On positive solutions for \boldsymbol{p}-Laplacian systems with sign-changing nonlinearities

Dang Dinh Hai

(Received December 2, 2008; Revised April 3, 2009)

Abstract

We consider the existence and multiplicity of positive solutions to the quasilinear system $$
\left\{\begin{array}{l} -\Delta_{p_{i}} u_{i}=\mu_{i} a_{i}(x) f_{i}\left(u_{1}, \ldots, u_{n}\right) \text { in } \Omega, i=1, \ldots, n \\ u_{i}=0 \text { on } \partial \Omega \end{array}\right.
$$ where Ω is a bounded domain in \mathbb{R}^{N} with a smooth boundary $\partial \Omega, \Delta_{p_{i}} u_{i}=$ $\operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right), p_{i}>1, \mu_{i}$ are positive parameters, and f_{i} are allowed to change sign.

Key words: p-Laplace, systems, sign-changing, positive solutions.

1. Introduction

Consider the system

$$
\left\{\begin{array}{l}
-\Delta_{p_{i}} u_{i}=\mu_{i} a_{i}(x) f_{i}\left(u_{1}, \ldots, u_{n}\right) \text { in } \Omega, i=1, \ldots, n, \tag{I}\\
u_{i}=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $\Delta_{p_{i}} u_{i}=\operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right), p_{i}>1, f_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}, \mu_{i}$ are positive constants, $i=1, \ldots, n$, and Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$.

The p-Laplace operator arises in the theory of non-Newtonian fluids, reaction-diffusion problems, flow through porous media, and petroleum extraction (see [9]). The system (I) with f_{i} nonnegative has been studied extensively in recent years (see e.g., [3], [5], [13] and the references therein). In this paper, we are interested in the case when f_{i} may take negative values. We shall establish the existence of positive solutions for (I) for large μ_{i} when f_{i} are positive near $\mathbf{0}$ or when f_{i} are eventually positive and p-sublinear at infinity. In particular, Theorems 1.1 and 1.2 below unify and extend results

[^0]in [11], [18] to systems. Our approach is based on the method of sub- and supersolutions.

We make the following assumptions:
(A.1) $a_{i} \in L^{\infty}(\Omega), a_{i} \geq 0$ and $a_{i} \not \equiv 0, i=1, \ldots, n$.
(A.2) $f_{i}:[0, \infty] \times \cdots \times[0, \infty] \rightarrow \mathbb{R}$ are continuous for all i.
(A.3) There exist $r_{1}, \ldots, r_{n}>0$ such that for all $i, f_{i}\left(u_{1}, \ldots, u_{n}\right)=0$ if $u_{i}=r_{i}, u_{j} \in\left[0, r_{j}\right]$ for $j \neq i$ and $f_{i}\left(u_{1}, \ldots, u_{n}\right)>0$ if $u_{i} \in\left(0, r_{i}\right)$, $u_{j} \in\left[0, r_{j}\right]$ for $j \neq i$.
(A.4) There exist nonnegative numbers k, A, L, γ with $A, L>0, \gamma<1 / N$, such that for all i,

$$
f_{i}\left(u_{1}, \ldots, u_{n}\right) \geq-k
$$

for all $u=\left(u_{1}, \ldots, u_{n}\right)$, and

$$
f_{i}\left(u_{1}, \ldots, u_{n}\right) \geq \frac{L}{u_{i}^{\gamma}} \text { when } u_{i}>A
$$

(A.5) $\lim _{\|u\| \rightarrow \infty} \frac{f_{i}\left(u_{1}, \ldots, u_{n}\right)}{\|u\|^{p_{i}-1}}=0$ for all i, where $\|u\|=\max _{1 \leq i \leq n}\left|u_{i}\right|, u=$ $\left(u_{1}, \ldots, u_{n}\right)$.

By a positive solution of (I), we mean a function $u=\left(u_{1}, \ldots, u_{n}\right) \in$ $W_{0}^{1, p_{1}}(\Omega) \times \cdots \times W_{0}^{1, p_{n}}(\Omega)$ that satisfies (I) in the weak sense i.e.,

$$
\int_{\Omega}\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i} . \nabla \xi d x=\int_{\Omega} \mu_{i} a_{i}(x) f_{i}\left(u_{1}, \ldots, u_{n}\right) \xi d x \forall \xi \in W_{0}^{1, p_{i}}(\Omega),
$$

and $u_{i}>0$ in Ω for all i.
Theorem 1.1 Let (A.1)-(A.3) hold. Then there exists $\mu_{0}>0$ such that problem (I) has a positive solution $u=\left(u_{1}, \ldots, u_{n}\right)$ when $\min _{1 \leq i \leq n} \mu_{i}>\mu_{0}$. Furthermore

$$
\left\|u_{i}\right\|_{\infty} \rightarrow r_{i} \text { as } \min _{1 \leq i \leq n} \mu_{i} \rightarrow \infty
$$

for $i=1, \ldots, n$. If, in addition, $\lim _{\|u\| \rightarrow 0} \frac{f_{i}\left(u_{1}, \ldots, u_{n}\right)}{\|u\|^{p_{i}-1}}=0$ for all i, then (I) has a second nontrivial nonnegative solution when $\min _{1 \leq i \leq n} \mu_{i}$ is large.

Theorem 1.2 Let (A.1), (A.2), (A.4) and (A.5) hold. Then there exists
$\mu_{0}>0$ such that problem (I) has a positive solution $u=\left(u_{1}, \ldots, u_{n}\right)$ when $\min _{1 \leq i \leq n} \mu_{i}>\mu_{0}$. Furthermore

$$
\left\|u_{i}\right\|_{\infty} \rightarrow \infty \text { as } \min _{1 \leq i \leq n} \mu_{i} \rightarrow \infty
$$

for $i=1, \ldots, n$. If, in addition, $f_{i} \geq 0$ and $\lim _{\|u\| \rightarrow 0} \frac{f_{i}\left(u_{1}, \ldots, u_{n}\right)}{\|u\|^{p_{i}-1}}=0$ for all i, then (I) has a second nonnegative nontrivial solution when $\min _{1 \leq i \leq n} \mu_{i}$ is large.

Theorem 1.3 Let (A.1)-(A.2) hold and suppose there exists $C>0$ such that

$$
f_{i}\left(u_{1}, \ldots, u_{n}\right) \leq C\|u\|^{p_{i}-1}
$$

for all u and i. Then there exists $\tilde{\mu}_{0}>0$ such that (I) has no nonnegative nontrivial solutions when $\max _{1 \leq i \leq n} \mu_{i}<\tilde{\mu}_{0}$.

Note that $\tilde{\mu}_{0} \leq \mu_{0}$.
Remark 1 Theorems 1.1 and 1.2 generalize and improve results in [11], [18]. In [18], the existence of at least two positive solutions to

$$
\begin{equation*}
-\Delta_{p} u=\lambda f(u) \text { in } \Omega, u=0 \text { on } \partial \Omega \tag{*}
\end{equation*}
$$

was established for λ large for $f \in C^{1}\left(\mathbb{R}^{+}\right)$satisfying
(F.1) $f(0)=f(\beta)=0, f>0$ on $(0, \beta), f<0$ on $(\beta, \infty), \lim _{u \rightarrow 0} \frac{f(u)}{u^{p-1}}=0$, and $\left(f(s) / s^{p-1}\right)^{\prime \prime}<0$ on $(0, \beta)$ if $p>2$,
or
(F.2) f is strictly increasing on $\mathbb{R}^{+}, f(0)=0, \lim _{u \rightarrow 0} \frac{f(u)}{u^{p-1}}=0$, and there exist $\alpha_{1}, \alpha_{2}>0, \mu \in(0, p-1)$ so that $f(u) \leq \alpha_{1}+\alpha_{2} u^{\mu}$ for $u \geq 0$.
In [11], it was proved that $\left({ }^{*}\right)$ has a positive solution for λ large for f satisfying $\lim _{u \rightarrow \infty} \frac{f(u)}{u^{p-1}}=0$ and $f(u)>L>0$ for u large. A second positive solution was established under the additional assumptions that $f \geq 0$ and $\lim _{u \rightarrow 0} \frac{f(u)}{u^{p-1}}=0$.

