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Abstract. The construction of a tropical hypersurface is given by modeling the clas-

sical construction of a complex hypersurface. A tropical meromorphic function of finite

type is shown to be a tropical rational function. One also has tropical nullstellensatz.
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1. Introduction

Tropical geometry is a new geometry which occur in many fields of
mathematics, such as enumerative algebraic geometry, combinatorics, and
so on. A tropical hypersurface can be seen as a “limit” of amoebas ([8], [9],
[14]), or equivalently, a non-Archimedean amoeba ([5], [9]). It is well-known
(see, for instance, [1], [4], [6], [12]) that it also equals the corner locus of a
convex piecewise linear function f : Rn → R defined by

f(x1, . . . , xn) = max
(i1,...,in)∈I

(ai1...in + i1x1 + · · ·+ inxn)

for some finite subset I ⊂ Zn
≥0 and ai1,...,in

∈ R.
Let us denote the operators max and + by “tropical operators” ⊕ and

⊗ respectively. Then f turns out to be a polynomial function of “a tropical
polynomial” denoted by tropical operators as

f(x1, . . . , xn) =
∑

(i1...in)∈I
ai1...in

xi1
1 ⊗ · · · ⊗ xin

n .

Thus a tropical hypersurface is the corner locus of a polynomial function.
Let us formulate the above polynomial function more rigorously and study
it under the help of semiring theory and complex geometry.

In the first half of this paper, we treat the algebraic structure of a tropi-
cal semiring. We define tropical polynomials, tropical polynomial functions,
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tropical rational functions, and tropical meromorphic functions based on
semiring theory.

In contrast, the latter half, starting from Section 7, is devoted to the
geometric side. We first define the mixed loci of a meromorphic function.
It turns out that the mixed loci of a nonmonomial polynomial equals a
traditional tropical hypersurface. Then we expand the definition of a weight
to each affine linear subset of maximal dimension (“a facet”) of a mixed loci
and explore the properties. As a consequence, we have two theorems that
resemble those of complex geometry:

• Theorem 9.1 A tropical meromorphic function of finite type is a trop-
ical rational function.

• Theorem 10.1 Tropical Hilbert’s nullstellensatz holds.

The latter is already shown more generally in [15]. However, our statement
is simpler and the proof is more straightforward from the properties of a
weight.

2. Tropical semirings and tropical polynomials

Throughout this paper, a semiring (resp. semifield) means a commuta-
tive semiring (resp. semifield) with an identity and a zero.

Definition 2.1 Let T denote the set R ∪ {−∞}. We define ⊕ and ⊗ to
be the operators called “tropical addition” and “tropical multiplication” on
T by the followings:

• a⊕ b := max(a, b),
• a⊗ b := a + b,

where

• a⊕−∞ = −∞⊕ a = a,
• a⊗−∞ = −∞⊗ a = −∞.

Under these operations, (T,⊕,⊗) satisfies all the properties of a field except
for the additive inverse (if a 6= −∞, then the additive inverse “−a” does not
exist). Note that −∞ is the zero and 0 is the identity. Thus (T,⊕,⊗) is a
semifield. We call this semifield, according to tradition, the tropical semiring
or the max-plus algebra.
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Remark The zero −∞ is an absorbing zero, i.e., a ⊗ −∞ = −∞. We
write the set of all nonzero elements T\{−∞} as T×. Since T is a semifield,
every element of T× has an inverse element a−1.

Note that Tn is a semiring by the componentwise tropical addition and
multiplication. Also it has a topology induced from the Euclidean topology
on Rn

≥0 by the bijective map

Exp : Tn 3 a = (a1, . . . , an) 7→ Exp(a) := (ea1 , . . . , ean) ∈ Rn
≥0,

where e−∞ = 0. Let {p(i) = (p(i)
1 , . . . , p

(i)
n ) ∈ Tn}∞i=1 be a sequence satisfying

max(p(i)
j | i, j) < const. Then {p(i)} has a convergent subsequence.

We call the set Tn \ Rn the corner after Oda [11].
Similar to constructing a polynomial ring from a ring, one can construct

a polynomial semiring from a semiring.

Theorem 2.1 ([3], Theorem 2.1.6) Let S be a semiring with an absorbing
zero. Then the set of all polynomials

S[x] :=
{ n∑

i=0

aix
i | n ∈ Z≥0, ai ∈ S

}

is a semiring with an absorbing zero.

Corollary 2.1 T[x1, . . . , xn] is a semiring. We call each element a tropical
polynomial, or simply a polynomial.

F =
∑

i1,...,in∈Z≥0

ai1...in
xi1

1 . . . xin
n

We shall often abbreviate (x1, . . . , xn) to X and write each element using
multi-index :

F =
∑

I∈Zn
≥0

aIX
I ∈ T[X] := T[x1, . . . , xn],

where XI = xi1
1 . . . xin

n for I = (i1, . . . , in).

Remark We usually omit the term with the coefficient −∞ (zero of T).
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Also we usually do not write the coefficient 0 (identity of T). Thus for
example,

0⊕−∞x⊕ (−1)x2 ⊕ 1x3 ⊕ 0x4 ⊕−∞x5 ⊕−∞x6 ⊕−∞x7 ⊕ · · ·
= 0⊕ (−1)x2 ⊕ 1x3 ⊕ x4.

