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A product formula

for hypergeometric polynomials of type 2F0

Tomoyuki Yoshida

(Received March 7, 2007)

Abstract. In this paper, we give a combinatorial proof to the following new product

formula:

m
Y

i=1

2F0(−ai, −bi; z) =

n
Y

r=0

p(r) 2F0(−n, −r; z).
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1. Main theorem

The generalized hypergeometric series

2F0(α, β; z) :=
∞∑

k=0

(α)k(β)k

k!
zk

has the convergence radius 0 unless α, β are non-positive integers. The
formal power series 2F0(α, β; z) is a solution of the differential equation

z2y′′ + ((1 + α + β)z − 1)y′ + αβy = 0,

and satisfies the following recursion formula:

d

dz
2F0(α, β; z) = αβ2F0(α + 1, β + 1; z).

T.W. Chaundy([3] (73)) showed the following product formula:

2F0(α, β; pz)2F0(α′, β′; qz)

=
∞∑

n=0

(α)n(β)n(pz)n

n! 3F2

[
α′, β′, −n;−q/p

1 − α − n, 1 − β − n

]
.

When −α, −β are non-negative integers, 2F0(α, β; z) is a polynomial
of degree at most min(−α, −β). In this paper, we study a new product
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formula for polynomial cases and give a combinatorial proof to it.
After this, we simply write

Fa,b(z) := 2F0(−a, −b; z) =
∑
k≥0

(
a

k

)(
b

k

)
k!zk

for nonnegative integers a, b. Furthermore, n denotes a non-negative inte-
ger; a = (a1, . . . , am) and b = (b1, . . . , bm) vectors of non-negative integers;
x = (xij)i,j=1,...,m an m×m-matrix whose entries are non-negative integers.
Furthermore, we put

a! := a1! a2! · · · am!, X! :=
∏
i,j

xij !,

a := a1 + a2 + · · · + am, x :=
∑
i,j

xi,j .

The multinomial coefficient used in this paper is defined as follows:(
n

a

)
:=

(
n

a1, . . . , am

)
:=

n!
a1! · · · am!(n − a)!

.

Only if a = n holds, this notation is same as the usual one.
Now, let ω be the set of non-negative integral solutions (xij)i,j=1,...,m

of the inequalities∑
j

xij ≤ ai,
∑

i

xij ≤ bj ,
∑
ij

xij ≥ a + b − n.

After this, we assume that n is greater than both of a and b. We define an
occurrence probability of an x = (xij) ∈ ω by

H(x) :=
(n − a)! (n − b)!x!
n! (n − a − b + x)!

∏
i

(
ai

xi1, . . . , xim

)
×

∏
j

(
bj

x1j , . . . , xmj

)
,

Finallly let

p(r) :=
∑

Tr(x)=r

H(x),

where the summation is taken over all x ∈ ω whose trace is equal to r.
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Example There are two familiar special cases:
(1) The case where m = 1 amd x = x (a non-negative integer).

H(x) = p(x) =
a! b! (n − a)! (n − b)!

n! (n − a − b + x)! (a − x)! (b − x)!x!
.

This is the density function of the hypergeometric distribution
H(n, a, b).

(2) The case where a = b = n. In this case, x = n and

H(x) =
a! b!
n!x!

=
∏

i

ai!
∏
j

bj !

/
n!

∏
ij

xij !.

Thus H(x) is the occurence probability of a contingency table x =
(xij) with given marginal frequencies a, b.

The purpose of this paper is to give a combinatorial proof to the fol-
lowing product formula:

Theorem 1
∏m

i=1 Fai,bi
(z) =

∑
r≥0 p(r)Fn,r(z).

2. Proof of Theorem 1

It is suffice to prove the theorem in the case where z is a non-negative
integer; so we take a set Z with |Z| = z. We denote by ZK the set of maps
from a finite set K to Z.

Since n is greater than or equal to both of
∑

i ai,
∑

j bj , there are subsets
A1, . . . , Am and B1, . . . , Bm of N such that

|Ai| = ai, |Bi| = bi (1 ≤ i ≤ m); Ai ∩ Aj = Bi ∩ Bj = ∅ (i 6= j).

We put

A :=
∐

i

Ai, B :=
∐

i

Bi,

where
∐

stands for a disjoint union. Clearly, |A| = a, |B| = b. Then by
the definition of Fa,b(z), we have

Fai,bi
(z) = ]{(K, L, π, f) |

K ⊂ Ai, L ⊂ Bi, π : K
∼→ L, f ∈ ZK}. (1)
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Thus ∏
i

Fai,bi
(z) = ]

{
(Ki, Li, πi, fi)i

∣∣∣∣ Ki ⊂ Ai, Li ⊂ Bi,

πi : Ki
∼→ Li, fi ∈ ZKi

}
= ]

{
(K, L, π, f)

∣∣∣∣ K ⊂ A, L ⊂ B, π : K
∼→ L,

π(K ∩ Ai) ⊂ Bi, f ∈ ZK

}
.

Here, we put K :=
∐

i Ki (a disjoint union) and L :=
∐

i Li; and further-
more, we uniquely extended (πi)i and (fi)i to a bijection π : K

∼→ L and a
map f : K −→ Z, respectively.

Now, note that every bijection π : K
∼−→ L for |K| = k has (n − k)!

extensions to permutations on N . Thus∏
i

Fai,bi
(z) =

∑
k≥0

]

{
(K, L, π)

∣∣∣∣ K ⊂ A, L ⊂ B, |K| = k,

π : K
∼→ L, π(Ai ∩ K) ⊂ Bi

}
zk

=
∑
k≥0

]

{
(K, L, π)

∣∣∣∣ K ⊂ A, L ⊂ B, |K| = k,

π ∈ Sn, π(K) = L, Ai ∩ K ⊂ π−1Bi

}

× zk

(n − k)!