Examples 1 Let $a_{i}, i=1,2$, satisfy (A.1) and let $p_{1}, p_{2}>1$. Consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p_{1}} u=\mu_{1} a_{1}(x) \frac{(u+v)^{r_{1}}\left(1-u^{2}\right)}{1+u v} \quad \text { in } \Omega \\
-\Delta_{p_{2}} v=\mu_{2} a_{2}(x)(u+v)^{r_{2}}(1-v) e^{-u v} \quad \text { in } \Omega,
\end{array} \quad, u=v=0 \text { on } \partial \Omega . \quad(* *)\right.
$$

Then it follows from Theorems 1.1 and 1.3 that

a. For all $r_{1}, r_{2} \geq 0,\left({ }^{* *}\right)$ has a positive solution when $\min \left(\mu_{1}, \mu_{2}\right)$ is large.
b. For $r_{i}>p_{i}-1, i=1,2,\left({ }^{* *}\right)$ has at least two positive solutions when $\min \left(\mu_{1}, \mu_{2}\right)$ is large.
c. For $r_{i}=p_{i}-1, i=1,2,\left({ }^{* *}\right)$ has no positive solutions when $\max \left(\mu_{1}, \mu_{2}\right)$ is small

Examples 2 The problem

$$
\left\{\begin{array}{ll}
-\Delta_{p_{1}} u=\mu_{1} a_{1}(x) \frac{(u+v)^{s_{1}}+A}{u^{\gamma_{1}+1}} & \text { in } \Omega \\
-\Delta_{p_{2}} v=\mu_{2} a_{2}(x) \frac{(u+v)^{s_{2}}+B}{v^{\gamma_{2}+1}} & \text { in } \Omega
\end{array}, u=v=0 \text { on } \partial \Omega\right.
$$

where $\gamma_{i} \in(0,1 / N), s_{i} \in\left(0, p_{i}-1\right), i=1,2$, and $A, B<0$ has a positive solution when $\min \left(\mu_{1}, \mu_{2}\right)$ is large and no positive solutions when $\max \left(\mu_{1}, \mu_{2}\right)$ is small.

Examples 3 The problem

$$
\left\{\begin{array}{ll}
-\Delta_{p_{1}} u=\mu_{1} a_{1}(x)\left(1-e^{-u^{\gamma_{1}}}\right) e^{\frac{1}{1+u v}} & \text { in } \Omega \\
-\Delta_{p_{2}} v=\mu_{2} a_{2}(x)\left(1-e^{-v^{\gamma_{2}}}\right) e^{\frac{1}{2+u v}} & \text { in } \Omega
\end{array}, u=v=0 \text { on } \partial \Omega\right.
$$

where $\gamma_{i}>p_{i}-1, i=1,2$, has at least two positive solutions when $\min \left(\mu_{1}, \mu_{2}\right)$ is large by Theorem 1.2.

2. Preliminary results

Let $\Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right), \Psi=\left(\Psi_{1}, \ldots, \Psi_{n}\right) \in \prod_{i=1}^{n}\left(W_{0}^{1, p_{i}}(\Omega) \cap L^{\infty}(\Omega)\right)$ with $\Phi \leq \Psi$ in Ω i.e., $\Phi_{i} \leq \Psi_{i}$ in Ω for each $i \in\{1, \ldots, n\}$. Then we say that $\{\Phi, \Psi\}$ forms a system of sub-supersolutions for (I) if for each $i \in\{1, \ldots, n\}$, $\Phi_{i} \leq 0$ on $\partial \Omega, \Psi_{i} \geq 0$ on $\partial \Omega$,

$$
\begin{equation*}
\int_{\Omega}\left|\nabla \Phi_{i}\right|^{p_{i}-2} \nabla \Phi_{i} . \nabla \xi d x \leq \int_{\Omega} \mu_{i} a_{i}(x) f_{i}(\tilde{\Phi}) \xi d x \quad \forall \xi \in W_{0}^{1, p_{i}}(\Omega), \xi \geq 0 \tag{2.1}
\end{equation*}
$$

where $\tilde{\Phi}=\left(\tilde{\Phi}_{1}, \ldots, \tilde{\Phi}_{n}\right), \tilde{\Phi}_{i}=\Phi_{i}, \tilde{\Phi}_{k} \in\left[\Phi_{k}, \Psi_{k}\right]$ for $k \neq i$, and

$$
\begin{equation*}
\int_{\Omega}\left|\nabla \Psi_{i}\right|^{p_{i}-2} \nabla \Psi_{i} . \nabla \xi d x \geq \int_{\Omega} \mu_{i} a_{i}(x) f_{i}(\tilde{\Psi}) \xi d x \quad \forall \xi \in W_{0}^{1, p_{i}}(\Omega), \xi \geq 0 \tag{2.2}
\end{equation*}
$$

where $\tilde{\Psi}=\left(\tilde{\Psi}_{1}, \ldots, \tilde{\Psi}_{n}\right), \tilde{\Psi}_{i}=\Psi_{i}, \tilde{\Psi}_{k} \in\left[\Phi_{k}, \Psi_{k}\right]$ for $k \neq i$. It is well known (see e.g., [4] or Appendix) that if such a system exists then (I) has a solution u with $\Phi \leq u \leq \Psi$ in Ω.

We shall denote the norms in $C^{1, \alpha}(\bar{\Omega})$ and $L^{r}(\Omega)$ by $|\cdot|_{1, \alpha}$ and $\|\cdot\|_{r}$ respectively.

Lemma 2.1 ([12]) Let $f \in L^{q}(\Omega)$ for some $q>N$, and let $u \in W_{0}^{1, p}(\Omega)$ be the solution of

$$
\begin{align*}
-\Delta_{p} u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega \tag{2.3}
\end{align*}
$$

Then there exist $\alpha \in(0,1)$ and $C>0$ independent of u and f such that $u \in C^{1, \alpha}(\bar{\Omega})$ and

$$
\begin{equation*}
|u|_{1, \alpha} \leq C\|f\|_{q}^{\frac{1}{p-1}} . \tag{2.4}
\end{equation*}
$$

Furthermore, the map $K: L^{q}(\Omega) \rightarrow C^{1}(\bar{\Omega})$ defined by $K f=u$ is compact.
Proof. Suppose that $p>N$. Then, by the Sobolev Imbedding Theorem, $u \in C(\bar{\Omega})$ and there exists $C_{1}>0$ such that

$$
\begin{equation*}
\|u\|_{\infty} \leq C_{1}\|\nabla u\|_{p} \tag{2.5}
\end{equation*}
$$

Multiplying the equation in (2.3) by u and integrating gives

$$
\begin{equation*}
\|\nabla u\|_{p}^{p}=\int_{\Omega} f u d x \leq\|f\|_{q}\|u\|_{\infty}|\Omega|^{\frac{q-1}{q}} \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6), we obtain

$$
\begin{equation*}
\|u\|_{\infty} \leq C_{2}\|f\|_{q}^{\frac{1}{p-1}} \tag{2.7}
\end{equation*}
$$

where C_{2} is independent of u, f.