Do not mistake 1x3 for x3. Sometimes (−1)x2 is abbreviated to −x2. How-
ever, this notation is misleading since −x2 is not the additive inverse of x2

(−x2 ⊕ x2 = x2).
We frequently write F ⊗G as FG.
The zero of T[X] is −∞. Thus the term nonzero means that it is not

−∞. E.g., x⊕ 2 and 0 are both nonzero elements.

A monomial is an element with every coefficient being −∞ except one
(which may also be −∞). A binomial is an element with at most two
coefficient being nonzero. Thus a monomial is a binomial. We call a binomial
which is not a monomial a strict binomial.

Remark The addition of indexes occurs by multiplying two tropical poly-
nomials. This addition is the usual addition and not the tropical addition.
For instance,

x2 ⊗ x3 = x5, (x⊕ 1)⊗ (x⊕ (−1)) = x2 ⊕ 1x⊕ 0.

Each tropical polynomial F =
∑

aIx
I defines a continuous function

µ(F ) : Tn → T by

Tn 3 p = (p1, . . . , pn) 7→ µ(F )(p) :=
∑

I

aIp
I ∈ T.

Note that

aIp
I = aI ⊗ pi1

1 ⊗ pi2
2 ⊗ · · · ⊗ pin

n

= aI + i1 · p1 + i2 · p2 + · · ·+ in · pn.

The thick lines in Figure 1 illustrates the graphs of two polynomials
F = x ⊕ 0 and F ′ = x(x ⊕ 0) = x2 ⊕ x. The thin lines in contrast graphs
the value of smaller-valued terms.
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Figure 1. F = x⊕ 0 / F ′ = x(x⊕ 0)

Definition 2.2 We call a function φ : Tn → T a tropical polynomial
function (or just a polynomial function) on Tn if there exists a tropical
polynomial F such that φ = µ(F ).

Remark We sometimes identify F and µ(F ). However even if µ(F ) =
µ(G) holds, F and G may be different as tropical polynomials (e.g., F =
x2 ⊕ 0, G = x2 ⊕ x⊕ 0. See Proposition 3.2).

3. Tropical polynomial functions

An integral domain has a quotient field.

Definition 3.1 Let (S, +, ·) be a semiring. Then an element a of S is
a multiplicatively cancellable element if ab = ac infers b = c for any two
elements b and c.

If every nonzero element of S is a multiplicatively cancellable element,
we say that S is multiplicatively cancellative.

Theorem 3.1 ([3], Theorem 2.2.5) Let (S, +, ·) be a multiplicatively can-
cellative semiring. Then there exists a quotient semifield Q(S), that is, a
semifield generated by all the elements of S and the multiple inverse of all
nonzero elements of S equipped with the following addition/multiplication:

• F1G
−1
1 + F2G

−1
2 = (F1G2 + F2G1)(G1G2)−1,

• F1G
−1
1 · F2G

−1
2 = (F1F2)(G1G2)−1.

As usual, we often write FG−1 as F/G.

Remark Every semifield F is multiplicatively cancellative. Thus we can
take the quotient Q(F ), which equals F . So we often write ab−1 ∈ F as a/b.
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Thus we are led to the following question: Is T[X] multiplicatively can-
cellative?

Proposition 3.1 T[X] is not multiplicatively cancellative. Indeed a non-
zero element F ∈ T[X] is a multiplicatively cancellative element if and only
if F is a monomial.

Proof. Obviously nonzero monomials are multiplicatively cancellative.
Suppose F is not a monomial and take a grading which makes F inho-
mogeneous. Then divide F into two polynomials G1 and G2 such that the
lowest degree of G1 is d1 and the highest degree of G2 is d2 (d1 > d2).

The following equation holds:

(G1 ⊕G2)
(
G2

1 ⊕G1G2 ⊕G2
2

)
= G3

1 ⊕G2
1G2 ⊕G1G

2
2 ⊕G3

2

= (G1 ⊕G2)
(
G2

1 ⊕G2
2

)
.

Since G2
1 ⊕ G1G2 ⊕ G2

2 contains the degree (d1 + d2) term which is not
contained in G2

1 ⊕G2
2, we come to the conclusion. ¤

So we cannot simply take the quotient of T[X].

Definition 3.2 We say that F and G are equivalent and write as F ∼ G

when F (p) = G(p) holds for every p ∈ Tn. This is an equivalent relation
and we denote T[X]/ ∼ as Poly(Tn). Poly(Tn) is canonically equipped with
tropical operators and is a semiring.

Definition 3.3 ([2], [10]) For a tropical polynomial F =
∑

I∈I aIX
I ∈

T[X], we define the extended polyhedral domain as

∆̃(F ) = ConvexHull{(I, b) ∈ Rn × R | I ∈ I, b ≤ aI}.

Proposition 3.2

F ∼ G ⇐⇒ ∆̃(F ) = ∆̃(G).

Proof. Suppose ∆̃(F ) 6⊆ ∆̃(G) holds and take a point (I, b) from ∆̃(F ) \
∆̃(G). Then it is well-known that there is “a separating hyperplane” H

(which separates ∆̃(G) and (I, b)). Let x1, . . . , xn, and y be the coordinates
of Rn × R. Then since ∆̃(G) ⊂ {y < M} holds for some constant M , we
may assume H to be defined as follows:
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p1x1 + · · ·+ pnxn + y = c.

Then for a point p = (p1, . . . , pn) ∈ Tn, we have F (p) > c > G(p).
Conversely suppose that a point p = (p1, . . . , pn) satisfies F (p) > G(p).

