A product formula for hypergeometric polynomials of type ${ }_{2} F_{0}$

Tomoyuki Yoshida

(Received March 7, 2007)

Abstract. In this paper, we give a combinatorial proof to the following new product formula:

$$
\prod_{i=1}^{m}{ }_{2} F_{0}\left(-a_{i},-b_{i} ; z\right)=\prod_{r=0}^{n} p(r)_{2} F_{0}(-n,-r ; z)
$$

Key words: hypergeometric polynomial, product formula, hypergeometric distribution.

1. Main theorem

The generalized hypergeometric series

$$
{ }_{2} F_{0}(\alpha, \beta ; z):=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}(\beta)_{k}}{k!} z^{k}
$$

has the convergence radius 0 unless α, β are non-positive integers. The formal power series ${ }_{2} F_{0}(\alpha, \beta ; z)$ is a solution of the differential equation

$$
z^{2} y^{\prime \prime}+((1+\alpha+\beta) z-1) y^{\prime}+\alpha \beta y=0
$$

and satisfies the following recursion formula:

$$
\frac{d}{d z}{ }^{2} F_{0}(\alpha, \beta ; z)=\alpha \beta_{2} F_{0}(\alpha+1, \beta+1 ; z) .
$$

T.W. Chaundy ([3] (73)) showed the following product formula:

$$
\begin{aligned}
& { }_{2} F_{0}(\alpha, \beta ; p z)_{2} F_{0}\left(\alpha^{\prime}, \beta^{\prime} ; q z\right) \\
& \quad=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}(p z)^{n}}{n!}{ }_{3} F_{2}\left[\begin{array}{c}
\alpha^{\prime}, \beta^{\prime},-n ;-q / p \\
1-\alpha-n, 1-\beta-n
\end{array}\right] .
\end{aligned}
$$

When $-\alpha,-\beta$ are non-negative integers, ${ }_{2} F_{0}(\alpha, \beta ; z)$ is a polynomial of degree at most $\min (-\alpha,-\beta)$. In this paper, we study a new product

[^0]formula for polynomial cases and give a combinatorial proof to it.
After this, we simply write
$$
F_{a, b}(z):={ }_{2} F_{0}(-a,-b ; z)=\sum_{k \geq 0}\binom{a}{k}\binom{b}{k} k!z^{k}
$$
for nonnegative integers a, b. Furthermore, n denotes a non-negative integer; $\boldsymbol{a}=\left(a_{1}, \ldots, a_{m}\right)$ and $\boldsymbol{b}=\left(b_{1}, \ldots, b_{m}\right)$ vectors of non-negative integers; $\boldsymbol{x}=\left(x_{i j}\right)_{i, j=1, \ldots, m}$ an $m \times m$-matrix whose entries are non-negative integers. Furthermore, we put
\[

$$
\begin{aligned}
& \boldsymbol{a}!:=a_{1}!a_{2}!\cdots a_{m}!, \quad \boldsymbol{X}!:=\prod_{i, j} x_{i j}! \\
& \overline{\boldsymbol{a}}:=a_{1}+a_{2}+\cdots+a_{m}, \quad \overline{\boldsymbol{x}}:=\sum_{i, j} x_{i, j}
\end{aligned}
$$
\]

The multinomial coefficient used in this paper is defined as follows:

$$
\binom{n}{\boldsymbol{a}}:=\binom{n}{a_{1}, \ldots, a_{m}}:=\frac{n!}{a_{1}!\cdots a_{m}!(n-\overline{\boldsymbol{a}})!} .
$$

Only if $\overline{\boldsymbol{a}}=n$ holds, this notation is same as the usual one.
Now, let $\boldsymbol{\omega}$ be the set of non-negative integral solutions $\left(x_{i j}\right)_{i, j=1, \ldots, m}$ of the inequalities

$$
\sum_{j} x_{i j} \leq a_{i}, \sum_{i} x_{i j} \leq b_{j}, \sum_{i j} x_{i j} \geq \overline{\boldsymbol{a}}+\overline{\boldsymbol{b}}-n
$$

