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Recent progress in the global convergence

of quasi-Newton methods for nonlinear equations
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Abstract. The global convergence theory of quasi-Newton methods for optimization

problems has well been established. Related work to the globalization of quasi-Newton

methods for nonlinear equations is relatively less. The major difficulty in globalizing

quasi-Newton methods for nonlinear equations lies in the lack of efficient line search

technique. Recently, there have been proposed some derivative-free line searches. The

study in the global convergence of some quasi-Newton methods has taken good progress.

In this paper, we summarize some recent progress in the global convergence of quasi-

Newton methods for solving nonlinear equations.

Key words: Nonlinear equation, quasi-Newton method, derivative-free line search, global

convergence.

1. Introduction

Consider the problem of finding a solution to the nonlinear equation

F (x) = 0, (1.1)

where F : Rn → Rn. Suppose F (x) is continuously differentiable whose
Jacobian is denoted by J(x). If F (x) is the gradient of some continuously
differentiable function f : Rn → R, then equation (1.1) is the first order
necessary optimality condition of the following unconstrained optimization
problem

min f(x), x ∈ Rn. (1.2)

Function F is the gradient of some real-valued function if and only if J(x) is
symmetric for all x [22]. In general, if we let θ(x) = (1/2)‖F (x)‖2, problem
(1.1) can be converted into the following global optimization problem

min θ(x), x ∈ Rn. (1.3)

2000 Mathematics Subject Classification : 65H10, 90C53.

Supported by the 973 project (2004CB719402) and the NSF (10471036) of China



730 D.H. Li and W. Cheng

Here and throughout the paper, we use ‖ · ‖ to denote the Euclidean norm of
vectors. Quasi-Newton methods form an important class of iterative meth-
ods for solving nonlinear equations and optimization problems. A quasi-
Newton method for solving (1.1) generates a sequence of iterates {xk} by
the iterative process

xk+1 = xk + dk, k = 0, 1, . . . ,

starting from some initial point x0. The direction dk is called a quasi-
Newton direction, which is a solution of the following system of linear equa-
tions

Bkdk + F (xk) = 0, (1.4)

where Bk is some matrix which is an approximation to J(xk). When Bk =
J(xk), the iterative scheme is the well known Newton’s method.

As an approximation to J(xk), Bk satisfies the so-called secant equation

Bk+1sk = yk, (1.5)

where sk = xk+1 − xk and yk = F (xk+1) − F (xk). By the mean-value
theorem, we have

yk =
(∫ 1

0
J(xk+1 − τsk)dτ

)
sk ≈ J(xk+1)sk.

In this sense, Bk+1 is an approximation to J(xk+1). Suppose we have had
Bk. Matrix Bk+1 is obtained by updating Bk with some lower rank matrix.
Well known update formulae include the Broyden’s rank one formula,

Bk+1 = Bk +
(yk − Bksk)sT

k

‖sk‖2
, (1.6)

the BFGS formula,

Bk+1 = Bk − Bksks
T
k Bk

sT
k Bksk

+
yky

T
k

yT
k sk

(1.7)

and the DFP formula

Bk+1 =
(
I − yks

T
k

yT
k sk

)
Bk

(
I − yks

T
k

yT
k sk

)T
+

yky
T
k

yT
k sk

, (1.8)

where I ∈ Rn×n is the identity matrix.
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If F (xk) is replaced by ∇f(xk), the gradient of f at xk, then the meth-
ods are quasi-Newton methods for solving unconstrained optimization prob-
lem (1.2).

It is easy to see from (1.7) and (1.8) that matrix Bk+1 inherits the
symmetry of Bk. In addition, Bk+1 will be positive definite if yT

k sk > 0 and
Bk is positive definite. Thus, when applied to solve optimization problem
(1.2), the corresponding quasi-Newton direction is a descent direction of f

at xk. The BFGS and DFP methods are widely used in optimization or
symmetric equations.

Matrix Bk+1in Broyden’s rank one update formula (1.6) is generally
not symmetric even if Bk is symmetric. We note that Bk+1 may be singular
even if Bk is nonsingular. As a result, the quasi-Newton direction may not
exist. As a remedy, the so-called Broyden-like formula was proposed by
Powell [24]

Bk+1 = Bk + μk
(yk − Bksk)sT

k

‖sk‖2
, (1.9)

where μk ∈ (0, μ) with some constant μ ∈ (0, 1) is chosen so that Bk+1 is
nonsingular. We refer to [21] for more details.