Then by setting H to be

H = {p1x1 + · · ·+ pnxn + y = F (p)},

we have H ∩ ∆̃(F ) 6= ∅ and, on the other hand, H ∩ ∆̃(G) = ∅. ¤

Corollary 3.1 If F and G are equivalent and F is a monomial, then
F = G holds.

Definition 3.4 We call an element of Poly(Tn) a monomial if a represen-
tative element is a monomial. We call an element of Poly(Tn) a binomial if
there exists a binomial representative. Also by a strict binomial we mean a
nonmonomial binomial of Poly(Tn).

Proposition 3.3 Poly(Tn) is a multiplicatively cancellative semiring.

Proof. Suppose that the elements F 6= −∞, G1, and G2 of T[X] satisfy
FG1 = FG2. For a point p ∈ Rn, F (p) is not −∞. Thus we have G1(p) =
G2(p). Otherwise take ε from R = T× and put ε = (ε, . . . , ε). Then p ⊕ ε

is an element of Rn. So we have G1(p ⊕ ε) = G2(p ⊕ ε). Since tropical
polynomial functions are continuous, we have G1(p) = G2(p) by ε → −∞.

¤

Remark Obviously each polynomial f ∈ Poly(Tn) uniquely determines a
tropical function by the isomorphism of semirings

Poly(Tn) 3 f 7→ µ(F ) ∈ {tropical polynomial functions on Tn},

where F is a representative element. Thus we freely identify an element of
Poly(Tn) and a polynomial function and write as f : Tn → T. Especially
we call each element of Poly(Tn) a (tropical) polynomial function.

4. Irreducible binomials

The following equation holds as tropical polynomial functions.
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Lemma 4.1

(f1 ⊕ · · · ⊕ fs)k = fk
1 ⊕ · · · ⊕ fk

s ∈ Poly(Tn)

Proof. By expanding the left side, we have

(f1 ⊕ · · · ⊕ fs)k =
∑

k1,...,ks∈Z≥0
k1+···+ks=k

fk1
1 ⊗ · · · ⊗ fks

s .

For a point p ∈ Tn, fi(p) ≤ max(f1(p), . . . , fs(p)) holds. So we have

fk1
1 (p)⊗ · · · ⊗ fks

s (p) ≤ max
(
fk
1 (p), . . . , fk

s (p)
)

= fk
1 (p)⊕ · · · ⊕ fk

s (p),

and thus

(f1(p)⊕ · · · ⊕ fs(p))k = fk
1 (p)⊕ · · · ⊕ fk

s (p). ¤

Definition 4.1 A polynomial f is irreducible if any representative of f

cannot be written as a product of two nonconstant polynomials.

Example 1 A nonconstant monomial θ is irreducible if and only if θ = axr

for some a ∈ R and r ∈ {1, . . . , n}.
For L = (l1, . . . , ln) ∈ Zn, let us define gcd(L) to be

gcd(L) := gcd(l1, . . . , ln) > 0.

We say that L is primitive if gcd(L) = 1 holds.

Proposition 4.1 Let θ = aXI ⊕ bXJ be a strict binomial of Poly(Tn),
where I = (i1, . . . , in) and J = (j1, . . . , jn). Then θ is irreducible if and only
if the following holds:

( i ) for each r ∈ {1, . . . , n}, either ir or jr equals 0,
( ii ) I + J is primitive.

Remark From (i), we can replace the condition (ii) to the primitiveness
of I − J .

Proof. Suppose θ is irreducible. Then obviously (i) holds. Also if gcd(I +
J) = k ≥ 2 holds, then both I/k and J/k are the elements of Zn

≥0 and
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Lemma 4.1 shows that θ can be written as θ = ( k
√

aXI/k ⊕ k
√

bXI/k)k.
Here, k

√
a is the tropical expression of the usual division of a by k, namely,

“a/k”.
Now searching for a contradiction, suppose θ satisfies both (i) and (ii)

and can be decomposed into a product of two polynomials θ1 and θ2. We may
assume that neither θ1 nor θ2 is a monomial. Since the extended polyhedral
domain of θ is a line segment, the extended polyhedral domains of θ1 and
θ2 are both line segments. Thus we can write θ1 and θ2 as

θ1 = a1X
I1 ⊕ b1X

J1 , θ2 = a2X
I2 ⊕ b2X

J2 .

Then (the representative of) θ consists of four terms with the indexes
being I1 + I2, I1 + J2, J1 + I2, and J1 + J2. Let us put L1, L2 ∈ Zn as
L1 = I1 − J1, L2 = I2 − J2. Then L1 + L2, L1, L2, and 0 must be on
a line. Thus there exists coprime integers k1, k2 such that k1L1 = k2L2.
By exchanging I2 for J2 if necessary, we may assume both k1 and k2 to be
positive. Then we can write θ as

θ = a1a2X
I1+I2 ⊕ b1b2X

J1+J2

and we have gcd(I − J) = gcd(L1 + L2). On the other hand, k1(L1 + L2) =
(k1+k2)L2 holds. So L1+L2 can be divided by k1+k2 ≥ 2. A contradiction.

¤

Corollary 4.1 A representative of an irreducible binomial is unique.

Example 2 An element f of Poly(T) is an irreducible binomial if and
only if f = ax⊕ b holds, where a, b are the elements of T.

In Section 8, we define a weight of a facet with the help of irreducible
binomials.

5. Rational functions

Since Poly(Tn) is multiplicatively cancellative, we can take the quotient.

Definition 5.1 We write the quotient semifield of Poly(Tn) as Rat(Tn)
and call each element a (tropical) rational expression.