After this, we assume that n is greater than both of $\overline{\boldsymbol{a}}$ and $\overline{\boldsymbol{b}}$. We define an occurrence probability of an $\boldsymbol{x}=\left(x_{i j}\right) \in \boldsymbol{\omega}$ by

$$
\left.\begin{array}{rl}
H(\boldsymbol{x}):=\frac{(n-\overline{\boldsymbol{a}})!(n-\overline{\boldsymbol{b}})!\boldsymbol{x}!}{n!(n-\overline{\boldsymbol{a}}-\overline{\boldsymbol{b}}+\overline{\boldsymbol{x}})!} \prod_{i}\binom{a_{i}}{x_{i 1}, \ldots,} & x_{i m}
\end{array}\right)
$$

Finallly let

$$
p(r):=\sum_{\operatorname{Tr}(\boldsymbol{x})=r} H(\boldsymbol{x})
$$

where the summation is taken over all $\boldsymbol{x} \in \boldsymbol{\omega}$ whose trace is equal to r.

Example There are two familiar special cases:
(1) The case where $m=1$ amd $\boldsymbol{x}=x$ (a non-negative integer).

$$
H(x)=p(x)=\frac{a!b!(n-a)!(n-b)!}{n!(n-a-b+x)!(a-x)!(b-x)!x!}
$$

This is the density function of the hypergeometric distribution $H(n, a, b)$.
(2) The case where $\overline{\boldsymbol{a}}=\overline{\boldsymbol{b}}=n$. In this case, $\overline{\boldsymbol{x}}=n$ and

$$
H(\boldsymbol{x})=\frac{\boldsymbol{a}!\boldsymbol{b}!}{n!\boldsymbol{x}!}=\prod_{i} a_{i}!\prod_{j} b_{j}!/ n!\prod_{i j} x_{i j}!
$$

Thus $H(\boldsymbol{x})$ is the occurence probability of a contingency table $\boldsymbol{x}=$ $\left(x_{i j}\right)$ with given marginal frequencies $\boldsymbol{a}, \boldsymbol{b}$.

The purpose of this paper is to give a combinatorial proof to the following product formula:

Theorem $1 \quad \prod_{i=1}^{m} F_{a_{i}, b_{i}}(z)=\sum_{r \geq 0} p(r) F_{n, r}(z)$.

2. Proof of Theorem 1

It is suffice to prove the theorem in the case where z is a non-negative integer; so we take a set Z with $|Z|=z$. We denote by Z^{K} the set of maps from a finite set K to Z.

Since n is greater than or equal to both of $\sum_{i} a_{i}, \sum_{j} b_{j}$, there are subsets A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} of N such that

$$
\left|A_{i}\right|=a_{i},\left|B_{i}\right|=b_{i}(1 \leq i \leq m) ; A_{i} \cap A_{j}=B_{i} \cap B_{j}=\emptyset(i \neq j)
$$

We put

$$
\bar{A}:=\coprod_{i} A_{i}, \bar{B}:=\coprod_{i} B_{i},
$$

where \coprod stands for a disjoint union. Clearly, $|\bar{A}|=\overline{\boldsymbol{a}},|\bar{B}|=\overline{\boldsymbol{b}}$. Then by the definition of $F_{a, b}(z)$, we have

$$
\begin{align*}
& F_{a_{i}, b_{i}}(z)=\sharp\{(K, L, \pi, f) \mid \\
& \left.\quad K \subset A_{i}, L \subset B_{i}, \pi: K \xrightarrow{\sim} L, f \in Z^{K}\right\} . \tag{1}
\end{align*}
$$

Thus

$$
\begin{aligned}
\prod_{i} F_{a_{i}, b_{i}}(z) & =\sharp\left\{\left(K_{i}, L_{i}, \pi_{i}, f_{i}\right)_{i} \left\lvert\, \begin{array}{l}
K_{i} \subset A_{i}, L_{i} \subset B_{i} \\
\pi_{i}: K_{i} \xrightarrow{\rightarrow} L_{i}, f_{i} \in Z^{K_{i}}
\end{array}\right.\right\} \\
& =\sharp\left\{(K, L, \pi, f) \left\lvert\, \begin{array}{l}
K \subset \bar{A}, L \subset \bar{B}, \pi: K \xrightarrow[\rightarrow]{\sim} L \\
\pi\left(K \cap A_{i}\right) \subset B_{i}, f \in Z^{K}
\end{array}\right.\right\} .
\end{aligned}
$$