The following theorem gives a necessary and sufficient condition for a
quasi-Newton method to be superlinearly convergent. The proof can be
found in [7].

Theorem 1.1 Let F : Rn → Rn be continuously differentiable with Lips-
chitz continuous Jacobian. Let {Bk} be a sequence of nonsingular matrices.
Suppose that x∗ is a solution of (1.1) at which J(x∗) is nonsingular and that
the sequence

xk+1 = xk − B−1
k F (xk), k = 0, 1, . . .

converges to x∗. Then {xk} converges superlinearly to x∗ if and only if

lim
k→∞

‖[Bk − F ′(x∗)](xk+1 − xk)‖
‖xk+1 − xk‖ = 0. (1.10)

Condition (1.10) is called Dennis-Moré condition. It has become a fun-
damental criterion to check if a quasi-Newton method is superlinearly con-
vergent. Most existing quasi-Newton methods including the Broyden-like
methods, the BFGS and DFP methods satisfy the Dennis-Moré condition
and hence are superlinearly convergent. We refer to [7] for a very good
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review in the local convergence of quasi-Newton methods.
The purpose of this paper is to emphasize the global convergence of the

quasi-Newton methods. In the next section, we summarize some derivative-
free line searches and related globally convergent quasi-Newton methods for
general nonlinear equations. In Section 3, we pay particular attention to
the quasi-Newton methods for monotone equations. We conclude the paper
by giving some further research topics.

2. Derivative-free line searches

2.1. Globally convergent quasi-Newton methods for uncon-
strained optimization

Let us first recall global convergence of quasi-Newton methods for un-
constrained optimization problems. A widely used strategy to globalize a
quasi-Newton method is to adopt a line search procedure. This results in
the following damped iterative process:

xk+1 = xk + αkdk, k = 0, 1, . . . ,

where dk is a quasi-Newton direction and αk is called steplength that is
determined by some line search procedure. For optimization problems, if
dk is a descent direction of f at xk, i.e., ∇f(xk)T dk < 0, then αk can be
obtained by Armijo line search or Wolfe line search. Specifically, in Armijo
line search, αk satisfies the condition

f(xk + αkdk) ≤ f(xk) + σ1αk∇f(xk)T dk, (2.1)

where σ1 ∈ (0, 1) is a constant. In Wolfe line search, αk satisfies the follow-
ing two inequalities{

f(xk + αkdk)≤ f(xk) + σ1αk∇f(xk)T dk,

∇f(xk + αkdk)T dk ≥σ2∇f(xk)T dk,
(2.2)

where constants σ1, σ2 satisfy 0 < σ1 < σ2 < 1. It is clear that if Bk is
positive definite, the quasi-Newton direction is a descent direction of f at
xk. For most existing quasi-Newton methods including the BFGS, DFP
and the restricted Broyden’s class of quasi-Newton methods, which is a
convex combination of BFGS and DFP method, if the objective function f

is uniformly convex, then the positive definiteness of Bk is guaranteed. The
global convergence of Broyden’s class of quasi-Newton methods except for
DFP method for solving uniformly convex optimization problems has been
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well established [3, 4, 25]. In the case where f is not uniformly convex, the
Broyden’s class of quasi-Newton methods still generate descent directions if
Wolfe line search is used. However, in this case, an example given by Dai
[6] shows that the BFGS method is not necessary globally convergent. To
make the BFGS method be globally convergent for nonconvex minimization
problems, some modification is necessary [16, 17].

2.2. Derivative-free line searches for nonlinear equations
The study in the global convergence of quasi-Newton methods for opti-

mization has taken good successes. On the other hand, however, for nonlin-
ear equations, the related work is relatively less. Early in 1970, Powell [23]
proposed a Newton-Broyden type hybrid method. This method is globally
and R-superlinearly convergent [21].