Remark Let h be an element of Rat(Tn). Then h can be written as
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h = f/g, where f and g are elements of Poly(Tn).

If both f and g can be taken as a monomial, we call h a monomial. A
monomial can be written as aXL for some a ∈ T and L ∈ Zn.

Let T̄ denote the set T ∪ {∞}. Then T̄ can be obtained by gluing two
T’s along T× by

T× 3 a 7→ a−1 ∈ T×.

We induce a topology in T̄ from this construction. In particular, T̄ is com-
pact and sequentially compact.

Since T̄ = T∪{∞} canonically contains T, we can calculate the tropical
addition and multiplication of elements a, b in T̄ if both a, b are in T. Also
we can calculate the inverse a−1 if a is in T×. Let us extend these operations
to T̄.

We naturally put (±∞)−1 = ∓∞ since lima→±∞ a−1 = ∓∞. Thus the
inverse element a−1 of T̄ is defined for all a. Similarly, both ∞⊕a and a⊕∞
are defined as ∞, and ∞⊗ a and a⊗∞ are defined as ∞ if a 6= −∞. Thus
the addition a ⊕ b is defined for all a, b ∈ T̄ and the multiplication a ⊗ b is
defined for all a, b ∈ T̄ except for (a, b) = (±∞,∓∞).

Let h = f/g be an element of Rat(Tn). Note that both f(p) and g(p) are
elements of T for p ∈ Tn. Thus for every p ∈ Tn outside f(p) = g(p) = −∞,
µ(h)(p) := f(p)/g(p) = f(p)⊗ g(p)−1 is an element of T̄ = T ∪ {∞}.

Thus we have a continuous function

{p ∈ Tn | f(p)⊕ g(p) 6= −∞} 3 p 7→ µ(h)(p) ∈ T̄

which is at least defined over Rn. We will write the function above as

µ(h) : Tn 99K T̄

to imply that the closure of the domain is Tn.

Definition 5.2 Let φ : S → T̄ be a function with S being a subset of
Tn containing Rn. We call φ a (tropical) rational function if there exists a
rational expression h such that φ = µ(h). Rational functions are canonically
equipped with tropical operators and forms a semifield.

Remark We do not distinguish a rational expression from a rational func-



Tropical algebraic geometry 781

tion since they are obviously isomorphic as semifields. We also call each
element of Rat(Tn) a rational function and write as h : Tn 99K T̄ by abbre-
viating µ(h)(p) to h(p).

Remark A function taking the value ∞ everywhere is not a rational
function since 0/(−∞) /∈ Rat(Tn).

Remark If h is nonzero, im(h|Rn) ⊂ R.

Figure 2. h = (x⊕ 1)/(x⊕ 0)

Figure 2 graphs a rational function h = (x⊕1)/(x⊕0). It is not convex
around x = 0. This is the main difference between a graph of a polynomial
function and that of a rational function. See Corollary 9.2 and Corollary
9.4.

Remark A polynomial function is a rational function with the domain
being Tn and the image contained in T.

6. Meromorphic functions

Also in tropical geometry, a rational function is a meromorphic function.

Definition 6.1 Let D be a subset of Tn. We call a function φ : D → T̄
a piecewise linear function if there exists a covering {Dλ}λ∈Λ of D such
that φ|Dλ

= mλ|Dλ
for each Dλ, where each mλ ∈ Rat(Tn) is a monomial.

In particular, if we can take a finite covering, we call φ a piecewise linear
function of finite type.

Remark We take the covering {Dλ} to be minimal provided that each
Dλ is connected. Thus if Dλ1 ∩Dλ2 6= ∅ holds, then φ|Dλ2

6= mλ1 |Dλ2
.

Definition 6.2 Let φ : D → T̄ be a piecewise linear function with D

being an open dense subset of Tn. Then φ is called a (tropical) meromorphic
function if it satisfies the followings:
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• φ is continuous,
• im φ 6= {∞},
• {Dλ} is locally finite; For every p ∈ Tn, there exists a neighborhood

B such that

#{λ ∈ Λ | B ∩Dλ 6= ∅} < ∞.

A meromorphic function φ is of finite type if φ is of finite type as a piece-
wise linear function. Meromorphic functions are also equipped with tropical
operators and forms a semifield.

Figure 3. Functions φ and φ′

Figure 3 graphs two functions φ and φ′. φ is a meromorphic function
not of finite type. φ′ is not a meromorphic function because the numbers of
Dλ’s are infinite around x = −∞.

Remark We say that two meromorphic functions φ1 : D1 → T and φ2 :
D2 → T are equivalent if φ1|D1∩D2 = φ2|D1∩D2 holds. Then this is an
equivalence relation since a meromorphic function is continuous.

Thus from now on, we mean by a meromorphic function an equivalent
class or more precisely, a representative element with the domain D being
maximal. Especially, every meromorphic function is defined over Rn.

Example 3 Let φ be a meromorphic function satisfying #Λ = 2. Then
either φ = m1 ⊕m2 or φ = (m−1

1 ⊕m−1
2 )−1 = m1m2/(m1 ⊕m2).

We call a point in Tn \ D a point of indeterminacy. Let p be a point
of indeterminacy. Then limi→∞ φ(pi) varies (if exists) by the choice of an
infinite sequence {pi ∈ D}∞i=1 converging to p.

