Decay of correlations for some partially hyperbolic diffeomorphisms

Jin Hatomoto

(Received November 13, 2006; Revised September 8, 2008)

Abstract

In this paper we study a $C^{1+\alpha}$-partially hyperbolic diffeomorphism f of which restriction on one dimensional center unstable direction behaves as MannevillePomeau map. We show that f admits a unique ergodic SRB measure with polynomial upper bounds on correlations for Hölder continuous functions.

Key words: almost Anosov diffeomophism, SRB measure, polynomial upper bounds on correlations, first return map.

1. Introduction

Let M be a d-dimensional closed manifold $(d \geq 2)$ and f be a diffeomorphism of M. It is well known that any C^{2}-transitive Anosov diffeomorphism f admits a unique invariant measure μ which has absolutely continuous conditional measures on unstable manifolds ([25]). This result holds for any Axiom A diffeomorphism f and (f, μ) has exponential decay of correlations for Hölder continuous functions ([6], [22]).

An invariant probability measure μ is said to be a Sinai-Ruelle-Bowen measure (abbrev. $S R B$ measure) if (i) μ has positive Lyapunov exponents and (ii) μ has absolutely continuous conditional measures on unstable manifolds (see Section 2 for the precise definition). The existence of SRB measures with exponential decay of correlations is discussed in [5] for Hénon maps, and in [7] for some partially hyperbolic diffeormophisms.
$f: M \circlearrowleft$ is called an almost Anosov diffeomorphism with uniformly contracting direction if there exist a norm $\|\cdot\|$ on $M, 0<\lambda<1$ and a $D_{x} f$-invariant decomposition of the tangent space $\mathrm{T}_{x} M=E^{s}(x) \oplus E^{u}(x)$ such that the set $S:=\left\{x \in M\left|\left\|\left.D_{x} f^{-n}\right|_{E^{u}(x)}\right\|=1 \quad(n \geq 0)\right\}\right.$ is finite and consists of fixed points for f and such that

$$
\left\|\left.D_{x} f\right|_{E^{s}(x)}\right\| \leq \lambda \quad(x \in M), \quad\left\|\left.D_{x} f^{-1}\right|_{E^{u}(x)}\right\|<1 \quad(x \in M \backslash S)
$$

This paper shows that there exist $C^{1+\alpha}$-almost Anosov diffeomorphisms f of M with uniformly contracting direction such that f admits a unique SRB measure with polynomial upper bounds on correlations (Theorem), which is related to [20] and [28]. More precisely, we impose on f the following Conditions 1-4.

Condition $1 f$ is a $C^{1+\alpha}$-almost Anosov diffeomorphism $(0<\alpha<1)$ of M with co-dimension-one uniformly contracting direction.

Given $0<\varepsilon \leq 1$, let D_{ε}^{u} and D_{ε}^{s} be the closed balls of radius ε centered at the origin in \mathbb{R} and \mathbb{R}^{d-1} respectively. Let $\operatorname{Emb}^{r}\left(D_{\varepsilon}^{\sigma}, M\right)(r \geq 1)$ denote the set of C^{r}-embeddings of D_{ε}^{σ} into M with the C^{r}-topology for $\sigma=s, u$. By Condition 1, it follows from Theorem 5.5 in [11] (see also [23] Theorem IV.1) that there exist two continuous maps $\phi^{s}: M \rightarrow \operatorname{Emb}^{1}\left(I_{1}, M\right)$ and $\phi^{u}: M \rightarrow \operatorname{Emb}^{1}\left(I_{1}, M\right)$ with $\phi^{\sigma}(\{x\} \times 0)=x(x \in M, \sigma=s, u)$ such that for any $\varepsilon \in(0,1]$ the local stable and local center unstable manifolds $V_{\varepsilon}^{s}(x):=\phi^{s}\left(\{x\} \times I_{\varepsilon}\right)$ and $V_{\varepsilon}^{u}(x):=\phi^{u}\left(\{x\} \times I_{\varepsilon}\right)$ satisfy $T_{x} V_{\varepsilon}^{\sigma}(x)=E^{\sigma}(x)$ for $\sigma=s, u$ (for more details, see Sections 2 and 4).
Condition $2 \phi^{u}$ is a continuous map from M to $\operatorname{Emb}^{2}\left(D_{1}^{u}, M\right)$.
Since $p \in S$ is a fixed point for f, we have that $f^{-1}\left(V_{\varepsilon}^{u}(p)\right) \subset V_{\varepsilon}^{u}(p)$. Then f restricted to $V_{\varepsilon}^{u}(p),\left.f\right|_{V_{\varepsilon}^{u}(p)}$, is a map from $f^{-1}\left(V_{\varepsilon}^{u}(p)\right)$ to $V_{\varepsilon}^{u}(p)$. By using ϕ^{u} we can identify $D_{\varepsilon}^{u}=[-\varepsilon, \varepsilon]$ with $V_{\varepsilon}^{u}(x)$ for any $x \in M$. Then p corresponds to the origin 0 in D_{ε}^{u}, and thus 0 is a fixed point for $\left.f\right|_{V_{\varepsilon}^{u}(p)}$.

Condition 3 For any $p \in S$ the graph of $\left.f\right|_{V_{\varepsilon}^{u}(p)}$ can be represented as

$$
\left.f\right|_{V_{\varepsilon}^{u}(p)}(x)= \begin{cases}x+x^{1+\alpha}+O\left(x^{2}\right) & (x \geq 0) \\ x-|x|^{1+\alpha}-O\left(x^{2}\right) & (x<0)\end{cases}
$$

f is called topologically mixing if for any open sets $U, V \subset M$ there exists $N>0$ such that $f^{-n}(U) \cap V \neq \emptyset(n \geq N)$.

Condition $4 \quad f$ is topologically mixing.
Let \mathcal{H}_{η} be the set of Hölder continuous functions of M with Hölder exponent η. We say that (f, μ) has polynomial upper bounds on correlations for functions in \mathcal{H}_{η} with exponent $\tau>0$ if for any $\varphi, \psi \in \mathcal{H}_{\eta}$ there exists $C^{\prime}=C^{\prime}(\varphi, \psi)>0$ such that

$$
\operatorname{Cor}_{n}(\varphi, \psi ; \mu)=\left|\int\left(\varphi \circ f^{n}\right) \psi d \mu-\int \varphi d \mu \int \psi d \mu\right| \leq C^{\prime} n^{-\tau} \quad(n \geq 1)
$$

Theorem Let $f: M \circlearrowleft$ be a diffeomorphism satisfying Conditions 1-4. Then f admits a unique ergodic $S R B$ measure ν and (f, ν) has polynomial upper bounds on correlations for functions in \mathcal{H}_{η} with exponent $\min \left\{\left(\alpha^{\prime}\right)^{-1}-\right.$ $\left.1, \alpha^{-1} \eta\right\}$ for any $\alpha^{\prime} \in(\alpha, 1)$.