If $p \leq N$ then (2.7) was established in [10, Lemma 1.3]. Let v be the solution of

$$
-\Delta v=f \quad \text { in } \Omega, v=0 \text { on } \partial \Omega
$$

Then $v \in W^{2, q}(\Omega)$ and since $q>N$, there exists $\beta \in(0,1)$ independent of v, f such that $v \in C^{1, \beta}(\bar{\Omega})$ and

$$
|v|_{C^{1, \beta}} \leq C_{3}\|f\|_{q},
$$

where C_{3} is a constant independent of v, f.
Let $\tilde{u}=u\|f\|_{q}^{-\frac{1}{p-1}}, \tilde{v}=v\|f\|_{q}^{-1}$. Then \tilde{u} satisfies

$$
\operatorname{div}\left(|\nabla \tilde{u}|^{p-2} \nabla \tilde{u}-\nabla \tilde{v}(x)\right)=0 \text { in } \Omega, \tilde{u}=0 \text { on } \partial \Omega .
$$

Since $\|\tilde{u}\|_{\infty} \leq C_{2}$ and

$$
|\nabla \tilde{v}(x)-\nabla \tilde{v}(y)| \leq C_{3}|x-y|^{\beta} \text { for all } x, y \in \Omega
$$

it follows from Lieberman [14] that there exists $\alpha \in(0,1)$ independent of u and f such that $|\tilde{u}|_{1, \alpha} \leq C$.

Next, we verify that K is compact. In view of (2.4), we only need to show that K is continuous. Let $f_{n} \rightarrow f$ in $L^{q}(\Omega)$ and $u_{n}=K f_{n}$. Then, by (2.4), $\left(u_{n}\right)$ is bounded in $C^{1, \alpha}(\bar{\Omega})$. Multiplying the equation

$$
-\left(\Delta_{p} u_{n}-\Delta_{p} u\right)=f_{n}-f \text { in } \Omega
$$

by $u_{n}-u$ and integrating, we obtain

$$
\int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u-|\nabla u|^{p-2} \nabla u\right) \cdot\left(u_{n}-u\right) d x=\int_{\Omega}\left(f_{n}-f\right)\left(u_{n}-u\right) d x .
$$

From this, (2.4), and the inequality (see [16])

$$
\begin{equation*}
\left(|x|^{p-2} x-|y|^{p-2} y\right) \cdot(x-y) \geq \frac{c|x-y|^{\max (p, 2)}}{(|x|+|y|)^{2-\min (p, 2)}} \tag{2.8}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{n}$, where c is a positive constant depending only on p, we obtain

$$
\left\|\nabla\left(u_{n}-u\right)\right\|_{r}^{r} \leq C\left\|f_{n}-f\right\|_{q},
$$

where $r=\max (p, 2)$ and C depends only on Ω, f, p, q. Thus $u_{n} \rightarrow u$ in $W_{0}^{1, r}(\Omega)$ and since $C^{1, \alpha}(\bar{\Omega})$ is compactly imbedded in $C^{1}(\bar{\Omega}), u_{n} \rightarrow u$ in $C^{1}(\bar{\Omega})$. This completes the proof of Lemma 2.1.

Lemma 2.2 Let $p>1, M>0, q>N$ and $f, g \in L^{q}(\Omega)$ with $\|f\|_{q}$, $\|g\|_{q}<M$. Let u, v satisfy

$$
\begin{gathered}
-\Delta_{p} u=f \text { in } \Omega, \quad-\Delta_{p} v=g \text { in } \Omega, \\
u=0 \text { on } \partial \Omega, \quad v=0 \text { on } \partial \Omega .
\end{gathered}
$$

Then $|u-v|_{1,0} \rightarrow 0$ as $\|f-g\|_{1} \rightarrow 0$.
Proof. By Lemma 2.1, there exist constants $\alpha, C_{M}>0$ such that $u, v \in$ $C^{1, \alpha}(\bar{\Omega})$ and $|u|_{1, \alpha},|v|_{1, \alpha}<C_{M}$.

Multiplying the equation

$$
-\Delta_{p} u-\left(-\Delta_{p} v\right)=f-g \text { in } \Omega
$$

by $u-v$ and integrating gives

$$
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u-|\nabla u|^{p-2} \nabla u\right) \cdot \nabla(u-v) d x=\int_{\Omega}(f-g)(u-v) d x .
$$

Hence it follows from (2.8) that

$$
\int_{\Omega}|\nabla(u-v)|^{r} d x \leq c_{1}\|f-g\|_{1}\|u-v\|_{\infty} \leq c_{2}\|f-g\|_{1}
$$

where $r=\max (p, 2)$ and c_{1}, c_{2} are constants depending only on p, M.
Thus $\|\nabla(u-v)\|_{r} \rightarrow 0$ as $\|f-g\|_{1} \rightarrow 0$. Since $|u-v|_{1, \alpha}<2 C_{M}$ and $C^{1, \alpha}(\bar{\Omega})$ is compactly imbedded in $C^{1}(\bar{\Omega})$, Lemma 2.2 follows.

For each i, let $\lambda_{1, i}$ be the first eigenvalue of

$$
\begin{gathered}
-\Delta_{p_{i}} u=\lambda a_{i}(x)|u|^{p_{i}-2} u \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{gathered}
$$

and let $\phi_{1, i}$ be the corresponding positive eigenfunction with $\left\|\phi_{1, i}\right\|_{\infty}=1$. It is well known that $\lambda_{1, i}>0$ and $\phi_{1, i} \in C^{1}(\bar{\Omega})$ (see e.g., [2]). Let ψ_{i} satisfy

$$
-\Delta_{p_{i}} \psi_{i}=a_{i}(x) \text { in } \Omega, \quad \psi_{i}=0 \text { on } \partial \Omega
$$

Then $\psi_{i}>0$ in Ω and $\frac{\partial \psi_{i}}{\partial n}<0$ on $\partial \Omega$, where n denotes the outer unit normal vector.

For $u=\left(u_{1}, \ldots, u_{n}\right), v=\left(v_{1}, \ldots, v_{n}\right) \in C(\bar{\Omega})^{n}$, we say that $u \ll v$ if there exists $\varepsilon>0$ such that $u_{i}+\varepsilon \phi_{1, i} \leq v_{i}$ in Ω for all i.

We are now ready to give the proofs of the main results.

3. Proofs of main results

Proof of Theorem 1.1. Let $x_{i} \in \Omega$ be such that $\phi_{1, i}\left(x_{i}\right)=\left\|\phi_{1, i}\right\|_{\infty}=1$ and D be such that $\bar{D} \subset \Omega$ and $x_{i} \in D$ for all i.

Let $0<2 \varepsilon<\min _{1 \leq i \leq n} r_{i}, d_{i} \equiv r_{i}-\varepsilon<c_{i}<r_{i}$, and let Φ_{i} be the solution of

$$
-\Delta_{p_{i}} \Phi_{i}=\left\{\begin{array}{ll}
c_{i}^{p_{i}-1} \lambda_{1, i} a_{i}(x) \phi_{1, i}^{p_{i}-1} & \text { in } D \\
0 & \text { in } \Omega \backslash \bar{D},
\end{array}, \Phi_{i}=0 \text { on } \partial \Omega\right.
$$