Here, we put $K:=\coprod_{i} K_{i}$ (a disjoint union) and $L:=\coprod_{i} L_{i}$; and furthermore, we uniquely extended $\left(\pi_{i}\right)_{i}$ and $\left(f_{i}\right)_{i}$ to a bijection $\pi: K \xrightarrow{\sim} L$ and a map $f: K \longrightarrow Z$, respectively.

Now, note that every bijection $\pi: K \xrightarrow{\sim} L$ for $|K|=k$ has $(n-k)$! extensions to permutations on N. Thus

$$
\begin{aligned}
& \prod_{i} F_{a_{i}, b_{i}}(z)=\sum_{k \geq 0} \sharp\left\{(K, L, \pi) \left\lvert\, \begin{array}{l}
K \subset \bar{A}, L \subset \bar{B},|K|=k, \\
\pi: K \xrightarrow[\rightarrow]{\sim} L, \pi\left(A_{i} \cap K\right) \subset B_{i}
\end{array}\right.\right\} z^{k} \\
& =\sum_{k \geq 0} \sharp\left\{(K, L, \pi) \left\lvert\, \begin{array}{l}
K \subset \bar{A}, L \subset \bar{B},|K|=k, \\
\pi \in S_{n}, \pi(K)=L, A_{i} \cap K \subset \pi^{-1} B_{i}
\end{array}\right.\right\} \\
& \times \frac{z^{k}}{(n-k)!} \\
& =\sum_{k \geq 0} \sharp\left\{\begin{array}{l|l}
(K, \pi) & \begin{array}{l}
K \subset \bar{A},|K|=k, \\
\pi \in S_{n}, A_{i} \cap K \subset \pi^{-1} B_{i}
\end{array}
\end{array}\right\} \frac{z^{k}}{(n-k)!} \\
& =\sum_{k \geq 0} \sharp\left\{(K, \pi) \left\lvert\, \begin{array}{l}
\pi \in S_{n},|K|=k \\
K \subset \coprod_{i}\left(A_{i} \cap \pi^{-1} B_{i}\right)
\end{array}\right.\right\} \frac{z^{k}}{(n-k)!} \\
& =\sum_{\pi \in S_{n}} \sum_{k \geq 0}\binom{\sum_{i}\left|A_{i} \cap \pi^{-1} B_{i}\right|}{k} \frac{z^{k}}{(n-k)!} \\
& =\frac{1}{n!} \sum_{\pi \in S_{n}} \sum_{k \geq 0}\binom{\sum_{i}\left|A_{i} \cap \pi^{-1} B_{i}\right|}{k}\binom{n}{k} k!z^{k} \\
& =\frac{1}{n!} \sum_{\pi \in S_{n}} F_{n, \sum_{i}\left|A_{i} \cap \pi^{-1} B_{i}\right|}(z) \\
& =\sum_{r \geq 0} \frac{\sharp\left\{\pi \in S_{n}\left|\sum_{i}\right| A_{i} \cap \pi^{-1} B_{i} \mid=r\right\}}{n!} F_{n, r}(z),
\end{aligned}
$$

where S_{n} is the symmetric group.

For any $\pi \in S_{n}$, we define a $m \times m$-matrix $\boldsymbol{x}(\pi):=\left(x_{i j}(\pi)\right)$ by

$$
x_{i j}(\pi):=\left|A_{i} \cap \pi^{-1} B_{j}\right| .
$$

Then we have

$$
\prod_{i} F_{a_{i}, b_{i}}(z)=\sum_{r \geq 0} \frac{\sharp\left\{\pi \in S_{n} \mid \operatorname{Tr}(\boldsymbol{x}(\pi))=r\right\}}{n!} F_{n, r}(z) .
$$