In order to establish Theorem, we prove Key Lemma below. In fact, assume that $f: M \circlearrowleft$ satisfies Condition 1 . Then f is expansive and satisfies shadowing property (Lemma 2.3). Here f is said to be expansive if there exists $\delta>0$ such that if $x, y \in M$ and $d\left(f^{i}(x), f^{i}(y)\right)<\delta(i \in \mathbb{Z})$ then $x=y$. A sequence $\left\{x_{i}\right\}_{i \in \mathbb{Z}} \subset M$ is called a δ-pseudo orbit for f if $d\left(f\left(x_{i}\right), x_{i+1}\right)<\delta$ for all $i \in \mathbb{Z}$. A point $x \in M$ is said to be an ς-shadowing point for a δ-pseudo orbit $\left\{x_{i}\right\}_{i \in \mathbb{Z}}$ if $d\left(f^{i}(x), x_{i}\right)<\varsigma(i \in \mathbb{Z})$. We say that f satisfies shadowing property if for any $\varsigma>0$ there exists $\delta>0$ such that for any δ-pseudo orbit there exists at least one ς-shadowing point.

Thus it follows from Theorem 4.2.8 in [3] that f has a Markov partition $\mathcal{Q}=\left\{\mathcal{Q}_{i}\right\}_{i=1}^{r}$ (see [6] for the definition) with arbitrarily small diameter. By Condition $1, f$ is uniformly hyperbolic on

$$
\Lambda:=M \backslash \mathcal{P} \quad \text { where } \quad \mathcal{P}:=\operatorname{int}\left(\bigcup_{i: \mathcal{Q}_{i} \cap S \neq \emptyset} \mathcal{Q}_{i}\right)
$$

Here $\operatorname{int}(A)$ is the interior of a set A. Let $R(x)$ be the smallest positive integer $n \geq 1$ such that $f^{n}(x) \in \Lambda$ for $x \in \Lambda$. For any $\mathcal{Q}_{i} \in \mathcal{Q}$ and $x \in$ $\operatorname{int}\left(\mathcal{Q}_{i}\right)$, let $\gamma^{\sigma}(x):=V_{\varepsilon}^{\sigma}(x) \cap \mathcal{Q}_{i}(\sigma=s, u)$. Since $f\left(\gamma^{s}(x)\right) \subset \gamma^{s}(f(x))$ for any $x \in M, R$ is constant on each $\gamma^{s}(x)$. We define the first return map f^{R} : $\Lambda \circlearrowleft$ by $\left(f^{R}\right)(x)=f^{R(x)}(x)$ for $x \in \Lambda$. Let m denote the Lebesgue measure on M. Since the points x such that $R(x)=\infty$ lie only on $f^{-1}\left(\gamma^{s}(p)\right) \backslash \gamma^{s}(p)$ ($p \in S$) by Condition $1, R(x)<\infty$ for m-a.e. $x \in \Lambda$. Thus f^{R} is well defined for m-a.e. x.

Define

$$
\Lambda_{i}:=\{y \in \Lambda \mid R(y)=i\} \quad(i \geq 1)
$$

then $f^{R}(x)=f^{i}(x)$ for any $x \in \Lambda_{i}$. Let $\mathcal{Q}_{i}^{\prime}:=\mathcal{Q}_{i} \backslash \cup_{j=0}^{i-1} \mathcal{Q}_{j}(1 \leq i \leq r)$. Then $\mathcal{Q}^{\prime}:=\left\{\mathcal{Q}_{i}^{\prime}\right\}_{i=1}^{r}$ is a partition of $M . \mathcal{D}_{0}:=\left\{\Lambda_{i}^{j} \mid i \geq 1,1 \leq j \leq r\right\}$
(where $\Lambda_{i}^{j}:=\Lambda_{i} \cap \mathcal{Q}_{j}^{\prime}$) is a partition of Λ. For $x, y \in \Lambda$, the separation time $s(x, y)$ is defined as the smallest $n \geq 0$ such that $\left(f^{R}\right)^{n}(x)$ and $\left(f^{R}\right)^{n}(y)$ belong to distinct Λ_{i}^{j} 's. For any submanifold $\gamma \subset M$ let m_{γ} denote the Lebesgue measure on γ. Let f^{u} denote the restriction of f to the local unstable manifolds.

Key Lemma Let $f: M \circlearrowleft$ be a diffeomorphism satisfying Conditions 1, 2 and 4. Assume further that f satisfies the following properties:
(K-1) There exist $C_{1}>0$ and $0<\beta_{1}<1$ such that

$$
\log \frac{\left|\operatorname{det}\left(D_{x}\left(f^{u}\right)^{i}\right)\right|}{\left|\operatorname{det}\left(D_{y}\left(f^{u}\right)^{i}\right)\right|} \leq C_{1} \beta_{1}^{s\left(f^{i}(x), f^{i}(y)\right)}
$$

for any $i \geq 1,1 \leq j \leq r, x \in \Lambda_{i}^{j}$ and $y \in \Lambda_{i}^{j} \cap \gamma^{u}(x)$.
(K-2) There exists $\tau>1$ such that

$$
m_{\gamma^{u}(x)}(\{y \in M \mid R(y)>n\})=O\left(n^{-\tau}\right)
$$

for any $x \in \Lambda$.
Then f admits a unique ergodic $S R B$ measure ν and (f, ν) has polynomial upper bounds on correlations for functions in \mathcal{H}_{η} with exponent $\min \left\{\tau^{\prime}-\right.$ $1, \tau \eta\}$ for any $\tau^{\prime} \in(1, \tau)$.

It will be shown in Appendix B that Conditions 2 and 3 imply (K-1) and (K-2) for $\tau=\alpha^{-1}$ (Lemmas 5.2 and 5.3).

This paper is organized as follows: In Section 2, we collect definitions and preliminary results (Lemmas 2.1-2.6) to show Key Lemma. Proofs are postponed to Appendix A. In Section 3, we prove Key Lemma. The strategy is the following: Using the argument as in [27] (cf. [10]) we construct a tower map F conjugating to f and a quotient tower map \bar{F} by collasping the local stable manifolds. We estimate that the correlation function for f is approximated by that for \bar{F} with polynomially error (Lemmas 3.6 and 3.7). Then we apply the result of [17] to \bar{F} (Lemma 3.8), and obtain polynomial upper bounds on correlations for f.

2. Preliminaries

In this section we give definitions and preliminary results to show Key Lemma. An invariant probability measure μ is said to be an $S R B$ measure if (i) μ has non-zero Lyapunov exponents and (ii) μ has absolutely continuous conditional measures on unstable manifolds (abbrev. accm) whose notion is defined as follows: Assume that μ has non-zero Lyapunov exponents. Describe the unstable manifold at x as

$$
W^{u}(x):=\left\{y \in M \left\lvert\, \limsup _{n \rightarrow \infty} \frac{1}{n} \log d\left(f^{-n}(x), f^{-n}(y)\right)<0\right.\right\}
$$

([19]). Here d is the Riemannian metric on M. Let \mathcal{B} be the Borel σ algebra of M. Let ξ be a measurable partition of M and \mathcal{B}_{ξ} be the set of all Borel subsets which consist of the unions of the elements of ξ. Then there exists a family of conditional probability measures $\left\{\mu_{x}^{\xi}\right\}$ (μ-a.e. $\left.x\right)$ such that for μ-a.e. x and $B \in \mathcal{B}, \mu_{x}^{\xi}(B)$ is a \mathcal{B}_{ξ}-measurable function of x and

$$
\mu(E \cap B)=\int_{E} \mu_{x}^{\xi}(B) d \mu(x) \quad\left(E \in \mathcal{B}_{\xi}\right)
$$

(see [21]). Then μ has accm if for any measurable partition ξ^{u} such that $\xi^{u}(x) \subset W^{u}(x)$ and contains an open neighborhood of x in $W^{u}(x)$ for μ-a.e. x, the canonical system $\left\{\mu_{x}^{u}\right\}$ (μ-a.e. x) of conditional measures of μ w.r.t. ξ^{u} is absolutely continuous w.r.t. $m_{W^{u}(x)}\left(\mu_{x}^{u} \ll m_{W^{u}(x)}\right)([15],[9])$.