Since

$$
-\Delta_{p_{i}}\left(c_{i} \phi_{1, i}\right)=c_{i}^{p_{i}-1} \lambda_{1, i} a_{i}(x) \phi_{1, i}^{p_{i}-1} \quad \text { in } \Omega,
$$

it follows from the weak comparison principle [15] and the strong maximum principle [17] that $0<\Phi_{i} \leq c_{i} \phi_{1, i}$ in Ω. By Lemma $2.2,\left|\Phi_{i}-c_{i} \phi_{1, i}\right|_{C^{1}} \rightarrow 0$ as $|\Omega \backslash \bar{D}| \rightarrow 0$, where $|\Omega \backslash \bar{D}|$ denotes the Lebesgue measure of $\Omega \backslash \bar{D}$. Thus we can choose D so that

$$
\left(c_{i}-\varepsilon\right) \phi_{1, i} \leq \Phi_{i} \leq c_{i} \phi_{1, i} \quad \text { in } \Omega
$$

for all i. Let $\Phi \equiv \Phi_{D}=\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ and $\Psi=\left(r_{1}, \ldots, r_{n}\right)$. We shall verify that $\{\Phi, \Psi\}$ forms a system of sub-supersolutions for (I). Let $\tilde{\Phi}=$ $\left(\tilde{\Phi}_{1}, \ldots, \tilde{\Phi}_{n}\right)$, where $\tilde{\Phi}_{i}=\Phi_{i}$ and $\tilde{\Phi}_{k} \in\left[\Phi_{k}, r_{k}\right]$ for $k \neq i$. By (A.3), $f_{i}(\tilde{\Phi}) \geq 0$ in Ω and $f_{i}(\tilde{\Phi}) \geq m_{i}$ in D, where

$$
m_{i}=\min \left\{f_{i}(x):\left(c_{i}-\varepsilon\right) \min _{\bar{D}} \phi_{1, i} \leq x_{i} \leq c_{i}, 0 \leq x_{j} \leq r_{j}, j \neq i\right\}>0
$$

Let $\mu_{0}>0$ be such that $\mu_{0} m_{i}>\lambda_{1, i} c_{i}^{p_{i}-1}$ for all i and suppose $\min _{1 \leq i \leq n} \mu_{i}>\mu_{0}$. For $\xi \in W_{0}^{1, p_{i}}(\Omega), \xi \geq 0$, we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla \Phi_{i}\right|^{p_{i}-2} \nabla \Phi_{i} . \nabla \xi d x & =\int_{D} c_{i}^{p_{i}-1} \lambda_{1, i} a_{i}(x) \phi_{1, i}^{p_{i}-1} \xi d x \leq \mu_{0} m_{i} \int_{D} a_{i}(x) \xi d x \\
& \leq \mu_{i} \int_{D} a_{i}(x) f_{i}(\tilde{\Phi}) \xi d x \leq \mu_{i} \int_{\Omega} a_{i}(x) f_{i}(\tilde{\Phi}) \xi d x
\end{aligned}
$$

i.e., Φ satisfies (2.1). Also Ψ satisfies (2.2) because of (A.3), which proves the claim. Hence (I) has a solution $u=\left(u_{1}, \ldots, u_{n}\right)$ with

$$
\left(c_{i}-\varepsilon\right) \phi_{1, i} \leq \Phi_{i} \leq u_{i} \leq r_{i} \text { in } \Omega .
$$

In particular, $r_{i}-2 \varepsilon \leq\left\|u_{i}\right\|_{\infty} \leq r_{i}$. Replacing 2ε by $\frac{2 \varepsilon}{m}, m \in \mathbb{N}$, we obtain an increasing sequence ($\mu_{0, m}$) of positive numbers with $\mu_{0,1}=\mu_{0}$ such that (I) has a positive solution $u_{m}=\left(u_{m, 1}, \ldots, u_{m, n}\right)$ with

$$
r_{i}-\frac{2 \varepsilon}{m} \leq\left\|u_{m, i}\right\|_{\infty} \leq r_{i}
$$

for all i when $\min _{1 \leq i \leq n} \mu_{i}>\mu_{0, m}$. Define $u=u_{m}$ if $\mu_{0, m}<\min _{1 \leq i \leq n} \mu_{i} \leq$ $\mu_{0, m+1}$. Then clearly $\left\|u_{i}\right\|_{\infty} \rightarrow r_{i}$ as $\min _{1 \leq i \leq n} \mu_{i} \rightarrow \infty$.

Suppose next that $\lim _{\|u\| \rightarrow 0} \frac{f_{i}\left(u_{1}, \ldots, u_{n}\right)}{\|u\|^{p_{i}-1}}=0$ for all i. Define $\bar{f}_{i}\left(u_{1}, \ldots, u_{n}\right)=f_{i}\left(\bar{u}_{1}, \ldots, \bar{u}_{n}\right)$, where $\bar{u}_{j}=\min \left(u_{j}^{+}, r_{j}\right), u_{j}^{+}=\max \left(u_{j}, 0\right)$, $j=1, \ldots, n$. Let $\varepsilon>0$ and $\Phi_{0}=(-\varepsilon, \ldots,-\varepsilon), \Psi_{0}=\left(\varepsilon \psi_{1}, \ldots, \varepsilon \psi_{n}\right)$, $\Psi_{1}=\left(2 r_{1}, \ldots, 2 r_{n}\right)$. Then, if ε is sufficiently small, $\Phi_{0} \ll \Psi_{0} \ll \Phi \ll \Psi_{1}$ in Ω. We shall verify that $\left\{\Phi_{0}, \Psi_{0}\right\}$ forms a system of sub-supersolutions for the system

$$
\left\{\begin{array}{l}
-\Delta_{p_{i}} u_{i}=\mu_{i} a_{i}(x) \bar{f}_{i}\left(u_{1}, \ldots, u_{n}\right) \text { in } \Omega, i=1, \ldots, n \tag{*}\\
u_{i}=0 \text { on } \partial \Omega
\end{array}\right.
$$

if ε is sufficiently small. Choose $\delta>0$ so that $\mu_{i} \delta\left(\max _{1 \leq j \leq n}\left\|\psi_{j}\right\|_{\infty}\right)^{p_{i}-1}<$ $(1 / 2)^{p_{i}-1}$ for all i. Since $\lim _{\|u\| \rightarrow 0} \frac{f_{i}\left(u_{1}, \ldots, u_{n}\right)}{\|u\|^{p_{i}-1}}=0$ for all i, there exists $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
f_{i}\left(z_{1}, \ldots, z_{n}\right) \leq \delta\|z\|^{p_{i}-1} \text { for all } i \tag{3.1}
\end{equation*}
$$

whenever $\|z\|<\varepsilon_{0}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}_{+}^{n}$. Let $\varepsilon>0$ be small enough so that $\varepsilon \max _{1 \leq j \leq n}\left\|\psi_{j}\right\|_{\infty}<\min _{1 \leq j \leq n}\left(\varepsilon_{0}, r_{j}\right)$. Let $\xi \in W_{0}^{1, p_{i}}(\Omega), \xi \geq 0$, $v_{i}=\varepsilon \psi_{i}, v_{k} \in\left[-\varepsilon, \varepsilon \psi_{k}\right]$ for $k \neq i$. Then we have

$$
\begin{aligned}
& \mu_{i} \int_{\Omega} a_{i}(x) \bar{f}_{i}\left(v_{1}, \ldots, v_{n}\right) \xi d x=\mu_{i} \int_{\Omega} a_{i}(x) f_{i}\left(\bar{v}_{1}, \ldots, \bar{v}_{n}\right) \xi d x \\
& \quad \leq \mu_{i} \delta\|\bar{v}\|^{p_{i}-1} \int_{\Omega} a_{i}(x) \xi d x \leq \mu_{i} \delta\left(\varepsilon \max _{1 \leq j \leq n}\left\|\psi_{j}\right\|_{\infty}\right)^{p_{i}-1} \int_{\Omega} a_{i}(x) \xi d x \\
& \quad \leq \varepsilon^{p_{i}-1} \int_{\Omega} a_{i}(x) \xi d x=\int_{\Omega}\left|\nabla\left(\varepsilon \psi_{i}\right)\right|^{p_{i}-2} \nabla\left(\varepsilon \psi_{i}\right) . \nabla \xi d x
\end{aligned}
$$

On the other hand, if $w_{i}=-\varepsilon, w_{k} \in\left[-\varepsilon, \varepsilon \psi_{k}\right]$ for $k \neq i$, we have

$$
\mu_{i} \int_{\Omega} a_{i}(x) \bar{f}_{i}\left(w_{1}, \ldots, w_{n}\right) \xi d x \geq 0=\int_{\Omega}\left|\nabla w_{i}\right|^{p_{i}-2} \nabla w_{i} . \nabla \xi d x
$$

Thus $\left\{\Phi_{0}, \Psi_{0}\right\}$ is a system of sub-supersolutions of (I*). Similarly, it can be verified that $\left\{\Phi, \Psi_{1}\right\},\left\{\Phi_{0}, \Psi_{1}\right\}$ are systems of sub-supersolutions of (I*).