Example 4 A rational function φ = (x ⊕ 1y)/(x ⊕ y) has a point of
indeterminacy at p = (−∞,−∞). Let T be the set of sequences {pi ∈
T2 \ {p}}∞i=1 such that
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• {pi} converges to p,
• {φ(pi)} converges.

Then
{

lim
i→∞

φ(pi) | {pi} ∈ T
}

= [0, 1].

7. Tropical hypersurfaces

From now on, we will treat geometry of meromorphic functions on Tn.
We denote by + and · the usual addition and multiplication. Do not mistake
them for tropical addition/multiplication. In fact, we hardly use the tropical
operators except for describing tropical functions.

First, we remark some definitions and properties of a convex function
([13]).

Definition 7.1 Let D be a convex subset of Rn. We say that a function
Φ : D → R is a convex function if the epigraph of f defined as

{(x, µ) | x ∈ D, µ ∈ R, µ ≥ Φ(x)}

is a convex subset of Rn+1.
If −Ψ is a convex function, we call Ψ a concave function.

Theorem 7.1 ([13], Theorem 4.1) Φ is convex if and only if

Φ((1− λ)x + λy) ≤ (1− λ)Φ(x) + λΦ(y), 0 < λ < 1

holds for every x, y ∈ D.

Definition 7.2 We say that Φ is locally convex at a point p ∈ D if there
exists an open neighborhood B of p such that Φ|B is a convex function.

Proposition 7.1 Suppose Φ is continuous. Then

Φ is a convex function ⇔ Φ is locally convex at every point.

Proof. ⇒ is obvious. ⇐ comes from the compactness of [0, 1]. ¤

Let φ be a meromorphic function defined over D by φ|Dλ
= mλ|Dλ

for
each λ ∈ Λ. Put three subsets V o(φ), Z(φ), and P (φ) of D as follows:
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V o(φ) :=
⋃

λ1,λ2∈Λ
λ1 6=λ2

Dλ1 ∩Dλ2 , the corner locus of φ,

Z(φ) := {p ∈ T | φ(p) = −∞}, the zero locus of φ,

P (φ) := {p ∈ T | φ(p) = ∞}, the pole locus of φ.

Remark P (φ) is contained in the corner Tn \Rn. Also Z(φ) is contained
in the corner except for φ 6= −∞.

Definition 7.3 For a meromorphic function φ, we define the mixed loci
V (φ) of φ to be

V (φ) := V o(φ) ∪ Z(φ) ∪ P (φ).

We call φ a defining (meromorphic) function of V (φ).

Example 5 Let a be a constant function. Then

V (a) =

{
Tn, if a = −∞,

∅, otherwise.

The inverse also holds:
{

V (φ) = Tn ⇒ φ = −∞,

V (φ) = ∅ ⇒ φ is a nonzero constant.

Remark V (φ) = V (φk) holds for any positive integer k.

On each connected component of D \ V (φ), φ is a monomial. We call
each connected component an open chamber and its closure in D a chamber.
A chamber equals a Dλ. The number of chambers is finite if φ is of finite
type.

Suppose φ|Dλ
= aXL|Dλ

holds. We call L the exponent of Dλ. Since
φk|Dλ

= akXk·L|Dλ
holds, the exponent of Dλ of φk is k · L.

Let f be an element of Poly(Tn). Note that P (f) is an empty set.

Definition 7.4 The mixed loci of a nonconstant polynomial function is
called a tropical hypersurface.
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Figure 4. Hypersurface (line) / non-hypersurface

Example 6 The left figure of Figure 4 is the hypersurface defined by
x⊕ y ⊕ 0. Since the defining polynomial is linear, V (x⊕ y ⊕ 0) is “a line”.
On the other hand, the right figure is the mixed loci given by V (xy−1(x ⊕
0)−1(y ⊕ 0)−1(x ⊕ y ⊕ 0)). Note that the defining function has a point of
indeterminacy at (−∞,−∞). This is not a hypersurface. See Example 7.

Remark

V (fg) = V (f) ∪ V (g), ∀f, g ∈ Poly(Tn)

holds. However, V o(fg) may strictly contain V o(f)∪V o(g) if either f or g is
a monomial (e.g., V o(x(x⊕0)) = V o(x2⊕x) = {−∞, 0}, V o(x)∪V o(x⊕0) =
{0}). This is one of the reasons why we should consider the zero locus (and
the pole locus) along with the corner locus.

The definition of a tropical hypersurface is the same as the traditional
definition provided f is not a monomial.

Proposition 7.2 Let F =
∑

I∈I aIX
I ∈ T[X] be a polynomial satisfying

#I ≥ 2 by allowing a coefficient to be −∞ if necessary. Then

V (F ) =
{
p ∈ Tn|F (p) = aJ1p

J1 = aJ2p
J2 for some J1, J2 ∈ I, J1 6= J2

}
.

Proof. Let us put V to be the right hand side of the above.
Since both V o(F ) and Z(F ) are contained in V , we have V (F ) ⊂ V .
Conversely, suppose p is a point in V . If F takes the value −∞ at p,

then p is in Z(F ). Otherwise F is not a monomial and p is contained in the
corner locus. ¤
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8. The weight of a facet

In this section, we mean by a meromorphic function a meromorphic
function satisfying #Λ ≥ 2.

The tropical hypersurface V (θ) of an irreducible binomial θ is as follows:

• If θ = axr is a monomial, then V (θ) = {(p1, . . . , pn) ∈ Tn | pr = −∞},
• If θ = aXI ⊕ bXJ (I = (i1, . . . , in), J = (j1, . . . , jn)) is a strict bino-

mial, then V (θ) is the closure of an affine hyperplane in Rn defined
by

(i1 − j1)x1 + · · ·+ (in − jn)xn = a− b.