We use the following lemmas. Assume that f satisfies Condition 1. For any $x \in M$ and $\varepsilon \in(0,1]$, let $W_{\varepsilon}^{\sigma}(x):=V_{\varepsilon}^{\sigma}(x) \cap B_{\varepsilon}(x)(\sigma=s, u)$ where $B_{\varepsilon}(x)$ is the ball centered at x with radius ε. Then there exist $L>0$ and $\lambda<\lambda_{s}<1$ such that

$$
\begin{equation*}
d\left(f^{n}(x), f^{n}(y)\right) \leq L \cdot \lambda_{s}^{n} d(x, y) \quad(n \geq 0) \tag{2.1}
\end{equation*}
$$

for any $y \in W_{\varepsilon}^{s}(x)(x \in M)$ (see [23] p. 79).
Lemma 2.1 For any $x \in M$ and $y \in W_{\varepsilon}^{u}(x), T_{y} W_{\varepsilon}^{u}(x)=E^{u}(y)$.
The following lemma ensures the local uniqueness of the local unstable manifolds.

Lemma 2.2 For any $x \in M$, there exists a unique $W_{\varepsilon}^{u}(x)$ such that
$T_{x} W_{\varepsilon}^{u}(x)=E^{u}(x)$.
Lemma 2.3 (1) f is expansive and satisfies shadowing property, (2) f has a Markov partition with arbitrarily small diameter.

Lemma 2.4 There exist $C_{2}>0$ and $0<\beta_{2}<1$ such that for any $x \in \Lambda$, $y \in \gamma^{u}(x)$ with $s(x, y)<\infty$ and $0 \leq k \leq n \leq s(x, y)-1$,

$$
\sum_{i=k}^{n} \log \frac{\left|\operatorname{det}\left(D_{f^{i}(x)} f^{u}\right)\right|}{\left|\operatorname{det}\left(D_{f^{i}(y)} f^{u}\right)\right|} \leq C_{2} \beta_{2}^{s(x, y)-n}
$$

Lemma 2.5 There exist $C_{3}>0$ and $0<\beta_{3}<1$ such that for any $x \in M$, $y \in \gamma^{s}(x)$ and $n \geq 1$

$$
\sum_{i=n}^{\infty} \log \frac{\left|\operatorname{det}\left(D_{f^{i}(x)} f^{u}\right)\right|}{\left|\operatorname{det}\left(D_{f^{i}(y)} f^{u}\right)\right|} \leq C_{3} \beta_{3}^{n}
$$

Let $\left(X_{1}, m_{1}\right)$ and $\left(X_{2}, m_{2}\right)$ be finite measure spaces. We say that a measurable bijection $T:\left(X_{1}, m_{1}\right) \rightarrow\left(X_{2}, m_{2}\right)$ is absolutely continuous (or nonsingular) if it maps m_{1}-measure 0 to sets of m_{2}-measure 0 . If T is absolutely continuous, then there exists the Jacobian $J(T)=J_{m_{1}, m_{2}}(T)$ of T w.r.t. m_{1} and m_{2} which is the Radon-Nykodym derivative $\frac{d\left(T_{*}^{-1} m_{2}\right)}{d m_{1}}$.

Let

$$
\Gamma^{\sigma}:=\left\{\gamma^{\sigma}(x) \mid x \in \mathcal{Q}_{i}, \mathcal{Q}_{i} \cap \mathcal{P}=\emptyset\right\} \quad(\sigma=s, u)
$$

For any $\gamma, \gamma^{\prime} \in \Gamma^{u}$ the holonomy map $\Theta_{\gamma, \gamma^{\prime}}: \gamma \cap \Lambda \rightarrow \gamma^{\prime} \cap \Lambda$ is defined by $\Theta_{\gamma, \gamma^{\prime}}(x)=\gamma^{s}(x) \cap \gamma^{\prime}$. Then $\Theta_{\gamma, \gamma^{\prime}}$ is bijective.

Lemma 2.6 If f satisfies ($K-1$), then for any $\gamma, \gamma^{\prime} \in \Gamma^{u}$ the holonomy map $\Theta_{\gamma, \gamma^{\prime}}$ is absolutely continuous and

$$
J\left(\Theta_{\gamma, \gamma^{\prime}}\right)(x)=\prod_{i=0}^{\infty} \frac{\left|\operatorname{det}\left(D_{f^{i}(x)} f^{u}\right)\right|}{\left|\operatorname{det}\left(D_{f^{i}\left(\Theta_{\gamma, \gamma^{\prime}}(x)\right)} f^{u}\right)\right|}
$$

3. Proof of Key Lemma

Throughout this section let f be a $C^{1+\alpha}$-diffeomorphism of M. Assume that f satsfies Conditions 1, 2, 4, (K-1) and (K-2). To show the existence of SRB measures, we need the arguments used in the proof of Theorem 1 in [27].

Lemma 3.1 f^{R} admits an invariant probability measure μ such that $\mu_{x}^{u} \ll$ $m_{\gamma^{u}(x)}$ with $\mu_{x}^{u}(\omega) \leq c_{0} \cdot m_{\gamma^{u}(x)}(\omega)$ for μ-a.e. $x \in \Lambda$ and any Borel set $\omega \subset \gamma^{u}(x)$. Here $c_{0}>0$ is a global constant.

Proof. For any $\gamma_{0} \in \Gamma^{u}$, let $m_{\gamma_{0}}$ denote the Lebesgue measure on γ_{0}. Define a probability measure on Λ by

$$
\mu_{n}:=\frac{1}{n} \sum_{j=0}^{n-1} \frac{\left(f^{R}\right)_{*}^{j} m_{\gamma_{0}}}{m_{\gamma_{0}}\left(\gamma_{0}\right)} \quad(n \geq 1)
$$

Then there exist a subsequence $\left\{\mu_{n_{j}}\right\}_{j \geq 1} \subset\left\{\mu_{n}\right\}_{n \geq 1}$ such that $\left\{\mu_{n_{j}}\right\}$ converges to a f^{R} invariant probability measure μ.

For any $j \geq 1$ let ρ_{j} be the densities of $\left(f^{R}\right)_{*}^{j}\left(m_{\gamma_{0}}\right)$ on the components of $\left(f^{R}\right)^{j}\left(\gamma_{0}\right) \cap \mathcal{Q}_{k}^{\prime}$ for $1 \leq k \leq r$. Using the argument in [26] and [27] (see also [1], [16], [24]), (K-1) ensures that there exists $K>0$ such that

$$
\frac{1}{K} \leq \frac{\rho_{j}(x)}{\rho_{j}(y)} \leq K
$$

for any $j \geq 1$ and x, y which belong to the same component of $\left(f^{R}\right)^{j}\left(\gamma_{0}\right) \cap \mathcal{Q}_{k}^{\prime}$. Therefore we have the lemma for μ by [27] (cf. [8], [10]).