In general, the globalization of quasi-Newton methods is difficult. The
major difficulty is the lack of practical line search technique. As pointed out
in the previous section, the nonlinear equation (1.1) can be converted into
the unconstrained optimization problem (1.2) or (1.3). However, the quasi-
Newton methods for solving (1.1) and (1.2) or (1.3) are quite different. In
(1.3), the gradient of θ relies on the Jacobian of F which should be avoided in
quasi-Newton methods. Even for the case where J(x) is symmetric, it is not
desirable to get a solution of (1.1) through (1.2) because the computation
of the objective function of (1.2) is very cost.

Observe that for nonlinear equations, the quasi-Newton direction dk

is generally not a descent direction of θ at xk even if Bk is positive defi-
nite. Existing line searches such as the Armijo or Wolfe line search depend
on the computation of derivatives. They are not available for the quasi-
Newton method for solving nonlinear equations. In order to globalize a
quasi-Newton method for solving nonlinear equation (1.1), we need some
derivative-free line search technique. The first derivative-free line search
was due to Griewank [8] in which αk satisfies the following condition

−(F (xk + αkdk) − F (xk))T F (xk)
‖F (xk + αkdk) − F (xk)‖2

≥ 1
2

+ ε, (2.3)

where ε ∈ (0, 1/6) is a constant. It is clear that if F (xk)T J(xk)dk 	= 0, then
inequality (2.3) is satisfied for all αk (positive or negative) sufficient small.
Under certain conditions, Griewank [8] established the global convergence
of Broyden’s rank one method. However, as pointed out by Griewank [8],



734 D.H. Li and W. Cheng

there is a difficult case for this line search. That is, if F (xk)T J(xk)dk = 0,
then the existence of αk satisfying (2.3) is not guaranteed.

Line search (2.3) is a monotone line search in the sense that ‖F (xk+1)‖<

‖F (xk)‖. Specifically, we have

‖F (xk+1)‖2 − ‖F (xk)‖2 ≤ −2ε‖F (xk+1) − F (xk)‖2.

Another monotone derivative-free line search was proposed by Bellavia,
Gasparo and Macconi [1] in the so called switching method. The line search
condition there is

‖F (xk + αkdk)‖2 ≤ (1 − 2α)‖F (xk)‖2, (2.4)

where 0 < α < 1/2 and dk is generated by finite-difference Newton method.
This line search seems not suitable for quasi-Newton method because the
existence of αk in (2.4) is not guaranteed if dk is some quasi-Newton direc-
tion.

Recently, a well defined derivative-free line search was proposed by Li
and Fukushima [12]. In this line search, αk satisfies the following inequality

‖F (xk + αkdk)‖2 − ‖F (xk)‖2

≤ −σ1‖αkF (xk)‖2 − σ2‖αkdk‖2 + εk‖F (xk)‖2, (2.5)

where σ1 and σ2 are positive constants, and the positive sequence {εk}
satisfies

∞∑
k=0

εk < ∞. (2.6)

It is not difficult to see that inequality (2.5) holds for all αk > 0 sufficiently
small as long as F (xk) 	= 0. Consequently, it is well defined and can be
implemented by some backtracking process. Line search condition (2.5)
is not monotone. In other words, the sequence {θ(xk)} is not necessarily
decreasing. However, as xk goes to a solution of (1.1) the last term in (2.5)
becomes very small. In this sense, it is approximately norm descent. This
nonmonotone line search enjoys some good properties. It is easy to show
that if {‖F (xk)‖} is bounded, then we have

∞∑
k=0

‖xk+1 − xk‖2 < ∞.
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Moreover, the function value sequence {θ(xk)} is convergent. Consequently,
if there is an accumulation point of {xk} that solves (1.1), then every accu-
mulation point of {xk} will be a solution of (1.1).

With derivative-free line search (2.5), Li and Fukushima [14] established
the global convergence of Broyden-like methods.

Theorem 2.1 Let F be continuously differentiable and J(x) be Lipschitz
continuous. Suppose further that J(x) is uniformly nonsingular, i.e., there
is a constant M > 0 such that ‖J(x)−1‖ ≤ M . Then the sequence {xk}
generated by the Broyden-like method with line search (2.5) converges to the
unique solution of (1.1). Moreover, the convergence rate is superliner.