Note that the matrix $\boldsymbol{x}(\pi)$ is in $\boldsymbol{\omega}$. In fact,

$$
\begin{aligned}
\sum_{j} x_{i j}(\pi) & =\sum_{j}\left|A_{i} \cap \pi^{-1} B_{j}\right|=\left|A_{i} \cap \pi^{-1} \bar{B}\right| \leq a_{i}, \\
\sum_{i} x_{i j}(\pi) & =\sum_{i}\left|A_{i} \cap \pi^{-1} B_{j}\right|=\left|\bar{A} \cap \pi^{-1} B_{j}\right| \leq\left|\pi^{-1} B_{j}\right|=b_{j}, \\
\sum_{i, j} x_{i j}(\pi) & =\sum_{i, j}\left|A_{i} \cap \pi^{-1} B_{j}\right|=\left|\bar{A} \cap \pi^{-1}(\bar{B})\right| \\
& =|\bar{A}|+\left|\pi^{-1}(\bar{B})\right|-\left|\bar{A} \cup \pi^{-1}(\bar{B})\right| \geq \overline{\boldsymbol{a}}+\overline{\boldsymbol{b}}-n .
\end{aligned}
$$

We obtained the following equation:

$$
\prod_{i} F_{a_{i}, b_{i}}(z)=\sum_{r \geq 0} \sum_{\operatorname{Tr}(X)=r} \frac{\sharp\left\{\pi \in S_{n} \mid \boldsymbol{x}(\pi)=\boldsymbol{x}\right\}}{n!} F_{n, r}(z)
$$

Thus in order to finish the proof of the theorem, it will suffice to prove the following lemma:

Lemma $(1 / n!) \sharp\left\{\pi \in S_{n} \mid \boldsymbol{x}(\pi)=\boldsymbol{x}\right\}=H(\boldsymbol{x})$ for any $\boldsymbol{x} \in \boldsymbol{\omega}$.
Proof of Lemma. Let $\boldsymbol{\Omega}$ be the set of families $\left(X_{i j}\right)_{i, j=1, \ldots, m}$ of subsets of N satisfying the following condition:

$$
X_{i j} \subset A_{i}, X_{i j} \cap X_{i j^{\prime}}=\emptyset\left(j \neq j^{\prime}\right), \quad\left(\left|X_{i j}\right|\right) \in \omega .
$$

For an $\boldsymbol{X}=\left(X_{i j}\right) \in \boldsymbol{\Omega}$, we put

$$
\overline{\boldsymbol{X}}:=\coprod_{i, j} X_{i, j} \subset N, \quad|\overline{\boldsymbol{X}}|:=\left(\left|X_{i j}\right|\right) \in \boldsymbol{\omega} .
$$

Let

$$
X_{i j}(\pi):=A_{i} \cap \pi^{-1} B_{j} .
$$

Then $\boldsymbol{X}(\pi):=\left(X_{i j}(\pi)\right) \in \boldsymbol{\Omega}$.

Now, using these notations, the number \sharp of permutations π such that $\boldsymbol{x}(\pi)=\boldsymbol{x}$ in the left hand side of the lemma is presented as follows:

$$
\begin{aligned}
\sharp: & =\sharp\left\{\pi \in S_{n} \mid \boldsymbol{x}(\pi)=\boldsymbol{x}\right\} \\
& =\sum_{|\boldsymbol{X}|=\boldsymbol{x}} \sharp\left\{\pi \in S_{n} \mid \boldsymbol{X}(\pi)=\boldsymbol{X}\right\} .
\end{aligned}
$$

where the summation is taken over $\boldsymbol{X} \in \boldsymbol{\Omega}$ such that $|\boldsymbol{X}|=\boldsymbol{x}$.
Let $\boldsymbol{X}=\left(X_{i j}\right) \in \Omega$ with $|\boldsymbol{X}|=\boldsymbol{x}=\left(x_{i j}\right)$. We first note that the number of such \boldsymbol{X}^{\prime} 's is

$$
\prod_{i}\binom{a_{i}}{x_{i 1}, \ldots, x_{i m}}
$$

Now, a permutation $\pi \in S_{n}$ satisfies $\boldsymbol{X}(\pi)=\boldsymbol{X}$ if and only if

$$
\begin{aligned}
\pi\left(\coprod_{i} X_{i j}\right) & \subset B_{j} \\
\pi(\bar{A}-\bar{X}) & \subset \bar{B}^{c} \\
\pi\left(\bar{A}^{c}\right) & \subset N
\end{aligned}
$$