Let μ_{0} be as in Lemma 3.1 and define an f-invariant measure by

$$
\mu^{\prime}:=\sum_{i=1}^{\infty} f_{*}^{i-1}\left(\left.\mu_{0}\right|_{\{R \geq i\}}\right)
$$

Since $\int_{\gamma} R d m_{\gamma}<\infty\left(\gamma \in \Gamma^{u}\right)$ by (K-2), μ^{\prime} is a finite measure by Lemmas 2.6 and 3.1 , and so normalize μ^{\prime} (we denote it by ν). Clearly ν satisfies accm by Lemma 3.1, and furthermore ν is an SRB measure by the following Lemma 3.2.

For any f-invariant ergodic probability measure μ let $B(\mu)$ be the set
of points x such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \varphi\left(f^{i}(x)\right)=\int \varphi d \mu
$$

for any continuous function φ. Then by Birkhoff's ergodic theorem we have $\mu(B(\mu))=1$.

Lemma $3.2 \quad \nu$ is a unique ergodic $S R B$ measure.
Proof. Put $\operatorname{Sat}\left(\mathcal{Q}_{i}\right):=\cup\left\{\gamma^{s} \in \Gamma^{s} \mid \gamma^{s} \cap f^{n}\left(\mathcal{Q}_{i}\right) \neq \emptyset, n \in \mathbb{Z}\right\}$ for any $1 \leq$ $i \leq r$. Then $f\left(\operatorname{Sat}\left(\mathcal{Q}_{i}\right)\right) \subset \operatorname{Sat}\left(\mathcal{Q}_{i}\right)$. Discard those \mathcal{Q}_{i} with $\nu\left(\mathcal{Q}_{i}\right)=0$. Let ν_{i} be the normalization of $\left.\nu\right|_{\operatorname{Sat}\left(\mathcal{Q}_{i}\right)}$. To establish the lemma, let us show that (i) ν_{i} is ergodic and (ii) ν_{i} has non-zero Lyapunov exponents.

We show (i). Since ν is as in Lemma 3.1, Condition 1 and Lemma 2.1 allow us to apply arguments from [4] (pages 118,119$)$ to $\left(f, \nu_{i}\right)$ to establish that the forward Birkhoff average of any ν_{i}-integrable function ψ is a constant on $\operatorname{Sat}\left(\mathcal{Q}_{i}\right)\left(\bmod \nu_{i}\right)$. This implies that $\nu_{i}(A)=0$ or 1 for any f-invariant set A.

To prove (ii) it suffices to establish that ν_{i} has only positive Lyapunov exponents along E^{u}. The ergodicity of ν_{i} implies that for ν_{i}-a.e. x there exists $n_{0} \geq 1$ such that $\sharp\left\{0 \leq i \leq n-1 \mid f^{i}(x) \in M \backslash \mathcal{P}\right\} \geq n \frac{\nu_{i}(M \backslash \mathcal{P})}{2}$ for any $n \geq n_{0}$. This combined with Condition 1 implies (ii).

Let ν_{i} be as above. Assume that f admits another ergodic SRB measure μ. By Condition 4, it follows from arguments in [12] that there exist $\mathcal{Q}_{i} \in$ \mathcal{Q} and $x, y \in \mathcal{Q}_{i}$ such that $m_{\gamma^{u}(x)}\left(\gamma^{u}(x) \cap B\left(\nu_{i}\right)\right)=m_{\gamma^{u}(x)}\left(\gamma^{u}(x)\right)$ and $m_{\gamma^{u}(y)}\left(\gamma^{u}(y) \cap B(\mu)\right)>0$. By Lemma 2.6, we can find $z \in \gamma^{u}(x) \cap B\left(\nu_{i}\right)$ such that $\gamma^{s}(z) \cap \gamma^{u}(y) \subset B(\mu)$. Therefore we have $\nu_{i}=\mu$.

3.1. The tower map F.

To obtain polynomial upper bounds on correlation for (f, ν), we check it for the tower system conjugating to f which is described by L.-S. Young ([26], [27]).

A tower Δ is a union of the ℓ-th floors Δ_{ℓ} for $\ell \in \mathbb{Z}^{+}$where $\mathbb{Z}^{+}:=$ $\{0\} \cup \mathbb{N}$. The base Δ_{0} is a finite measure space $(\Lambda, m) . \Delta$ is defined by a countable partition $\mathcal{D}_{0}:=\left\{\Lambda_{i}^{j}\right\}_{i \geq 1,1 \leq j \leq r}$ of $\Lambda(\bmod m)$ and a function R with $R_{i}:=\left.R\right|_{\Lambda_{i}^{j}}$ for $\Lambda_{i}^{j} \in \mathcal{D}_{0}$. Here Λ, \mathcal{D}_{0} and R be as in Introduction. Let Δ_{ℓ} be a copy of a part of Λ by

$$
\Delta_{\ell}:=\{(x, \ell) \mid x \in \Lambda, \ell<R(x)\} .
$$

Let $\Delta_{\ell, i}^{j}$ be a copy of Λ_{i}^{j} by

$$
\Delta_{\ell, i}^{j}:=\left\{(x, \ell) \mid x \in \Lambda_{i}^{j}, \ell<R(x)\right\} .
$$

Then a system F on the tower $\Delta=\cup_{\ell \geq 0} \Delta_{\ell}$ is defined by

$$
F(x, \ell):= \begin{cases}(x, \ell+1) & \text { if } \ell+1<R(x) \\ \left(f^{R}(x), 0\right) & \text { if } \ell+1=R(x)\end{cases}
$$

Here $f^{R}: \Lambda \rightarrow \Lambda$ is the first return map. Identifying Λ with Δ_{0}, we can define the map $F^{R}: \Delta_{0} \rightarrow \Delta_{0}$ by $F^{R}(x):=\left(f^{R}(x), 0\right)$ for any $x \in \Delta_{0}$. Define the partition of Δ by

$$
\begin{equation*}
\mathcal{D}:=\left\{\Delta_{\ell, i}^{j}\right\}_{\ell \geq 0, i \geq 1,1 \leq j \leq r} . \tag{3.1}
\end{equation*}
$$

For any $\Delta_{0, i}^{j} \in \mathcal{D}$ and $\gamma^{u} \in \Gamma^{u}$, the F^{R}-image of each component of $\gamma^{u} \cap \Delta_{0, i}^{j}$ is a union of some elements in Γ^{u}. Thus \mathcal{D} is a Markov partition for F in the usual sense.

3.2. Quotienting map \bar{F}

Define a relation $x \sim y$ if $y \in \gamma^{s}(x)$. By this relation we define the quotient space $\bar{\Delta}:=\Delta / \sim$ by identifying points on each $\gamma^{s} \in \Gamma^{s}$. $\bar{\Delta}_{\ell}$ and $\bar{\Delta}_{\ell, i}^{j}$ are defined similary. Since F sends $\gamma \in \Gamma^{s}$ to $\gamma^{\prime} \in \Gamma^{s}$, a quotinent map $\bar{F}: \bar{\Delta} \rightarrow \bar{\Delta}$ is well defined.