There are some other derivative-free line searches [5, 9, 13, 31]. In [13],
Li and Fukushima developed a derivative-free line search similar to (2.5).
The condition of αk in [13] is

‖F (xk + αkdk)‖ − ‖F (xk)‖
≤ −σ1‖αkF (xk)‖ − σ2‖F (xk + αkdk) − F (xk)‖ + εk, (2.7)

where σ1 and σ2 are positive constants and εk satisfies (2.6). An attractive
property of this line search is that the sequence {xk} satisfies

∞∑
k=0

‖xk+1 − xk‖ < ∞.

Consequently, the whole sequence {xk} converges to some point. Under the
same conditions as those in Theorem 2.1, Li and Fukushima [13] proved the
global convergence of the DFP method for symmetric nonlinear equations.

Theorem 2.2 Let the conditions in Theorem 2.1 hold. Suppose that J(x)
is symmetric for any x. Then the sequence {xk} generated by DFP with
line search (2.7) converges to the unique solution of (1.1). Moreover, the
convergence rate is superlinear if at the limit x∗, J(x∗) is positive definite.

Another interesting derivative-free line search was proposed by Birgin,
Krejić and Mart́ınez [2] in which αk satisfies

‖F (xk + αkdk)‖ ≤ (1 + αkσ(β − 1))‖F (xk)‖ + εk, (2.8)

where σ ∈ (0, 1) and β ∈ [0, 1) are constants and εk satisfies (2.6). A more
general global convergence theorem for inexact quasi-Newton methods has



736 D.H. Li and W. Cheng

been established in [2]. Quite recently, by combining the nonmonotone line
search of Grippo, Lampariello and Lucidi [10] and Li and Fukushima line
search [16], Cruz, Mart́ınez and Raydon [5] proposed a spectral residual
method where the derivative-free line search condition is

f(xk + αkdk) ≤ max
0≤j≤M−1

f(xk−j) + εk − γα2
kf(xk),

where M is a positive integer, γ > 0 is a constant and εk satisfies (2.6). The
reported numerical results show that this line search works very well.

2.3. Symmetric equations
By symmetric equation, we mean that the Jacobian J(x) is symmetric

for all x. Symmetric equations come from the first order necessary condition
of the unconstrained optimization problem, the KKT system of the equal-
ity constrained optimization problem, the discretization for some differential
equation and so on. When we apply a quasi-Newton method to solve a sym-
metric equation, it is reasonable to use a symmetric quasi-Newton matrix Bk

to approximate J(xk). Li and Fukushima [12] proposed a Gauss-Newton
based BFGS method for solving symmetric equations. Unlike (1.4), the
quasi-Newton direction in [12] is an approximate quasi-Newton direction
for solving unconstrained optimization problem (1.3). Let

gk = α−1
k−1(F (xk + αk−1F (xk)) − F (xk)),

where αk−1 is the steplength obtained in the previous iteration. If αk−1 or
F (xk) is small, then we have gk ≈ ∇θ(xk) = J(xk)F (xk). Based on this
observation, Li and Fukushima [12] proposed a Gauss-Newton based BFGS
method in which dk is a solution of the following system of linear equations:

Bkd + gk = 0. (2.9)

Matrix Bk in (2.9), as an approximation to J(xk)T J(xk) = J(xk)2 is up-
dated by (1.7) but the meaning of yk is different. Specifically, the vector yk

in Li and Fukushima’s method is defined by

δk = F (xk+1) − F (xk),

yk = F (xk + δk) − F (xk) ≈ J(xk)δk ≈ J(xk)2sk.

This Gauss-Newton based BFGS method with line search (2.5) is also glob-
ally and superlinear convergent under the condition that J(x) is uniformly
nonsingular [12].
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All the above mentioned line searches are not monotone. Indeed, the
quasi-Newton direction dk is generally not a descent direction of θ at xk.
However, for Gauss-Newton method, it is possible to get a norm descent
quasi-Newton direction. Note that if we replace gk in (2.9) by qk = ∇θ(xk) =
J(xk)F (xk), then the unique solution dk of (2.9) satisfies

∇θ(xk)T dk = −F (xk)T J(xk)T B−1
k J(xk)F (xk).