Thus the number of such permutations π is given by

$$
\prod_{j}\binom{b_{j}}{x_{1 j}, \ldots, x_{m j}} x_{1 j}!\cdots x_{m j}!\times\binom{ n-\overline{\boldsymbol{b}}}{\overline{\boldsymbol{a}}-\overline{\boldsymbol{x}}}(\overline{\boldsymbol{a}}-\overline{\boldsymbol{x}})!\times(n-\overline{\boldsymbol{a}})!.
$$

Hence

$$
\begin{aligned}
\sharp=\prod_{i}\binom{a_{i}}{x_{i 1}, \ldots, x_{i m}} \times \prod_{j}\binom{b_{j}}{x_{1 j}, \ldots, x_{m j}} \\
\times\binom{ n-\overline{\boldsymbol{b}}}{\overline{\boldsymbol{a}}-\overline{\boldsymbol{x}}}(\overline{\boldsymbol{a}}-\overline{\boldsymbol{x}})!(n-\overline{\boldsymbol{a}})!\boldsymbol{x}!
\end{aligned}
$$

is now equal to $n!H(\boldsymbol{X})$, which proves the lemma and then the theorem.

Remark The lemma can be extended to those for non-squared matrices.

3. Inversion formula

The coefficient $p(r)$ in Theorem 1 can be calculated from the expansion of the left hand side by using the following theorem:

Theorem 2 Let $G(z)=\sum_{k=0}^{n} q_{k} z^{k}$ be a polynomial of degree at most n. Then for a series $\left\{p_{r}\right\}_{r=0,1, \ldots, n}$, the following are equivalent:
(a) $G(z)=\sum_{r=0}^{n} p_{r} F_{n, r}(z)$.
(b) $p_{r}=\sum_{k=0}^{n}(-1)^{k-r}\binom{k}{r} q_{k} /\binom{n}{k} k!$.

Proof. We write

$$
q_{k}=\binom{n}{k} k!\widetilde{q}_{k}, \quad(k=0,1, \ldots, n)
$$

Since

$$
\begin{aligned}
G(z) & =\sum_{k \geq 0} \widetilde{q}_{k}\binom{n}{k} k!z^{k}=\sum_{r=0}^{n} p_{r} F_{n, r}(z) \\
& =\sum_{r=0}^{n} \sum_{k=0}^{r} p_{r}\binom{n}{k}\binom{r}{k} k!z^{k} \\
& =\sum_{k=0}^{n}\left[\sum_{r=k}^{n} p_{r}\binom{r}{k}\right]\binom{n}{k} k!z^{k}
\end{aligned}
$$

the condition (a) is written as

$$
\widetilde{q}_{k}=\sum_{r=k}^{n} p_{r}\binom{r}{k} \quad(k=0,1, \ldots, n)
$$

Clearly, this is equivalent to the condition (b)

$$
p_{r}=\sum_{k=r}^{n}(-1)^{k-r}\binom{k}{r} \widetilde{q}_{k}
$$

The theorem is proved.
Corollary $\quad z^{n}=(1 / n!) \sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r} F_{n, r}(z)$.
Acknowledgment The author thanks to Professor Hideyuki Majima for informing me kindly on Chaundy's formulas and their related areas.

References

[1] Aigner M., Combinatorial Theory. Springer, 1979.
[2] Bishop Yvonne M.M., Discrete Multivarate Analysis: Theory and Practice. MIT Press, 1975.
[3] Chaundy T.W., Expansions of hypergeometric functions (I). Quart. J. Math. 14 (1943), 55-78.

Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
yoshidat@math.sci.hokudai.ac.jp

[^0]: 2000 Mathematics Subject Classification : 05A15, 33C20, 62H17.