We define a reference measure \bar{m} on $\bar{\Delta}_{0}:=\Delta_{0} / \sim$ by the following way which is introduced in [27]. If it is done, we can define the measure $\left.\bar{m}\right|_{\bar{\Delta}_{\ell}}$ by using the natural identification of $\bar{\Delta}_{\ell}$ with a subset of $\bar{\Delta}_{0}$ such that $J(\bar{F}) \equiv 1$ except on $\bar{F}^{-1}\left(\bar{\Delta}_{0}\right)$, where $J(\bar{F})=J\left(\overline{f^{R}} \circ \bar{F}^{-(R-1)}\right)$. Here $\overline{f^{R}}$ is defined by the similar way as above.

Take an arbitrary $\hat{\gamma} \in \Gamma^{u}$. Let $\hat{x}:=\gamma^{s}(x) \cap \hat{\gamma}$ for any $x \in \Lambda$ and define

$$
\Phi_{n}(x):=\sum_{i=0}^{n-1}\left(\psi^{u}\left(f^{i}(x)\right)-\psi^{u}\left(f^{i}(\hat{x})\right)\right)
$$

where $\psi^{u}(z):=\log \left|\operatorname{det}\left(D_{x} f^{u}\right)\right|$ for any $z \in M$. By Lemma 2.5 there exists a function Φ such that Φ_{n} converges uniformly to Φ as $n \rightarrow \infty$. On each $\gamma \in \Gamma^{u}$ define $\bar{m}_{\gamma}=e^{\Phi} m_{\gamma}^{u}$. If $f^{R}\left(\Lambda_{i}^{j} \cap \gamma\right) \subset \gamma^{\prime}$ holds, then for $x \in \Lambda_{i}^{j} \cap \gamma$ we write $J\left(f^{R}\right)(x)=J_{\bar{m}_{\gamma}, \bar{m}_{\gamma^{\prime}}}\left(\left.f^{R_{i}}\right|_{\Lambda_{i}^{j} \cap \gamma}\right)(x)$.

By (1) of the following Lemma 3.3 the measure \bar{m} on $\bar{\Delta}_{0}$ whose representative on each $\gamma \in \Gamma^{u}$ is \bar{m}_{γ} is well defined. By (2) of the lemma $J\left(f^{R}\right)$ is also well defined w.r.t. \bar{m}.

Lemma 3.3 (1) For any $\gamma, \gamma^{\prime} \in \Gamma^{u}$ let $\Theta=\Theta_{\gamma, \gamma^{\prime}}: \gamma \rightarrow \gamma^{\prime}$ be the sliding map along the local stable manifolds. Then $\Theta_{*} \bar{m}_{\gamma}=\bar{m}_{\gamma^{\prime}}$,
(2) $J\left(f^{R}\right)(x)=J\left(f^{R}\right)(y)$ for any $y \in \gamma^{s}(x)$,
(3) There exist $C_{4}>1$ and $0<\beta_{4}<1$ such that

$$
\left|\frac{J\left(f^{R}\right)(x)}{J\left(f^{R}\right)(y)}-1\right| \leq C_{4} \beta_{4}^{s\left(f^{R}(x), f^{R}(y)\right)}
$$

for any $i \geq 1,1 \leq j \leq r, \gamma \in \Gamma^{u}$ and $x, y \in \gamma \cap \Lambda_{i}^{j}$.
Proof. By the same argument from [27] (see also [10] Lemma 3.4), we have (1) and (2). To show (3), we estimate $|\Phi(x)-\Phi(y)|$ for any $x, y \in \Lambda_{i}^{j} \cap \gamma^{u}$ as follows: Choose $\frac{1}{3} s(x, y) \leq k \leq \frac{1}{2} s(x, y)$. We have that $|\Phi(x)-\Phi(y)| \leq$ $(\mathrm{I})+(\mathrm{II})$ where

$$
\begin{aligned}
(\mathrm{I}) & =\left|\sum_{j=0}^{k-1}\left(\psi^{u}\left(f^{j}(x)\right)-\psi^{u}\left(f^{j}(y)\right)\right)-\sum_{j=0}^{k-1}\left(\psi^{u}\left(f^{j}(\hat{x})\right)-\psi^{u}\left(f^{j}(\hat{y})\right)\right)\right| \\
(\mathrm{II}) & =\left|\sum_{j=k}^{\infty}\left(\psi^{u}\left(f^{j}(x)\right)-\psi^{u}\left(f^{j}(\hat{x})\right)\right)-\sum_{j=k}^{\infty}\left(\psi^{u}\left(f^{j}(y)\right)-\psi^{u}\left(f^{j}(\hat{y})\right)\right)\right|
\end{aligned}
$$

Using Lemma 2.4, (I) $\leq C_{2} \beta_{2}^{\frac{s(x, y)}{2}}$. By Lemma 2.5 , (II) $\leq C_{3} \beta_{3}^{\frac{s(x, y)}{3}}$. Thus

$$
\begin{equation*}
(\mathrm{I})+(\mathrm{II}) \leq 2\left(C_{3}+C_{2}\right) \beta_{4}^{s\left(f^{R}(x), f^{R}(y)\right)} \tag{3.2}
\end{equation*}
$$

Here $0<\beta_{4}=\max \left\{\beta_{1}, \beta_{2}^{1 / 2}, \beta_{3}^{1 / 3}\right\}<1$. By the similar argument as above we have

$$
\begin{equation*}
\left|\Phi\left(f^{R}(x)\right)-\Phi\left(f^{R}(y)\right)\right| \leq 2\left(C_{3}+C_{2}\right) \beta_{4}^{s\left(f^{R}(x), f^{R}(y)\right)} \tag{3.3}
\end{equation*}
$$

Therefore, by (3.2), (3.3) and (K-1), there exists $C_{1}^{\prime}>0$ such that

$$
\begin{aligned}
\log \frac{J\left(f^{R}\right)(x)}{J\left(f^{R}\right)(y)}= & \log \frac{\mid \operatorname{det}\left(\left.D_{x} f^{i}\right|_{E^{u}(x)} \mid\right.}{\mid \operatorname{det}\left(\left.D_{y} f^{i}\right|_{E^{u}(y)} \mid\right.}+\Phi\left(f^{R}(x)\right) \\
& -\Phi\left(f^{R}(y)\right)-(\Phi(x)-\Phi(y)) \\
\leq & \left(C_{1}^{\prime}+4\left(C_{3}+C_{2}\right)\right) \beta_{4}^{s\left(f^{R}(x), f^{R}(y)\right)}
\end{aligned}
$$