Note that the following holds.

Proposition 8.1 Let θ and θ′ be irreducible binomials satisfying V (θ) =
V (θ′). Then θ = θ′ holds up to constant.

Proof. The statement is obvious if θ (and thus θ′ too) are monomials. So
we may assume that both θ and θ′ are strict binomials and write them down
as

θ = aXI ⊕ bXJ , θ′ = a′XI′ ⊕ b′XJ′ .

Then V (θ) = V (θ′) and the primitiveness of I − J and I ′ − J ′ yields
either I − J = I ′ − J ′ or I − J = J ′ − I ′. In the first case, we have I = I ′

and J = J ′. Then a− b = a′ − b′ holds. In the second case, we have I = J ′

and J = I ′. Then we have a− b = b′ − a′. ¤

Definition 8.1 Let φ be a meromorphic function defined at D ⊂ Tn and
put V ′ to be a subset of V (φ) given by

V ′ = (V (φ) \ V o(φ)) ∪ {
p ∈ Rn | p ∈ Dλ1 ∩Dλ2 ,

∃!{λ1, λ2 | λ1 6= λ2} ⊂ Λ
}

(which corresponds to all the “smooth” points of V (φ)).
Then we define as follows:

• an open facet is a connected component of V ′,
• a facet (or a (n− 1)-cell) is the closure of an open facet,
• a cornered (resp. a non-cornered) facet is a facet contained (resp.

not contained) in the corner Tn \ Rn,
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• an intersecting neighborhood B of a facet H is an open subset of D

satisfying ∅ 6= B ∩ V (φ) ⊂ H.

We write the set of facets (resp. non-cornered facets) as L(φ) (resp. LR(φ)).

Remark From the openness of B, B∩V (φ) is contained in an open facet.

Let φ be a meromorphic function and take a facet H of φ. Then there
exists an irreducible binomial θ satisfying V (θ) ⊃ H. Note that θ is unique
up to constant by Proposition 8.1.

Lemma 8.1 There exists a unique integer w(H) and a monomial m ∈
Rat(Tn) satisfying V (m) ∩B = ∅ such that

φ|B = m⊗ θw(H)|B .

Remark This w(H) is independent of the choice of θ.

Proof. If H is cornered, then the statement is obvious. Thus suppose H

is non-cornered. Let D1, D2 be the chambers of φ adjacent to H and put

φ|B =

{
aXL1 , if X ∈ D1

bXL2 , if X ∈ D2

, θ = a′XI′ ⊕ b′XJ′ ,

where we assume θ|D1 = a′XI′ and θ|D2 = b′XJ′ . Then either φ|B =
aXL1 ⊕ bXL2 or φ|B = abXL1+L2/(aXL1 ⊕ bXL2) holds. It is enough to
show the case on φ|B = aXL1 ⊕ bXL2 . Here, a, b, a′, and b′ are all nonzero.

Since V (φ) ∩B = V (θ) ∩B holds, we have

L2 − L1 = w(H) · (J ′ − I ′) and b− a = w(H) · (b′ − a′)

for some integer w(H) from the primitiveness of J ′ − I ′. Let L and c be
defined as

L = I − w(H)I ′ = J − w(H)J ′, c = a− w(H)a′ = b− w(H)b′.

Since θw(H) = (a′)w(H)Xw(H)·I′ ⊕ (b′)w(H)Xw(H)·J′ holds, we have

φ|B = cXL ⊗ θw(H).
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Note that V (cXL) ∩B is an empty set because it is not contained in V (θ).
Thus the statement is proved. ¤

Definition 8.2 We call w(H) the weight of H.

Remark Let H be a cornered facet. Then from the definition,

w(H) > 0 ⇔ H ⊂ Z(φ),

w(H) < 0 ⇔ H ⊂ P (φ).

In the next section, we will see that the signature gives the local con-
vexity of the function at an intersecting neighborhood if H is non-cornered.

Remark Let φ be a meromorphic function and H be a facet of weight
w(H). Then H is also a facet of φk of weight k · w(H).

Corollary 8.1 Suppose H is non-cornered and let the chambers adjacent
to H be Dλ1 and Dλ2 with the exponents being Lλ1 and Lλ2 respectively.
Also let v be the vector orthogonal to H pointing from Dλ1 to Dλ2 . Then

Lλ2 − Lλ1 = w(H) · v.

Proof. Evident from the proof of Lemma 8.1. ¤

We call a subset E of S a non-cornered (n− 2)-face if

• E is given as an intersection of two facets,
• the affine hull of E ∩ Rn in Rn (denoted as aff(E ∩ Rn)) is of codi-

mension two as a subspace of Rn.

Lemma 8.2 Let H be a facet satisfying dimaff(E ∩ H ∩ Rn) = n − 2,
where E is a non-cornered (n− 2)-face. Then E ⊂ H holds.

Proof. It is enough to show that for a chamber D′ satisfying dim aff(E ∩
D′ ∩ Rn) = n− 2, E ⊂ D′ holds. In other words, it is enough to show that
the monomial representing φ at D′ above also equals φ at E.