It follows from the maximum principle that if u is a solution of $\left(I^{*}\right)$ then $0 \leq u_{i} \leq r_{i}$ in Ω, and hence u is a nonnegative solution of (I) with $\Phi_{0} \ll$ $u \ll \Psi_{1}$. We shall show next that any solution of (I*) with $\Phi_{0} \leq u \leq \Psi_{0}$ in Ω satisfies $\Phi_{0} \ll u \ll \Psi_{0}$. Clearly $\Phi_{0} \ll u$ since $u \geq 0$. Let u be a solution of ($\left.\mathrm{I}^{*}\right)$ with $\Phi_{0} \leq u \leq \Psi_{0}$ in Ω. By (3.1),

$$
\begin{aligned}
-\Delta_{p_{i}} u_{i} & =\mu_{i} a_{i}(x) \bar{f}_{i}\left(u_{1}, \ldots, u_{n}\right) \leq \mu_{i} a_{i}(x) \delta\|\bar{u}\|^{p_{i}-1} \\
& \leq \mu_{i} \delta\left(\varepsilon \max _{1 \leq j \leq n}\left\|\psi_{j}\right\|_{\infty}\right)^{p_{i}-1} a_{i}(x)
\end{aligned}
$$

which implies

$$
u_{i} \leq\left(\mu_{i} \delta\right)^{\frac{1}{p_{i}-1}}\left(\max _{1 \leq j \leq n}\left\|\psi_{j}\right\|_{\infty}\right) \varepsilon \psi_{i} \leq(1 / 2) \varepsilon \psi_{i} \text { in } \Omega
$$

i.e., $u \ll \Psi_{0}$.Using the strong comparison principle [6], [7], we have $\Phi_{D} \ll$ $\Phi_{D_{1}}$ if $\bar{D} \subset D_{1}$, and therefore can assume that there exists a solution u of (I*) with $\Phi \ll u \ll \Psi_{1}$.

Define $S_{i}=\left\{u_{i} \in C(\bar{\Omega}): \exists c>0\right.$ such that $\left|u_{i}\right| \leq c \phi_{1, i}$ in $\left.\Omega\right\}$. Then S_{i}
is a Banach space with norm $\left\|u_{i}\right\|_{\phi_{1, i}}=\inf \left\{c>0:\left|u_{i}\right| \leq c \phi_{1, i}\right.$ in $\left.\Omega\right\}$. Let $S=\prod_{i=1}^{n} S_{i}$ and define the following open sets in S :

$$
\begin{aligned}
\mathcal{O} & =\left\{u \in S: \Phi_{0} \ll u \ll \Psi_{1}\right\}, \\
\mathcal{O}_{1} & =\left\{u \in S: \Phi_{0} \ll u \ll \Psi_{0}\right\}, \\
\mathcal{O}_{2} & =\left\{u \in S: \Phi \ll u \ll \Psi_{1}\right\} .
\end{aligned}
$$

If every solution v of (I^{*}) with $\Phi \leq v \leq \Psi_{1}$ in Ω satisfies $v \in \mathcal{O}_{2}$ then it follows from Amann's three-solution Theorem (see [1], [8] or Appendix) that (I*) has a solution $u_{1} \in \mathcal{O} \backslash\left(\overline{\mathcal{O}}_{1} \cup \overline{\mathcal{O}}_{2}\right)$. In particular, $u_{1} \neq 0, u_{1} \neq u$. On the other hand, if there exists a solution v of (I^{*}) with $\Phi \leq v \leq \Psi_{1}$ in Ω but $v \notin \mathcal{O}_{2}$ then v is a second positive solution of (I). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Let $k \geq 0$ be given by (A.4). By Lemma 2.1, there exists a solution $v_{i} \in C^{1, \alpha}(\bar{\Omega})$ of

$$
-\Delta_{p_{i}} v_{i}=\frac{a_{i}(x)}{d^{\gamma}(x)} \text { in } \Omega, \quad v_{i}=0 \text { on } \partial \Omega,
$$

where $d(x)$ denotes the distance from x to $\partial \Omega$. Let $c_{0}, c_{1}>0$ be such that $c_{0} d(x) \leq v_{i}(x) \leq c_{1} d(x)$ for all i and $x \in \Omega$, and ϕ_{i} be the solution of

$$
-\Delta_{p_{i}} \phi_{i}=\left\{\begin{array}{l}
\frac{a_{i}(x)}{d^{\gamma}(x)} \text { in } D_{i} \\
-\frac{m a_{i}(x)}{d^{\gamma}(x)} \quad \text { in } \Omega \backslash \bar{D}_{i}
\end{array} \quad, \quad \phi_{i}=0 \text { on } \partial \Omega,\right.
$$

where $D_{i}=\left\{x \in \Omega: d(x)>\frac{4 A}{c_{0} \mu_{i}^{\beta_{i} /\left(p_{i}-1\right)}}\right\}, \beta_{i}=\left(1+\frac{\gamma}{p_{i}-1}\right)^{-1}$, and $m=$ $k\left(\frac{4 A}{c_{0}}\right)^{\gamma}$. Then $\phi_{i} \leq v_{i}$ in Ω by the comparison principle. Since

$$
\mu_{i} a_{i}(x) f_{i}\left(u_{1}, \ldots, u_{n}\right)=\tilde{\mu}_{i} a_{i}(x) F_{i}\left(u_{1}, \ldots, u_{n}\right)
$$

where $\tilde{\mu}_{i}=\frac{\mu_{i} L}{2 c_{1}^{\gamma}}, F_{i}\left(u_{1}, \ldots, u_{n}\right)=\frac{2 c_{1}^{\gamma}}{L} f_{i}\left(u_{1}, \ldots, u_{n}\right)$, we can assume that $L>c_{1}^{\gamma}$.

By Lemma 2.2, $\left|\phi_{i}-v_{i}\right|_{C^{1}} \rightarrow 0$ as $\mu_{i} \rightarrow \infty$. Since $v_{i}>0$ in Ω with $\frac{\partial v_{i}}{\partial n}<0$ on $\partial \Omega$, there exists $\mu_{0}>0$ such that

$$
\phi_{i} \geq \frac{1}{2} v_{i} \text { in } \Omega
$$

for all i provided that $\min _{1 \leq i \leq n} \mu_{i}>\mu_{0}$, which we shall assume for the rest of the proof.