which concludes the lemma.
(K-2) and Lemmas 2.5 and 2.6 imply that $\bar{m}\left(\left\{R \circ \bar{\pi}^{-1}>n\right\}\right)=O\left(n^{-\tau}\right)$ for some $\tau>1$. Here $\bar{\pi}: \Delta \rightarrow \bar{\Delta}$ is the projection such that $\bar{\pi} \circ F=\bar{F} \circ \bar{\pi}$. Then we have that $\int_{\bar{\Delta}_{0}} R \circ \bar{\pi}^{-1} d \bar{m}<\infty$. We summarize the properties of $\bar{F}: \bar{\Delta} \rightarrow \bar{\Delta}$ as follows:
(a) $\overline{F^{R}}: \bar{\Delta}_{0, i}^{j} \rightarrow \overline{F^{R}}\left(\bar{\Delta}_{0, i}^{j}\right)$ is bijective and $\overline{F^{R}}\left(\bar{\Delta}_{0, i}^{j}\right)$ is a union of some $\bar{\Delta}_{0, p}^{q}$'s $(\bmod \bar{m})$, and furthermore there exists $\eta>0$ such that $\inf _{i \geq 1,1 \leq j \leq r}\left\{\bar{m}\left(\overline{F^{R}}\left(\bar{\Delta}_{0, i}^{j}\right)\right)\right\} \geq \eta$,
(b) $\overline{\mathcal{D}}:=\left\{\bar{\Delta}_{\ell, i}^{j}\right\}_{\ell \geq 0, i \geq 1,1 \leq j \leq r}$ is a partition such that $\vee_{j=0}^{\infty} \bar{F}^{-j}(\overline{\mathcal{D}})$ is the partition into points,
(c) $\bar{m}(A)=\bar{m}(\bar{F}(A))$ for any $A \subset \bar{\Delta}_{\ell, i}^{j}$ with $\bar{F}(A) \subset \bar{\Delta}_{\ell+1, i}^{j}$, and
 w.r.t. \bar{m}.

We redefine the separation time $\bar{s}(\cdot, \cdot)$ on $\bar{\Delta}$ as follows: Firstly for any $\bar{x}, \bar{y} \in$ $\bar{\Delta}_{0}, \bar{s}(\bar{x}, \bar{y})$ is defined by $s(x, y)$ where $(x, 0) \in \bar{\pi}^{-1}(\bar{x})$ and $(y, 0) \in \bar{\pi}^{-1}(\bar{y})$. Secondly for any $\bar{x}, \bar{y} \in \bar{\Delta}_{\ell}, \bar{s}(\bar{x}, \bar{y})$ is defined by $\bar{s}\left(\bar{x}_{0}, \bar{y}_{0}\right)$ where $\bar{x}_{0}, \bar{y}_{0} \in \bar{\Delta}_{0}$ are the unique preimages of \bar{x}, \bar{y} by \bar{F}^{ℓ}, i.e. $\bar{F}^{\ell}\left(\bar{x}_{0}\right)=\bar{x}$ and $\bar{F}^{\ell}\left(\bar{y}_{0}\right)=\bar{y}$. Otherwise $\bar{s}(\bar{x}, \bar{y})=0$.
(e) $J\left(\overline{F^{R}}\right)$ satisfies that $\left|\frac{J\left(\overline{F^{R}}\right)(\bar{x})}{J\left(\overline{F^{R}}\right)(\bar{y})}-1\right| \leq C_{4} \beta_{4}^{\bar{s}\left(\overline{F^{R}}(\bar{x}), \overline{F^{R}}(\bar{y})\right)}$ for any $i \geq 1$ and $\bar{x}, \bar{y} \in \bar{\Delta}_{0, i}^{j}$, and
(f) for any $\ell, \ell^{\prime} \geq 0, i, i^{\prime} \geq 1$ there exists $N>0$ such that $\bar{F}^{-n}\left(\bar{\Delta}_{\ell, i}\right) \cap$ $\bar{\Delta}_{\ell^{\prime}, i^{\prime}} \neq \emptyset$ for any $n \geq N$ (by Condition 4).
Let $C_{\beta_{4}}(\bar{\Delta}):=\left\{\bar{\varphi}: \bar{\Delta} \rightarrow \mathbb{R} \mid \exists C_{\bar{\varphi}}>0\right.$ s.t. $|\bar{\varphi}(\bar{x})-\bar{\varphi}(\bar{y})| \leq C_{\varphi} \beta_{4}^{\bar{s}(\bar{x}, \bar{y})}$ $\left.\left(\forall \bar{x}, \bar{y} \in \bar{\Delta}_{\ell, i}^{j}\right)\right\}$.

Lemma 3.4 \bar{F} admits a mixing invariant probability measure $\bar{\nu}$ such that $d \bar{\nu}=\bar{\varrho} d \bar{m}$. Here $\bar{\varrho}$ satisfies ${\overline{c_{0}}}^{-1} \leq \bar{\varrho} \leq \overline{c_{0}}$ for $\overline{c_{0}}>0$ with

$$
|\bar{\varrho}(\bar{x})-\bar{\varrho}(\bar{y})| \leq \bar{c}_{0} \beta_{4}^{\bar{s}(\bar{x}, \bar{y})} \quad\left(\bar{x}, \bar{y} \in \bar{\Delta}_{\ell, i}^{j}\right) .
$$

Proof. Applying the arguments as in [1], [13], [16], [17], [26], [27], [29], [10] gives the lemma.

We define the transfer operator associated with \bar{F} and the measure \bar{m} by

$$
\begin{equation*}
\overline{\mathcal{L}}(\bar{\varphi})(\bar{x}):=\sum_{\bar{x}^{\prime}: \bar{F}\left(\bar{x}^{\prime}\right)=\bar{x}} \frac{\bar{\varphi}\left(\bar{x}^{\prime}\right)}{J(\bar{F})\left(\bar{x}^{\prime}\right)} \tag{3.4}
\end{equation*}
$$

for $\bar{\varphi} \in L^{2}(\bar{m})$ and $\bar{x} \in \bar{\Delta}$. Then $\overline{\mathcal{L}}(\bar{\varrho})=\bar{\varrho}$ where $\bar{\varrho}$ is as in Lemma 3.4. Let $L^{\infty}(\bar{m})$ be the set of functions which are essentially bounded w.r.t. \bar{m}. We denote the essential sup norm w.r.t. \bar{m} by $\|\cdot\|_{\infty}$. For any $\bar{\psi} \in C_{\beta_{4}}(\bar{\Delta})$ we define $\|\bar{\psi}\|:=\max \left\{\|\bar{\psi}\|_{\infty}, C_{\bar{\psi}}\right\}$.
Proposition 3.5 ([17] Proposition 3.13, Corollary 3.15) Let $w:=$ $\{w(\ell)\}_{\ell \in \mathbb{Z}^{+}}$be a positive increasing sequence such that $(i) \sum_{\ell=1}^{\infty} w(\ell) \bar{m}\left(\bar{\Delta}_{\ell}\right)$ $<\infty$ and (ii) the sequence $\left\{\frac{w(\ell)}{w(\ell+1)}\right\}_{\ell=1}^{\infty}$ is also increasing. Then there exist $k_{1}=k_{1}(w) \in \mathbb{N}$ and $C_{5}=C_{5}\left(w, k_{1}\right)>0$ such that for any $\bar{\phi} \in C_{\beta}(\bar{\Delta})$ with $\int \bar{\phi} d \bar{m}=1$, any $n \in \mathbb{N}$ with $n=k_{1} j+r$ for some $j \in \mathbb{N}$ and $r \in\left\{0, \ldots, k_{1}-1\right\}$, and any $\ell \in \mathbb{Z}^{+}$,

$$
\sup _{\bar{x} \in \bar{\Delta}_{\ell}}\left|\overline{\mathcal{L}}^{n}(\bar{\phi})(\bar{x})-\bar{\varrho}(\bar{x})\right| \leq C_{5}\|\bar{\phi}\| \frac{w(\ell)}{w\left(k_{1} j\right)}
$$

