain

α1

h
w′′′ + φ2w

′′ + φ1w
′ + φ0w

= F − (
ψ′′ + A1(z)eP (z)ψ′ + A0(z)eQ(z)ψ

)
= A, (3.9)

where φj (j = 0, 1, 2) are meromorphic functions with ρ(φj) < ∞ (j =
0, 1, 2). Since ρ(ψ) < ∞, it follows that A 6≡ 0 by Theorem 1.1. By α1 6≡ 0,
h 6≡ 0 and Lemma 2.3, we obtain λ(w) = λ(w) = ρ(w) = ∞, i.e., λ(gf−ϕ) =
∞.
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Now suppose d2 ≡ 0, d1 6≡ 0 or d2 ≡ 0, d1 ≡ 0 and d0 6≡ 0. Using
a similar reasoning to that above we get λ(w) = λ(w) = ρ(w) = ∞, i.e.,
λ(gf − ϕ) = ∞.

Setting now ϕ(z) = z, we obtain that λ(gf − z) = τ(gf ) = ∞.

6. Proof of Theorem 1.4

By hypothesis of Theorem 1.4, ψ(z) is not a solution of equation (1.3).
Then

F − (
ψ′′ + A1(z)eP (z)ψ′ + A0(z)eQ(z)ψ

) 6≡ 0.

By using Theorem 1.2 and similar reasoning to that in the proof of Theorem
1.3, we can prove Theorem 1.4.

7. Proof of Theorem 1.5

Suppose that f1 is a solution of equation (1.10) and f2 is a solution of
equation (1.11). Set w = f1 − Cf2. Then w is a solution of equation

w′′ + A1(z)eP (z)w′ + A0(z)eQ(z)w = F1 − CF2.

By ρ(F1 − CF2) < n, F1 − CF2 6≡ 0 and Theorem 1.1, we have ρ(w) = ∞.
Thus, by using Theorem 1.3, we obtain Theorem 1.5.
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Department of Mathematics

Laboratory of Pure and Applied Mathematics

University of Mostaganem

B. P. 227 Mostaganem, Algeria

E-mail: belaidi@univ-mosta.dz

belaidibenharrat@yahoo.fr

A. El Farissi

Department of Mathematics

Laboratory of Pure and Applied Mathematics

University of Mostaganem

B. P. 227 Mostaganem, Algeria

E-mail: elfarissi.abdallah@yahoo.fr