=
∑
k≥0

]

{
(K, π)

∣∣∣∣ K ⊂ A, |K| = k,

π ∈ Sn, Ai ∩ K ⊂ π−1Bi

}
zk

(n − k)!

=
∑
k≥0

]

{
(K, π)

∣∣∣∣ π ∈ Sn, |K| = k

K ⊂
∐

i(Ai ∩ π−1Bi)

}
zk

(n − k)!

=
∑
π∈Sn

∑
k≥0

(∑
i |Ai ∩ π−1Bi|

k

)
zk

(n − k)!

=
1
n!

∑
π∈Sn

∑
k≥0

(∑
i |Ai ∩ π−1Bi|

k

)(
n

k

)
k!zk

=
1
n!

∑
π∈Sn

Fn,
P

i |Ai∩π−1Bi|(z)

=
∑
r≥0

]{π ∈ Sn |
∑

i |Ai ∩ π−1Bi| = r}
n!

Fn,r(z),

where Sn is the symmetric group.



A product formula for hypergeometric polynomials of type 2F0 459

For any π ∈ Sn, we define a m × m-matrix x(π) := (xij(π)) by

xij(π) := |Ai ∩ π−1Bj |.

Then we have∏
i

Fai,bi
(z) =

∑
r≥0

]{π ∈ Sn | Tr(x(π)) = r}
n!

Fn,r(z).

Note that the matrix x(π) is in ω. In fact,∑
j

xij(π) =
∑

j

|Ai ∩ π−1Bj | = |Ai ∩ π−1B| ≤ ai,∑
i

xij(π) =
∑

i

|Ai ∩ π−1Bj | = |A ∩ π−1Bj | ≤ |π−1Bj | = bj ,∑
i,j

xij(π) =
∑
i,j

|Ai ∩ π−1Bj | = |A ∩ π−1(B)|

= |A| + |π−1(B)| − |A ∪ π−1(B)| ≥ a + b − n.

We obtained the following equation:∏
i

Fai,bi
(z) =

∑
r≥0

∑
Tr(X)=r

]{π ∈ Sn | x(π) = x}
n!

Fn,r(z)

Thus in order to finish the proof of the theorem, it will suffice to prove the
following lemma:

Lemma (1/n!)]{π ∈ Sn | x(π) = x} = H(x) for any x ∈ ω.

Proof of Lemma. Let Ω be the set of families (Xij)i,j=1,...,m of subsets of
N satisfying the following condition:

Xij ⊂ Ai, Xij ∩ Xij′ = ∅ (j 6= j′), (|Xij |) ∈ ω.

For an X = (Xij) ∈ Ω, we put

X :=
∐
i,j

Xi,j ⊂ N, |X| := (|Xij |) ∈ ω.

Let

Xij(π) := Ai ∩ π−1Bj .

Then X(π) := (Xij(π)) ∈ Ω.
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Now, using these notations, the number ] of permutations π such that
x(π) = x in the left hand side of the lemma is presented as follows:

] := ]{π ∈ Sn | x(π) = x}
=

∑
|X|=x

]{π ∈ Sn | X(π) = X}.

where the summation is taken over X ∈ Ω such that |X| = x.
Let X = (Xij) ∈ Ω with |X| = x = (xij). We first note that the

number of such X’s is∏
i

(
ai

xi1, . . . , xim

)
.

Now, a permutation π ∈ Sn satisfies X(π) = X if and only if

π
(∐

i

Xij

)
⊂Bj ,

π(A − X)⊂B
c
,

π(Ac)⊂N.

Thus the number of such permutations π is given by∏
j

(
bj

x1j , . . . , xmj

)
x1j ! · · ·xmj ! ×

(
n − b

a − x

)
(a − x)! × (n − a)!.

Hence

] =
∏

i

(
ai

xi1, . . . , xim

)
×

∏
j

(
bj

x1j , . . . , xmj

)

×
(

n − b

a − x

)
(a − x)!(n − a)!x!,

is now equal to n!H(X), which proves the lemma and then the theorem.
¤

Remark The lemma can be extended to those for non-squared matrices.

3. Inversion formula

The coefficient p(r) in Theorem 1 can be calculated from the expansion
of the left hand side by using the following theorem:
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Theorem 2 Let G(z) =
∑n

k=0 qkz
k be a polynomial of degree at most n.

Then for a series {pr}r=0,1,...,n, the following are equivalent:
(a) G(z) =

∑n
r=0 prFn,r(z).

(b) pr =
∑n

k=0(−1)k−r
(
k
r

)
qk

/ (
n
k

)
k!.

Proof. We write

qk =
(

n

k

)
k!q̃k, (k = 0, 1, . . . , n).

Since

G(z) =
∑
k≥0

q̃k

(
n

k

)
k!zk =

n∑
r=0

prFn,r(z)

=
n∑

r=0

r∑
k=0

pr

(
n

k

)(
r

k

)
k!zk

=
n∑

k=0

[ n∑
r=k

pr

(
r

k

)](
n

k

)
k!zk,

the condition (a) is written as

q̃k =
n∑

r=k

pr

(
r

k

)
(k = 0, 1, . . . , n).

Clearly, this is equivalent to the condition (b)

pr =
n∑

k=r

(−1)k−r

(
k

r

)
q̃k.

The theorem is proved. ¤

Corollary zn = (1/n!)
∑n

r=0(−1)n−r
(
n
r

)
Fn,r(z).
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