Define $\tilde{f}_{i}\left(z_{1}, \ldots, z_{n}\right)=\sup _{0 \leq x_{i} \leq z_{i}} f_{i}\left(x_{1}, \ldots, x_{n}\right)$. By (A.5),

$$
\lim _{\|u\| \rightarrow \infty} \frac{\tilde{f}_{i}\left(u_{1}, \ldots, u_{n}\right)}{\|u\|^{p_{i}-1}}=0
$$

for all i, and hence there exists $M>0$ such that

$$
\frac{\tilde{f}_{i}(M, \ldots, M)}{M^{p_{i}-1}}<\frac{\left\|\psi_{i}\right\|_{\infty}^{1-p_{i}} \mu_{i}^{-1}}{2^{p_{i}-1}}
$$

for all i. Let $\Phi_{i}=\mu_{i}^{\frac{\beta_{i}}{p_{i}-1}} \phi_{i}, \Psi_{i}=M_{i} \psi_{i}$, where $M_{i}=M\left\|\psi_{i}\right\|_{\infty}^{-1}$ for all i. Then $\Phi \ll \Psi$ if M is large enough. We claim that $\Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ and $\Psi=\left(\Psi_{1}, \ldots, \Psi_{n}\right)$ form a system of sub-supersolutions for (I). Indeed, for $\xi \in W_{0}^{1, p_{i}}(\Omega), \xi \geq 0$, we have

$$
\begin{align*}
\int_{\Omega}\left|\nabla \Phi_{i}\right|^{p_{i}-2} \nabla \Phi_{i} . \nabla \xi d x & =\mu_{i}^{\beta_{i}} \int_{\Omega}\left(-\Delta_{p_{i}} \phi_{i}\right) \xi d x \\
& =\mu_{i}^{\beta_{i}} \int_{D_{i}} \frac{a_{i}(x)}{d^{\gamma}(x)} \xi d x-\mu_{i}^{\beta_{i}} m \int_{\Omega \backslash \bar{D}_{i}} \frac{a_{i}(x)}{d^{\gamma}(x)} \xi d x \tag{3.2}
\end{align*}
$$

In D_{i}, we have

$$
\mu_{i}^{\frac{\beta_{i}}{p_{i}-1}} \phi_{i} \geq \frac{\mu_{i}^{\frac{\beta_{i}}{p_{i}-1}} v_{i}}{2} \geq \frac{\mu_{i}^{\frac{\beta_{i}}{p_{i}-1}} c_{0} d(x)}{2}>2 A
$$

and hence it follows from (A.4) that

$$
f_{i}(\tilde{\Phi}) \geq \frac{L}{\mu_{i}^{\frac{\beta_{i} \gamma}{p_{i}-1}} \phi_{i}^{\gamma}} \geq \frac{L}{\mu_{i}^{\frac{\beta_{i} \gamma}{p_{i}-1}} v_{i}^{\gamma}} \geq \frac{L}{\mu_{i}^{\frac{\beta_{i} \gamma}{p_{i}-1}} c_{1}^{\gamma} d^{\gamma}(x)} \text { in } D_{i}
$$

where $\tilde{\Phi}_{i}=\Phi_{i}, \tilde{\Phi}_{k} \geq \Phi_{k}$ for $k \neq i$. This implies

$$
\begin{gather*}
\mu_{i} \int_{D_{i}} a_{i}(x) f_{i}(\tilde{\Phi}) \xi d x \geq \frac{\mu_{i}^{1-\frac{\beta_{i} \gamma}{p_{i}-1}} L}{c_{1}^{\gamma}} \int_{D_{i}} \frac{a_{i}(x) \xi}{d^{\gamma}(x)} d x \\
\quad=\frac{\mu_{i}^{\beta_{i}} L}{c_{1}^{\gamma}} \int_{D_{i}} \frac{a_{i}(x) \xi}{d^{\gamma}(x)} d x \geq \mu_{i}^{\beta_{i}} \int_{D_{i}} \frac{a_{i}(x)}{d^{\gamma}(x)} \xi d x \tag{3.3}
\end{gather*}
$$

In $\Omega \backslash \bar{D}_{i}$, we have

$$
\frac{\mu_{i}^{\beta_{i}} m}{d^{\gamma}(x)} \geq \frac{m c_{0}^{\gamma}}{(4 A)^{\gamma}} \mu_{i}^{\beta_{i}+\frac{\beta_{i} \gamma}{p_{i}-1}}=\frac{m c_{0}^{\gamma} \mu_{i}}{(4 A)^{\gamma}}=k \mu_{i},
$$

which implies

$$
\begin{equation*}
-\mu_{i}^{\beta_{i}} m \int_{\Omega \backslash \bar{D}_{i}} \frac{a_{i}(x)}{d^{\gamma}(x)} \xi d x \leq-\mu_{i} k \int_{\Omega \backslash \bar{D}_{i}} a_{i}(x) \xi d x \leq \mu_{i} \int_{\Omega \backslash \bar{D}_{i}} a_{i}(x) f_{i}(\tilde{\Phi}) \xi d x \tag{3.4}
\end{equation*}
$$

Combining (3.2)-(3.4), we obtain

$$
\int_{\Omega}\left|\nabla \Phi_{i}\right|^{p_{i}-2} \nabla \Phi_{i} . \nabla \xi d x \leq \mu_{i} \int_{\Omega} a_{i}(x) f_{i}(\tilde{\Phi}) \xi d x
$$

i.e., Φ satisfies (2.1). Next,

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla \Psi_{i}\right|^{p_{i}-2} \nabla \Psi_{i} . \nabla \xi d x=M_{i}^{p_{i}-1} \int_{\Omega}\left(-\Delta_{p_{i}} \psi_{i}\right) \xi d x \\
& \quad=M^{p_{i}-1}\left\|\psi_{i}\right\|_{\infty}^{1-p_{i}} \int_{\Omega} a_{i}(x) \xi d x \geq \mu_{i} \tilde{f}_{i}(M, \ldots, M) \int_{\Omega} a_{i}(x) \xi d x \\
& \quad \geq \mu_{i} \int_{\Omega} a_{i}(x) \tilde{f}_{i}(\tilde{\Psi}) \xi d x \geq \mu_{i} \int_{\Omega} a_{i}(x) f_{i}(\tilde{\Psi}) \xi d x
\end{aligned}
$$

where $\tilde{\Psi}_{i}=\Psi_{i}$ and $0 \leq \tilde{\Psi}_{k} \leq \Psi_{k}$ for $k \neq i$. Thus $\{\Phi, \Psi\}$ forms a system of sub-supersolutions of (I), as claimed. Hence (I) has a solution u with $\Phi \leq u \leq \Psi$ in Ω. Clearly, $\left\|u_{i}\right\|_{\infty} \rightarrow \infty$ as $\min _{1 \leq i \leq n} \mu_{i} \rightarrow \infty$. We claim that any solution u of (I) with $0 \leq u \leq \Psi$ in Ω satisfies $u \ll \Psi$. Indeed, let u be a solution of (I) with $0 \leq u \leq \Psi$ in Ω. Then we have $0 \leq u_{i} \leq M_{i}\left\|\psi_{i}\right\|_{\infty}=M$ for all i. Hence

$$
\begin{aligned}
-\Delta_{p_{i}} u_{i}= & \mu_{i} a_{i}(x) f_{i}\left(u_{1}, \ldots, u_{n}\right) \leq \mu_{i} a_{i}(x) \tilde{f}_{i}\left(u_{1}, \ldots, u_{n}\right) \\
& \leq \mu_{i} a_{i}(x) \tilde{f}_{i}(M, \ldots, M) \leq \frac{\left\|\psi_{i}\right\|_{\infty}^{1-p_{i}}}{2^{p_{i}-1}} M^{p_{i}-1} a_{i}(x) \text { in } \Omega
\end{aligned}
$$

which implies

$$
u_{i} \leq(1 / 2) M_{i} \psi_{i} \text { in } \Omega \text { for all } i
$$

Thus $u \ll \Psi$, as claimed. Next, suppose that $f_{i} \geq 0$ and $\lim _{\|u\| \rightarrow 0} \frac{f_{i}\left(u_{1}, \ldots, u_{n}\right)}{\|u\|^{p_{i}-1}}$ $=0$ for all i. Let $\varepsilon>0, \Phi_{0}=(-\varepsilon, \ldots,-\varepsilon), \Psi_{0}=\left(\varepsilon \psi_{1}, \ldots, \varepsilon \psi_{n}\right)$. Then, if ε is sufficiently small, $\Phi_{0} \ll \Psi_{0} \ll \Phi \ll \Psi$. As in the proof of Theorem 1.1, we deduce that $\left\{\Phi_{0}, \Psi_{0}\right\}$ is a system of sub-supersolutions for the system