Since E is given as an intersection of two facets, there exists a chamber
D containing E. Let m,m′ be the monomials satisfying φ|D = m|D, φ|D′ =
m′|D′ . Then φ(p) = m(p) holds for every p ∈ E. Since m(q) = m′(q) holds
for every point q ∈ D ∩D′, m(q) = m′(q) also holds for every point q in the
closure aff(D ∩D′ ∩ Rn). aff(D ∩D′ ∩ Rn) contains E. ¤
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Theorem 8.1 (Balancing property) For a non-cornered (n − 2)-face E

of φ, write the chambers adjacent to E as D1, . . . , Dm. Here, we assume
Di∩Dj ) E if and only if j−i ≡ ±1 ( mod m). Then put the facet adjacent
to Di and Di+1 as Hi (we assume Dm+1 = D1). Also let the primitive vector
orthogonal to Hi pointing from Di to Di+1 be vi. Then

m∑

i=1

w(Hi) · vi = 0,

where the operators are the usual operators and not the tropical ones.

Table I

i φ|Bi w(Li) v(Li)

1 xy−1(y ⊕ 0)−1 −1 (0, 1)

2 y−2(x⊕ y) 1 (−1, 1)

3 xy−1(x⊕ 0)−1 −1 (−1, 0)

4 xy−1 1 —

5 xy−1 −1 —

Figure 5. Facets and their properties

Example 7 Consider φ = xy−1(x⊕0)−1(y⊕0)−1(x⊕y⊕0) as in Example
6 and put the facets L1, . . . , L5 as in Figure 5. Put Bi to be an intersecting
neighborhood of Li. Then the list of φ|Bi , w(Li), and v(Li) for each i is
given by Table I.

Let E be (0, 0). The balancing property at E will be

w(L1) · v1 + w(L2) · v2 + w(L3) · v3 = 0.

9. The geometry of meromorphic functions

Definition 9.1 We say that a meromorphic function φ is a convex function
(resp. a concave function) if φ|Rn is convex (resp. concave).

Proposition 9.1 Let φ and ψ be convex meromorphic functions. Then
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both φ⊕ ψ and φ⊗ ψ are convex.

Proof. Let p1, p2 ∈ Rn and t ∈ [0, 1]. Then

(φ⊕ ψ)(tp1 + (1− t)p2) = max
(
φ(tp1 + (1− t)p2), ψ(tp1 + (1− t)p2)

)

≤ max
(
tφ(p1) + (1− t)φ(p2), tψ(p1) + (1− t)ψ(p2)

)

≤ t max
(
φ(p1), ψ(p1)

)
+ (1− t)max

(
φ(p2), ψ(p2)

)

= t(φ⊕ ψ)(p1) + (1− t)(φ⊕ ψ)(p2).

The convexity of φ⊗ ψ is well-known and also easy to prove. ¤

Corollary 9.1 A polynomial function is convex.

Proposition 9.2 Let φ be a meromorphic function of finite type defined
by φ|Dλ

= mλ|Dλ
for each chamber Dλ with mλ being a monomial. Then

φ =
∑

λ∈Λ

mλ ⇐⇒ φ is convex.

Proof. From the previous proposition, we already know that ⇒ holds.
Suppose φ 6= ∑

mλ. Then there exists a point p such that φ(p) <∑
mλ(p). Especially, we can take p from Rn from the continuity of φ. Let

λ1 ∈ Λ satisfy
∑

mλ(p) = mλ1(p) and take a point q from the open chamber
of Dλ1 ∩ Rn. Also take t ∈ (0, 1) small enough so that tp + (1 − t)q is an
element of Dλ1 . Then

φ(tp + (1− t)q) = mλ1(tp + (1− t)q)

= tmλ1(p) + (1− t)mλ1(q)

> tφ(p) + (1− t)φ(q)

which yields φ is not convex. ¤

Lemma 9.1 Let φ be a meromorphic function defined by

φ =

{
a1X

L1 , if X ∈ D1 (L1 ∈ Zn),

a2X
L2 , if X ∈ D2 (L2 ∈ Zn),
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where D1 and D2 are the nonempty chambers of φ and put H to be the
unique facet. Then

φ is convex ⇐⇒ w(H) > 0,

φ is concave ⇐⇒ w(H) < 0.

Proof. First of all, we know that w(H) 6= 0 from the minimality of {Dλ}.
By sliding φ if necessary, we may assume both a1 and a2 to be 0. Let

v be a primitive vector orthogonal to H as before pointing from D1 to D2.
Then from Corollary 8.1, we have L2 − L1 = w(H) · v. Take a point p from
D2. Then

φ(p) = pL2 = pL1+w(H)·v = pL1 ⊗ pw(H)·v = pL1 + w(H) · pv.

Note that pv ≥ 0 holds because p is a point in D2. Thus we have

φ(p)

{
> pL1 , if w(H) > 0,

< pL1 , if w(H) < 0,

which proves the statement. ¤

Corollary 9.2 Let H be a non-cornered facet of a meromorphic function
φ and B be an intersecting neighborhood. Also let the exponents of the
chambers adjacent to H be L1 and L2. Then we have the followings:

φ|B is convex ⇔ w(H) = gcd(L2 − L1) > 0,

φ|B is concave ⇔ w(H) = − gcd(L2 − L1) < 0.

Proof. Corollary 8.1 and Lemma 9.1. ¤

Proposition 9.3 Let φ be a meromorphic function. Then

φ is convex ⇐⇒ w(H) > 0, ∀H ∈ LR(φ).