where $\bar{\varrho}$ is as in Lemma 3.4.
Throughout this section, we fix a positive increasing function $v: \mathbb{R}^{+} \rightarrow$ \mathbb{R} such that (i) for any $\gamma \in \Gamma^{u}, \sum_{\ell=1}^{\infty} v(\ell) m_{\gamma}(\{R>\ell\})<\infty$, and (ii) the sequence $\left\{\frac{v(\ell)}{v(\ell+1)}\right\}_{\ell=1}^{\infty}$ is also increasing. By Lemma 3.3(1) we have that $\sum_{\ell=0}^{\infty} v(\ell) \bar{m}\left(\bar{\Delta}_{\ell}\right)<\infty$. Then we let $k_{1}=k_{1}(v) \in \mathbb{N}$ and $C_{5}=C_{5}\left(v, k_{1}\right)>0$ as in Proposition 3.5. Then by Proposition 3.5 we have that for any $n \geq 1$ and $\bar{\psi} \in C_{\beta_{4}}(\bar{\Delta})$ with $\int \bar{\psi} d \bar{m}=1$,

$$
\begin{equation*}
\sup _{\bar{x} \in \bar{\Delta}_{\ell}}\left|\overline{\mathcal{L}}^{n}(\bar{\psi})(\bar{x})-\bar{\varrho}(\bar{x})\right| \leq C_{5}^{\prime}(\bar{\psi}) \frac{v(\ell)}{v\left(\frac{n}{2}\right)} \quad(\ell \geq 0) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{5}^{\prime}(\bar{\psi}):=\max _{0 \leq j \leq k_{1}-1}\left\{\frac{v\left(\frac{k_{1}}{2}\right)}{v(0)}\left(\left\|\overline{\mathcal{L}}^{j}(\bar{\psi})\right\|_{\infty}+\|\bar{\varrho}\|_{\infty}\right), C_{5}\|\bar{\psi}\|\right\} . \tag{3.6}
\end{equation*}
$$

3.3. Polynomial upper bounds on correlations for F

Let $\pi_{1}: \Delta \rightarrow M$ be the natural projection by $\pi_{1}(x, \ell)=f^{\ell}(x)$ for $(x, \ell) \in \Delta$. Then we have $f \circ \pi_{1}=\pi_{1} \circ F$. For any function $\varphi: M \rightarrow \mathbb{R}$, let $\tilde{\varphi}$ be the lift of φ to Δ defined by $\tilde{\varphi}=\varphi \circ \pi_{1}$. Define an F-invariant probability measure $\tilde{\nu}$ by $\tilde{\nu}=\nu \circ \pi_{1}$, and the correlation function for $(F, \tilde{\nu})$ by $\operatorname{Cor}_{n}(\tilde{\varphi}, \tilde{\psi} ; \tilde{\nu})=\left|\int\left(\tilde{\varphi} \circ F^{n}\right) \tilde{\psi} d \tilde{\nu}-\int \tilde{\varphi} d \tilde{\nu} \int \tilde{\psi} d \tilde{\nu}\right|$. Then we have that $\operatorname{Cor}_{n}(\varphi, \psi ; \nu)=\operatorname{Cor}_{n}(\tilde{\varphi}, \tilde{\psi} ; \tilde{\nu})$. We define $\mathcal{D}_{j}:=\vee_{i=0}^{j} F^{-i}(\mathcal{D})$ for any $j \geq 0$ where \mathcal{D} is as in (3.1). For any $x \in \Delta$ let $\mathcal{D}_{j}(x)$ denote the element of \mathcal{D}_{j} which containts x.

Lemma 3.6 There exists $C_{6}>0$ such that for any $k \geq 1$ and $x \in \Delta$, $\operatorname{diam}\left(\pi_{1} \circ F^{k}\left(\mathcal{D}_{2 k}(x)\right)\right) \leq C_{6} k^{-\tau}$.

Proof. Put $\hat{y}=\gamma^{s}\left(y_{1}\right) \cap \gamma^{u}\left(y_{2}\right)$ for $y_{1}, y_{2} \in \mathcal{D}_{2 k}(x)$. Assume that $\mathcal{D}_{2 k}(x) \subset$ Δ_{ℓ} for some $l \geq 0$. Then there exist y_{1}^{0}, y_{2}^{0} and $\hat{y}^{0} \in \Delta_{0}$, such that $F^{\ell}\left(y_{1}^{0}\right)=$ $y_{1}, F^{\ell}\left(y_{2}^{0}\right)=y_{2}$ and $F^{\ell}\left(\hat{y}^{0}\right)=\hat{y}$. Since $f \circ \pi_{1}=\pi_{1} \circ F$, we have

$$
d\left(\pi_{1} \circ F^{k}(\hat{y}), \pi_{1} \circ F^{k}\left(y_{2}\right)\right)=d\left(f^{k+\ell}\left(\hat{y}^{0}\right), f^{k+\ell}\left(y_{2}^{0}\right)\right)
$$

Using Condition 2, (K-2) and Lemma 5.1 we have that (see [10] Lemma 4.12) there exists $K_{1}>0$ such that

$$
\begin{equation*}
d\left(f^{k+\ell}\left(\hat{y}^{0}\right), f^{k+\ell}\left(y_{2}^{0}\right)\right) \leq K_{1} k^{-\tau} \tag{3.7}
\end{equation*}
$$

Note that $\pi_{1} \circ F^{-\ell}(\hat{y}) \in \gamma^{s}\left(\pi_{1} \circ F^{-\ell}\left(y_{1}\right)\right)$. Then we have that $d\left(\pi_{1} \circ\right.$ $\left.F^{-\ell}(\hat{y}), \pi_{1} \circ F^{-\ell}\left(y_{1}\right)\right) \leq 1$, and thus by (2.1)

$$
\begin{align*}
d\left(\pi_{1} \circ F^{k}\left(y_{1}\right), \pi_{1} \circ F^{k}(\hat{y})\right) & \leq d\left(f^{k+\ell} \circ \pi_{1} \circ F^{-\ell}\left(y_{1}\right), f^{k+\ell} \circ \pi_{1} \circ F^{-\ell}(\hat{y})\right) \\
& \leq L \lambda_{s}^{k} \tag{3.8}
\end{align*}
$$

Combining (3.7) and (3.8), we estimate that $d\left(\pi_{1} \circ F^{k}\left(y_{1}\right), \pi_{1} \circ F^{k}\left(y_{2}\right)\right) \leq$ $K_{1} k^{-\tau}+L \lambda_{s}^{k}$. This concludes the proof.