$$
-\Delta_{p_{i}} u_{i}=\mu_{i} a_{i}(x) f_{i}\left(u_{1}^{+}, \ldots, u_{n}^{+}\right) \text {in } \Omega, u_{i}=0 \text { on } \partial \Omega, i=1, \ldots, n
$$

and any solution u of (I') with $\Phi_{0} \leq u \leq \Psi_{0}$ in Ω satisfies $\Phi_{0} \ll u \ll \Psi_{0}$. By modifying the proof for $\{\Phi, \Psi\}$, we see that $\left\{\Phi_{0}, \Psi\right\}$ is also a system of sub-supersolutions of (I') and any solution u of (I') with $\Phi_{0} \leq u \leq \Psi$ in Ω satisfies $\Phi_{0} \ll u \ll \Psi$. Also, by replacing A by $A / 2$ in the above proof and using the strong comparison principle, we can assume that there exists a solution u of (I') with $\Phi \ll u \ll \Psi$. Hence we obtain, as in the proof of Theorem 1.1, a second nontrivial nonnegative solution u_{1} of (I). This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let u be a nonnegative solution of (I). Then

$$
-\Delta_{p_{i}} u_{i} \leq \mu_{i} C a_{i}(x)\|u\|_{\infty}^{p_{i}-1}
$$

for all i, and the comparison principle implies

$$
u_{i} \leq\left(\mu_{i} C\right)^{\frac{1}{p_{i}-1}}\|u\|_{\infty} \psi_{i} \leq\left(\mu_{i} C\right)^{\frac{1}{p-1}}\|u\|_{\infty}\left\|\psi_{i}\right\|_{\infty} \text { in } \Omega
$$

for all i, where $p=\min _{1 \leq i \leq n} p_{i}$. Hence,

$$
\|u\|_{\infty} \leq(\mu C)^{\frac{1}{p-1}} \max _{1 \leq i \leq n}\left\|\psi_{i}\right\|_{\infty}\|u\|_{\infty},
$$

where $\mu=\max _{1 \leq i \leq n} \mu_{i}$. Thus, if $(\mu C)^{\frac{1}{p-1}} \max _{1 \leq i \leq n}\left\|\psi_{i}\right\|_{\infty}<1$ then $u=0$,
which completes the proof.

Appendix

Consider the system

$$
\left\{\begin{array}{l}
-\Delta_{p_{i}} u_{i}=g_{i}\left(u_{1}, \ldots, u_{n}\right) \text { in } \Omega \tag{II}\\
u_{i}=0 \text { on } \partial \Omega, \quad i=1, \ldots, n
\end{array}\right.
$$

where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, p_{i}>1$, and $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are continuous, $i=1, \ldots, n$.

For each i, let $\lambda_{1, i}$ be the first eigenvalue of

$$
\begin{gathered}
-\Delta_{p_{i}} u=\lambda a_{i}(x)|u|^{p_{i}-2} u \text { in } \Omega, \\
u=0 \text { on } \partial \Omega
\end{gathered}
$$

and let $\phi_{1, i}$ be the corresponding positive eigenfunction with $\left\|\phi_{1, i}\right\|_{\infty}=1$.
For $u=\left(u_{1}, \ldots, u_{n}\right), v=\left(v_{1}, \ldots, v_{n}\right) \in C(\bar{\Omega})^{n}$, we say that $u \ll v$ if there exists $\varepsilon>0$ such that $u_{i}+\varepsilon \phi_{1, i} \leq v_{i}$ in Ω for all i.

Define $S_{i}=\left\{u_{i} \in C(\bar{\Omega}): \exists c>0\right.$ such that $\left|u_{i}\right| \leq c \phi_{1, i}$ in $\left.\Omega\right\}$. Then S_{i} is a Banach space with norm $\left\|u_{i}\right\|_{\phi_{1, i}}=\inf \left\{c>0:\left|u_{i}\right| \leq c \phi_{1, i}\right.$ in $\left.\Omega\right\}$. Let $S=\prod_{i=1}^{n} S_{i}$ with norm $\|u\|_{S}=\max _{1 \leq i \leq n}\left\|u_{i}\right\|_{\phi_{1, i}}$ and B_{R} denote the open ball centered at 0 with radius R in S.

For each $v=\left(v_{1}, \ldots, v_{n}\right) \in C(\bar{\Omega})^{n}$, let $u=\left(u_{1}, \ldots, u_{n}\right)=T v$ be the solution of the system

$$
-\Delta_{p_{i}} u_{i}=g_{i}\left(v_{1}, \ldots, v_{n}\right) \text { in } \Omega, \quad u_{i}=0 \text { on } \partial \Omega, i=1, \ldots, n .
$$

Theorem A i) Let $\{\hat{\Phi}, \hat{\Psi}\}$ be a system of sub-supersolutions for (II). Then (II) has a solution u with $\hat{\Phi} \leq u \leq \hat{\Psi}$ in Ω. If, in addition, $\hat{\Phi} \ll \hat{\Psi}$ and every solution v of (II) with $\hat{\Phi} \leq v \leq \hat{\Psi}$ in Ω satisfies $\hat{\Phi} \ll v \ll \hat{\Psi}$ then there exists $R>0$ such that

$$
\operatorname{deg}\left(I-T, B_{R} \cap \mathcal{A}, 0\right)=1
$$

where $\mathcal{A}=\{u \in S: \hat{\Phi} \ll u \ll \hat{\Psi}\}$.
ii) Let $\left\{\hat{\Phi}_{0}, \hat{\Psi}_{0}\right\},\{\hat{\Phi}, \hat{\Psi}\},\left\{\hat{\Phi}_{0}, \hat{\Psi}\right\}$ be systems of sub-supersolutions for (II). Suppose $\hat{\Phi}_{0} \ll \hat{\Psi}_{0} \ll \hat{\Phi} \ll \hat{\Psi}$ and every solution u of (II) with $\hat{\Phi}_{0} \leq$
$u \leq \hat{\Psi}_{0}$ (resp. $\left.\hat{\Phi} \leq u \leq \hat{\Psi}, \hat{\Phi}_{0} \leq u \leq \hat{\Psi}\right)$ in Ω satisfies $\hat{\Phi}_{0} \ll u \ll \hat{\Psi}_{0}$ (resp. $\left.\hat{\Phi} \ll u \ll \hat{\Psi}, \hat{\Phi}_{0} \ll u \ll \hat{\Psi}\right)$. Then (I) has at least three solutions u_{1}, u_{2}, u_{3} with $u_{1} \in \mathcal{A}_{0}, u_{2} \in \mathcal{A}_{1}, u_{3} \in \mathcal{A}_{2} \backslash\left(\overline{\mathcal{A}}_{0} \cup \overline{\mathcal{A}}_{1}\right)$, where

$$
\begin{gathered}
\mathcal{A}_{0}=\left\{u \in S: \hat{\Phi}_{0} \ll u \ll \hat{\Psi}_{0}\right\}, \quad \mathcal{A}_{1}=\{u \in S: \hat{\Phi} \ll u \ll \hat{\Psi}\} \\
\mathcal{A}_{2}=\left\{u \in S: \hat{\Phi}_{0} \ll u \ll \hat{\Psi}\right\}
\end{gathered}
$$

Proof. i) Let $\hat{\Phi}=\left(\phi_{1}, \ldots, \phi_{n}\right), \hat{\Psi}=\left(\psi_{1}, \ldots, \psi_{n}\right)$. Define $\hat{g}_{i}\left(u_{1}, \ldots, u_{n}\right)=$ $g_{i}\left(\hat{u}_{1}, \ldots, \hat{u}_{n}\right)$, where $\hat{u}_{i}=\min \left(\max \left(u_{i}, \phi_{i}\right), \psi_{i}\right), i=1, \ldots, n$. Consider the system

$$
\begin{equation*}
-\Delta_{p_{i}} u_{i}=\hat{g}_{i}\left(u_{1}, \ldots, u_{n}\right) \text { in } \Omega, \quad u_{i}=0 \text { on } \partial \Omega, i=1, \ldots, n \tag{*}
\end{equation*}
$$

For each $v=\left(v_{1}, \ldots, v_{n}\right) \in C(\bar{\Omega})^{n}$, let $u=\left(u_{1}, \ldots, u_{n}\right)=\hat{T} v$ be the solution of

$$
-\Delta_{p_{i}} u_{i}=\hat{g}_{i}\left(v_{1}, \ldots, v_{n}\right) \text { in } \Omega, \quad u_{i}=0 \text { on } \partial \Omega, i=1, \ldots, n
$$

Then $\hat{T}: S \rightarrow S$ is a bounded compact operator and therefore there exists $R>0$ such that $\operatorname{deg}\left(I-\hat{T}, B_{R}, 0\right)=1$.