Proof. We already know that ⇒ holds.
If w(H) > 0 holds for every facets, φ is locally convex outside boundaries

of facets. Thus we come to the conclusion from the continuity of φ and
Proposition 7.1. ¤
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Corollary 9.3 Let φ be a meromorphic function defined by φ|Dλ
= mλ|Dλ

for each chamber Dλ, where mλ is a monomial. Then

φ =
∑

λ∈Λ

mλ ⇐⇒ w(H) > 0, ∀H ∈ LR(φ).

Example 8 V (φ) given in Figure 5 is not a hypersurface restricted to
D = T2 \ {(−∞,−∞)} because there are no positive integers w1, w2, w3

satisfying the balancing property at E:

w1 · v1 + w2 · v2 + w3 · v3 6= 0 if w1, w2, w3 ∈ Z>0.

Corollary 9.4 Let φ be a meromorphic function of finite type. Then φ is
an element of Poly(Tn) if and only if every weight of facets is positive.

Proof. From the Corollary 9.3, we know that φ =
∑

mλ holds. If any of
mλ is not contained in Poly(Tn), the pole locus exists. The weight of a facet
contained in a pole locus is always negative. The other side is a consequence
of Corollary 9.3 and the fact that polynomial functions does not have a pole
locus. ¤

Let H be a non-cornered facet of φ of negative weight. Assume φ satisfies
φ|Dλ

= mλ|Dλ
as before. Let the chambers adjacent to H be Dλ1 and

Dλ2 . Then by setting a rational function h to be h = mλ1 ⊕mλ2 , we have
h|Dλ1

= mλ2 |Dλ1
and h|Dλ2

= mλ1 |Dλ2
. Also the facet H ′ of h satisfies

w(H ′) = −w(H) > 0 and H ′ ⊃ H.
Now h ⊗ φ is a meromorphic function satisfying h ⊗ φ|Dλ1

= mλ1 ⊗
mλ2 |Dλ1

and also h ⊗ φ|Dλ2
= mλ1 ⊗ mλ2 |Dλ2

. Thus H is not a facet of
h⊗φ anymore. h⊗φ may have new facets though their weights are positive.

Let us formulate what we have seen.
Let L−R (φ) be a subset of LR(φ) such that the weight of each facet is

negative.

Proposition 9.4 Let φ be a meromorphic function. Then there exists a
rational function h such that

L−R (φ) ) L−R (h⊗ φ).

If φ is of finite type, then the number of facets is finite so we have the
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followings.

Proposition 9.5 Let φ be a meromorphic function of finite type. Then
there exists a rational function h such that

L−R (h⊗ φ) = ∅.

Theorem 9.1 A meromorphic function of finite type is a rational func-
tion.

Proof. Let φ be a meromorphic function of finite type. Then there exists a
rational function h such that L−R (h⊗ φ) = ∅. This means that every weight
of facets is positive. Then from Corollary 9.3, h⊗ φ is a rational function.

¤

Remark This theorem shows that (after a suitable extension of the def-
inition of a meromorphic function), a meromorphic function defined over a
tropical projective space (in the sense of Kajiwara [4], Mikhalkin-Zhakov
[7]) is a rational function since a tropical projective space is compact.

10. Hilbert’s nullstellensatz on hypersurfaces

Hilbert’s nullstellensatz in the following form is now easy to prove.

Theorem 10.1 Let f, g ∈ Poly(Tn) be polynomial functions. Then if
V (f) ⊃ V (g) holds, then there exists a natural number k ∈ Z>0 and a
polynomial function h ∈ Poly(Tn) such that

fk = gh.

Proof. Since the statement is obvious if f is a constant, we may assume f

to be nonconstant.
Note that the number of facets is finite. Thus take k large enough so

that every weight of facets of fk/g is positive.
Then from Corollary 9.3, h := fk/g is an element of Poly(Tn) and we

have fk = gh. ¤

Remark The inverse also holds from Remark 7 and Remark 7.

Corollary 10.1 Let F, G ∈ T[x1, . . . , xn] be polynomials satisfying
V (F ) ⊃ V (G). Then there exists a natural number k and a polynomial
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H such that

F k ∼ G⊗H.

Theorem 10.2 Let f, g ∈ Poly[Tn] be nonconstant functions satisfying
the followings:

• V (f) = V (g),
• every weight of a facet of f equals the weight of the same facet of g.

Then f = g holds up to constant.

Proof. Since f/g has no facets, it is constant. ¤

Corollary 10.2 Let f ∈ Poly[T] be nonzero and put V (f) = {p1, . . . , pm},
with the weight of each pi being wi. Then

f = (x⊕ p1)w1(x⊕ p2)w2 . . . (x⊕ pm)wm

holds up to constant.

Especially T is “algebraically closed”.

Remark Because the irreducible decomposition of an element of Poly(Tn)
is in general not unique, V (f) = V (g) does not imply f = g up to constant
for two reduced polynomials f and g. For instance,

f = (x⊕ y ⊕ 0)
(
x15y21 ⊕ y16 ⊕ x8

)

g =
(
xy3 ⊕ y4 ⊕ 0

)(
x3y3 ⊕ x2 ⊕ y2 ⊕ x

)

are reduced polynomials satisfying V (f) = V (g), but are different.
On the other hand, we have f4 = gh and g8 = fh′ for the following h

and h′:

h =
(
x3y3 ⊕ x2 ⊕ y2 ⊕ x

)3(
x6y6 ⊕ x3y9 ⊕ y8 ⊕ x4

)(
x15y21 ⊕ y16 ⊕ x8

)3
,

h′ = (x⊕ y ⊕ 0)7
(
x3y9 ⊕ y8 ⊕ 0

)3
.
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