If Bk is positive definite, then we have ∇θ(xk)T dk < 0. This means that
dk is a descent direction of θ at xk. Since gk is continuous in αk−1, when
αk−1 is sufficiently small, the solution of (2.9) will also provides a descent
direction of θ at xk. This observation motivates us to find some small scalar
λk instead of αk−1 in the definition of gk so that the corresponding quasi-
Newton direction is a descent direction of θ at xk. In what follows, we gives
some details in [11] to find a descent quasi-Newton direction.

Let

gk(λ) = (F (xk + λF (xk)) − F (xk))/λ. (2.10)

Suppose that Bk is positive definite. Consider the system of linear equations
with parameter λ:

Bkd + gk(λ) = 0. (2.11)

Let d(λ) be the solution of (2.11). It is not difficult to show that when
λ > 0 is sufficiently small, every solution of (2.11) is a descent direction of
θ at xk. Specifically, we have the following lemma [11].

Lemma 2.1 Let σ1 and σ2 be positive constants and Bk be a symmetric
and positive definite matrix. If xk is not a stationary point of (1.3), then
there exists a constant λ̄ > 0 depending on k such that when λ ∈ (0, λ̄),
the unique solution d(λ) of (2.11) satisfies ∇θ(xk)T d(λ) < 0. Moreover, the
inequality

θ(xk + λd(λ)) − θ(xk) ≤ −σ1‖λd(λ)‖2 − σ2‖λF (xk)‖2 (2.12)

holds for all λ > 0 sufficiently small.

Lemma 2.1 provides a way to find a descent quasi-Newton direction by
adjusting parameter λ.
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Procedure 1 Let constant ρ ∈ (0, 1) be given. Let ik be the smallest
nonnegative integer such that inequality (2.12) holds with λ = ρi, i =
0, 1, . . .. Let dk = d(ρik) and gk = gk(ρik).

To enlarge steplength, [11] adopted the following forward procedure.

Procedure 2 Let ik and dk be determined by Procedure 1. If ik =
0, we let λk = 1. Otherwise, let jk be the largest positive integer j ∈
{0, 1, 2, . . . , ik − 1} satisfying

θ(xk + ρik−jdk) − θ(xk) ≤ −σ1‖ρik−jdk‖2 − σ2‖ρik−jF (xk)‖2.

Let αk = ρik−jk .

It is not difficult to see that Procedures 1 and 2 are well-defined. Proce-
dures 1 and 2 give a way to find a descent quasi-Newton direction as long as
Bk is positive definite. Recall that in BFGS formula (1.7), if Bk is positive
definite, then Bk+1 is positive definite if and only if yT

k sk > 0. While solving
unconstrained optimization problem, the condition yT

k sk > 0 is satisfied if
Wolfe line search (2.2) is used. For nonlinear equations, however, the Wolfe
line search is no longer available because it depends on the computation of
the gradient. To ensure the positive definiteness of Bk, similar to [17], Gu,
Li, Qi and Zhou [11] proposed a modified BFGS formula (1.7) in which yk

is defined by

yk = γk +
(
max

{
0, − γT

k sk

‖sk‖2

}
+ φ(‖F (xk)‖)

)
sk,

where γk = F (xk +δk)−F (xk), δk = F (xk+1)−F (xk), and function φ : R →
R satisfies (i) φ(t) > 0 for all t > 0, (ii) φ(t) = 0 if and only if t = 0, (iii) φ(t)
is bounded if t is in a bounded set. In particular, φ(t) = νt with constant
ν > 0 meets the requirements. It is not difficult to show that yk satisfies

yT
k sk ≥ max{γT

k sk, φ(‖F (xk)‖)}‖sk‖2 > 0.

Consequently, Bk+1 inherits the positive definiteness of Bk.
The following theorem establishes the global convergence of the descent

BFGS method [11].

Theorem 2.3 Let the level set

Ω = {x ∈ Rn | θ(x) ≤ θ(x0)}
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be bounded, function F be continuously differentiable on Ω, and J(x) be
symmetric for every x ∈ Ω. Let {xk} be generated by the descent BFGS
method. Then we have

lim inf
k→∞

‖∇θ(xk)‖ = 0.

Moreover, suppose that there is a subsequence of {xk} converging to x∗ at
which J(x∗) is nonsingular. Then x∗ is a solution of (1.1). Moreover, the
whole sequence {xk} converges to x∗.