Thus \hat{T} has a fixed point u in $B(0, R)$. We shall show that $\hat{\Phi} \leq u \leq \hat{\Psi}$ in Ω. Let $\xi=\left(\phi_{i}-u_{i}\right)^{+}$and suppose $\xi \not \equiv 0$. Then $\xi \in W_{0}^{1, p_{i}}(\Omega), \xi \geq 0$, and

$$
\begin{aligned}
& \int_{\left\{x: u_{i}(x)<\phi_{i}(x)\right\}}\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i} \cdot \nabla \xi d x=\int_{\Omega}\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i} \cdot \nabla \xi d x \\
& \quad=\int_{\Omega} \hat{g}_{i}\left(u_{1}, \ldots, u_{n}\right) \xi d x=\int_{\left\{x: u_{i}(x)<\phi_{i}(x)\right\}} g_{i}\left(\tilde{u}_{1}, \ldots, \tilde{u}_{n}\right) \xi d x \\
& \quad \geq \int_{\left\{x: u_{i}(x)<\phi_{i}(x)\right\}}\left|\nabla \phi_{i}\right|^{p_{i}-2} \nabla \phi_{i} . \nabla \xi d x
\end{aligned}
$$

where $\tilde{u}_{i}=\phi_{i}, \tilde{u}_{k} \in\left[\phi_{k}, \psi_{k}\right]$ for $k \neq i$. Hence

$$
\int_{\left\{x: u_{i}(x)<\phi_{i}(x)\right\}}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}-\left|\nabla \phi_{i}\right|^{p_{i}-2} \nabla \phi_{i}\right) \cdot \nabla\left(u_{i}-\phi_{i}\right) d x \leq 0
$$

a contradiction. Thus $\xi \equiv 0$ i.e., $u_{i} \geq \phi_{i}$ in Ω. Similarly, we have $u_{i} \leq \psi_{i}$ in Ω. Thus u is a solution of (II) with $\hat{\Phi} \leq u \leq \hat{\Psi}$ in Ω. If $\hat{\Phi} \ll \hat{\Psi}$ and every
solution v of (II) with $\hat{\Phi} \leq v \leq \hat{\Psi}$ in Ω satisfies $\hat{\Phi} \ll v \ll \hat{\Psi}$ then we deduce from the excision property of the degree that

$$
1=\operatorname{deg}\left(I-\hat{T}, B_{R}, 0\right)=\operatorname{deg}\left(I-\hat{T}, B_{R} \cap \mathcal{A}, 0\right)=\operatorname{deg}\left(I-T, B_{R} \cap \mathcal{A}, 0\right)
$$

ii) By (i), there exists $R>0$ such that

$$
\operatorname{deg}\left(I-T, B_{R} \cap \mathcal{A}_{k}, 0\right)=1, k=0,1,2
$$

Consequently, (II) has solutions $u_{1} \in \mathcal{A}_{0}, u_{2} \in \mathcal{A}_{1}$. Since

$$
\begin{aligned}
\operatorname{deg}\left(I-T, B_{R} \cap \mathcal{A}_{2}, 0\right)= & \operatorname{deg}\left(I-T, B_{R} \cap \mathcal{A}_{0}, 0\right)+\operatorname{deg}\left(I-T, B_{R} \cap \mathcal{A}_{1}, 0\right) \\
& +\operatorname{deg}\left(I-T, B_{R} \cap\left(\mathcal{A}_{2} \backslash\left(\overline{\mathcal{A}}_{0} \cup \overline{\mathcal{A}}_{1}\right)\right),\right.
\end{aligned}
$$

it follows that

$$
\operatorname{deg}\left(I-T, B_{R} \cap\left(\mathcal{A}_{2} \backslash\left(\overline{\mathcal{A}}_{0} \cup \overline{\mathcal{A}}_{1}\right)\right)=-1\right.
$$

and the existence of a third solution $u_{3} \in \mathcal{A}_{2} \backslash\left(\overline{\mathcal{A}}_{0} \cup \overline{\mathcal{A}}_{1}\right)$ follows.
Acknowledgement The author thanks Professor Klaus Schmitt for pointing out an error in the original manuscript.

References

[1] Amann H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. Siam Rev. 18 (1976), 620-709.
[2] Anane A., simplicite et isolation de la premier valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), 725-728.
[3] Azizieh C., Clement Ph. and Mitidieri E., Existence and a priori estimates for positive solutions of p-Laplace systems. J. Differential Equations 184 (2002), 422-442.
[4] Canada A., Drabek P. and Gamez J. L., Existence of positive solutions for some problems with nonlinear diffusion. Trans. Amer. Math. Soc. 349 (1997), 4231-4249.
[5] Clement Ph., Fleckinger J., Mitidieri E. and de Thelin F., Existence of positive solutions for a nonvariational quasilinear elliptic system. J. Differential Equations 166 (2000), 455-477.
[6] Cuesta M. and Takáč P., A strong comparison principle for the Dirichlet
p-Laplacian, in "Proceedings of the Conference on Reaction-Diffusion Equations", G. Caristi and E. Mitidieri, eds., Trieste, Italy, October 1995. Lecture Notes in Pure and Applied Math., Vol. 194, pp. 79-87. Marcel Dekker, Inc., New York-Basel, 1998.
[7] Cuesta M. and Takáč P., A strong comparison principle for positive solutions of degenerate elliptic equations. Differential Integral Equations 13 (2000), no. 4-6, 721-746.
[8] Decoster C. and Nicaise S., Lower and upper solutions for elliptic problems in nonsmooth domains. J. Differential Equations 244 (2008), 599-629.
[9] Diaz, J. I, Nonlinear partial differential equations and free boundaries, Vol. I, vol. 106 of Pitman Research Notes in Mathematics, Pitman, Boston, MA, 1985.
[10] Guedda M. and Veron L., Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13 (1989), 879-902.
[11] Hai D. D., On a class of sublinear quasilinear elliptic problems. Proc. Amer. math. Soc. 131 (2003), 2409-2414.
[12] Hai D. D., Singular boundary value problems for the p-Laplacian. (submitted).
[13] Hai D. D. and Wang H., Nontrivial solutions for p-Laplacian systems. J. Math. Anal. Appl. 330 (2007), no. 1, 186-194.
[14] Lieberman G. M., Boundary regularity for solutions of semilinear elliptic equations. Nonlinear Anal. 12 (1988), 1203-1219.
[15] Sakaguchi S., Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 14 (1987), 403-421.
[16] Oden T., Qualitative methods in nonlinear mechanics. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1986.
[17] Vazquez J. L., A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 (1984), 191-202.
[18] Guo Z. M., Some existence and multiplicity results for a class of quasilinear eigenvalue problems. Nonlinear Anal. 18 (1992), 957-971.

Department of Mathematics
Mississippi State University
Mississippi State, MS 39762

[^0]: 2000 Mathematics Subject Classification : 35J55, 35J60.