It is worth mentioning that the global convergence of the descent BFGS
method does not need the nonsingularity of J(x).

The superlinear convergence of the descent BFGS method is stated as
follows [11].

Theorem 2.4 Let the conditions in Theorem 2.3 hold. Suppose that J(x)
is Lipschitz continuous. Then the sequence {xk} converges to x∗ superlin-
early.

3. Monotone Equations

In this section, we pay particular attention to the monotone equations.
By monotone equation (1.1), we mean that function F is monotone, namely,

(F (x) − F (y))T (x − y) ≥ 0, ∀x, y ∈ Rn.

If F is continuously differentiable, then F is monotone if and only if J(x)
is positive semidefinite. The solution set S of monotone equation (1.1), if
not empty, is convex.

Solodov and Svaiter [26] proposed a nice derivative-free line search and
developed an inexact Newton method for solving monotone equations. At
each iteration, the method uses a direction dk satisfying

‖(J(xk) + μkI)dk + F (xk)‖ ≤ ρkμk‖dk‖,
where μk > 0 and ρk ∈ [0, 1) are parameters. The derivative-free line search
is to find αk = βmk with β ∈ (0, 1) such that mk is the smallest nonnegative
integer m satisfying

−F (xk + βmdk)T dk ≥ λ(1 − ρk)μk‖‖dk‖, (3.1)

where λ ∈ (0, 1) is a constant. Let zk = xk + αkdk. The next iterate is set
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to the projection of xk to the hyperplane

Hk = {x ∈ Rn | F (zk)T (x − zk) = 0}.
That is,

xk+1 = xk − F (zk)T (xk − zk)
‖F (zk)‖2

F (zk). (3.2)

Note that the monotonicity of F implies that

F (zk)T (xk − zk) > 0.

This means that the hyperplane H strictly separates the current iterate xk

from zeros of the equation (1.1). Therefore, the project step can be regarded
as an acceleration step. A nice property of this line search procedure is that
the sequence {xk} satisfies for any x̄ ∈ S,

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − ‖xk+1 − xk‖2.

In particular, the distance from xk to the solution set S decreases with k.
Without the requirement of the nonsingularity of J(x), Solodov and Svaiter
[26] proved that the whole sequence {xk} converges to a solution of (1.1).

Zhou and Toh [30] extended Solodov and Svaiter’s result and obtained
the superlinear convergence of a Newton-type method even if the equation
has singular solution.

Solodov and Svaiter’s line search was applied to the BFGS method and
limited memory BFGS method for solving monotone equation by Zhou and
Li [28, 29]. Compared with Gauss-Newton based BFGS method where Bk is
an approximation to J(xk)T J(xk), the quasi-Newton matrix in the methods
of [28] and [29] is an approximation to J(xk). It is reasonable to believe
that the subproblem in the latter methods is better conditioned than the
former one. Theoretically, the methods are proved to be globally convergent
without nonsingularity requirement of J(x). In addition, the BFGS method
in [29] retains superlinear convergence property. The reported preliminary
numerical results in [28] and [29] showed that the limited memory BFGS
method in [28] even performed better than the inexact Newton method did,
and the performance of the BFGS method in [29] was much better than the
Gauss-Newton based BFGS method.
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4. Final remark

This review focused on the global convergence issue of quasi-Newton
methods for solving nonlinear equations. We refer to a complete compre-
hensive review paper [20] on practical quasi-Newton methods for nonlinear
equations. In particular, there listed 10 interesting open problems. To con-
clude, we give some other research topics related to the global convergence
issue.
• The existing global convergence theory for Broyden’s rank one method

and Broyden-like methods needs the condition that the Jacobian J(x)
is uniformly nonsingular. From the theoretical point of view, it is
important to remove this restriction.

• Is it possible to construct a globally convergent BFGS method for (non-
monotone) symmetric equations in which Bk is an approximation to
J(xk)?

• There are some works related to the global convergence of quasi-
Newton methods for solving some nonsmooth equations arising from
the nonlinear complementarity problem and the KKT system of the
variational inequality [15, 18, 19, 27] etc. However, the strict com-
plementarity condition is necessary in the superlinear convergence of
these methods. This condition implicitly implies that the nonsmooth
equation is locally smooth. It is interesting to release this condition.
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