For any continuous function φ define a function $\bar{\varphi}^{k}: \Delta \rightarrow \mathbb{R}$ by $\bar{\varphi}^{k} \mid A=$ $\inf \left\{\tilde{\varphi}(x) \mid x \in F^{k}(A)\right\}$ for $A \in \mathcal{D}_{2 k}$. Put $\tilde{\varphi}_{k}=d\left(F_{*}^{k}\left(\bar{\varphi}_{k} \tilde{\nu}\right)\right) / d \tilde{\nu}$.
Lemma 3.7 For any $\varphi, \psi \in \mathcal{H}_{\eta}$ there exists $C_{7}=C_{7}(\varphi, \psi)>0$ such that for any $1 \leq k \leq n$,

$$
\left|\operatorname{Cor}_{n}(\tilde{\varphi}, \tilde{\psi} ; \tilde{\nu})-\operatorname{Cor}_{n-k}\left(\bar{\varphi}^{k}, \tilde{\psi}_{k} ; \tilde{\nu}\right)\right| \leq C_{7} k^{-\tau \eta}
$$

Proof. Using the same argument as in [27] it follows from Lemma 3.6 (see also [10] Lemma 3.9) that there exists $K_{2}=K_{2}(\varphi, \psi)>0$ such that

$$
\begin{aligned}
\left|\operatorname{Cor}_{n-k}\left(\tilde{\varphi} \circ F^{k}, \tilde{\psi} ; \tilde{\nu}\right)-\operatorname{Cor}_{n-k}\left(\bar{\varphi}^{k}, \tilde{\psi} ; \tilde{\nu}\right)\right| & \leq K_{2} k^{-\tau \eta} \\
\left|\operatorname{Cor}_{n-k}\left(\bar{\varphi}^{k}, \tilde{\psi} ; \tilde{\nu}\right)-\operatorname{Cor}_{n-k}\left(\bar{\varphi}^{k}, \tilde{\psi}_{k} ; \tilde{\nu}\right)\right| & \leq K_{2} k^{-\tau \eta} \quad(1 \leq k \leq n)
\end{aligned}
$$

This concludes the proof.
Let $k \in \mathbb{N}$ be such that $k \in\left[\frac{n}{6}, \frac{n}{4}\right]$. Since $\bar{\psi}^{k}$ and $\bar{\varphi}^{k}$ are constant on $\gamma^{s} \in \Gamma^{s}$ and $\bar{\pi} \circ F=\bar{F} \circ \bar{\pi}$, we have by Lemma 3.4 that

$$
\begin{aligned}
& \int\left(\bar{\varphi}^{k} \circ F^{n-k}\right) \cdot \tilde{\psi}_{k} d \tilde{\nu}=\int\left(\bar{\varphi}^{k} \circ \bar{\pi}^{-1} \circ \bar{F}^{n}\right) \cdot \bar{\psi}^{k} \circ \bar{\pi}^{-1} d \bar{\nu} \\
& \quad=\int \bar{\varphi}^{k} \circ \bar{\pi}^{-1} \cdot \overline{\mathcal{L}}^{n}\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1} \cdot \bar{\varrho}\right) d \bar{m}
\end{aligned}
$$

where $\bar{\varrho}$ is as in Lemma 3.4. By the similar argument as above, we have that $\int \bar{\varphi}^{k} d \tilde{\nu}=\int \bar{\varphi}^{k} \circ \bar{\pi}^{-1} \cdot \bar{\varrho} d \bar{m}$ and $\int \bar{\psi}^{k} d \tilde{\nu}=\int \bar{\psi}^{k} \circ \bar{\pi}^{-1} d \bar{\nu}$. Thus we have that

$$
\begin{aligned}
& \operatorname{Cor}_{n-k}\left(\bar{\varphi}^{k}, \tilde{\psi}_{k} ; \tilde{\nu}\right) \\
& \quad=\left|\int \bar{\varphi}^{k} \circ \bar{\pi}^{-1} \cdot \overline{\mathcal{L}}^{n}\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1} \cdot \bar{\varrho}\right) d \bar{m}-\int \bar{\varphi}^{k} \circ \bar{\pi}^{-1} \cdot \bar{\varrho} d \bar{m} \int \bar{\psi}^{k} \circ \bar{\pi}^{-1} d \bar{\nu}\right| .
\end{aligned}
$$

Let $a_{\psi}:=2 \max |\psi|+1$. Then it follows from the argument in [26] (page 175) (cf. [10] Lemma 3.10) that

$$
\begin{align*}
& \operatorname{Cor}_{n-k}\left(\bar{\varphi}^{k}, \tilde{\psi}_{k} ; \tilde{\nu}\right) \\
& \quad \leq 2 a_{\psi} \max |\varphi| \sum_{\ell=0}^{\infty} \bar{m}\left(\bar{\Delta}_{\ell}\right) \sup _{\bar{x} \in \bar{\Delta}_{\ell}}\left|\overline{\mathcal{L}}^{n-2 k} \circ \overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}_{k}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}_{k}+a_{\psi}\right) d \bar{\nu}}\right)(\bar{x})-\bar{\varrho}(\bar{x})\right| \tag{3.9}
\end{align*}
$$

where $\overline{\mathcal{L}}$ is as in (3.4). Since $\operatorname{Cor}_{n}(\varphi, \psi ; \nu)=\operatorname{Cor}_{n}(\tilde{\varphi}, \tilde{\psi} ; \tilde{\nu})$, Lemma 3.7 implies that

$$
\begin{equation*}
\operatorname{Cor}_{n}(\varphi, \psi ; \nu) \leq \operatorname{Cor}_{n-k}\left(\bar{\varphi}^{k}, \tilde{\psi}_{k} ; \tilde{\nu}\right)+C_{7} k^{-\tau \eta} \tag{3.10}
\end{equation*}
$$

To apply Proposition 3.5 to $\overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right)$ in (3.9), we need to show that $\overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}^{k} \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right) \in C_{\beta_{4}}(\bar{\Delta})$ and the constant $C_{5}^{\prime}\left(\overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right)\right)$ as in (3.6) is bounded above by some constant independent of k.

Lemma 3.8 There exists $C_{8}=C_{8}(\psi, \bar{\varrho})>0$ such that
(1) $\left\|\overline{\mathcal{L}}^{j+2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right)\right\|_{\infty} \leq C_{8} \quad\left(0 \leq j \leq k_{1}\right)$,
(2) $\left|\overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right)(x)-\overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right)(y)\right|$
$\leq C_{8} \beta_{4}^{\bar{s}(x, y)} \quad\left(x, y \in \bar{\Delta}_{\ell, i}\right)$.
Here k_{1} is the number as in Proposition 3.5.
Proof. We note that $\overline{\mathcal{L}}^{\ell}(\bar{\psi})(\bar{x})=\sum_{\bar{x}^{\prime}: \bar{F}^{\ell}\left(\bar{x}^{\prime}\right)=\bar{x}} \frac{\bar{\psi}}{J\left(\bar{F}^{\ell}\right)}\left(\bar{x}^{\prime}\right)$ for $\bar{\psi}: \bar{\Delta} \rightarrow \mathbb{R}$ and $\ell \geq 1$. By Lemma 3.3 it follows from the same argument in Theorem 1 in [26] (see also [10] Lemma 3.5(2)) that there exists $K_{3}>0$ (independent of ℓ) such that $\sum_{\bar{x}^{\prime}: \bar{F}^{\ell}\left(\bar{x}^{\prime}\right)=\bar{x}} \frac{1}{J\left(\bar{F}^{\ell}\right)\left(\bar{x}^{\prime}\right)} \leq K_{3}$. Since ψ is Hölder continuous, there exists $C_{\psi}>0$ such that $\left|\bar{\psi}^{k} \circ \bar{\pi}^{-1}(\bar{x})\right| \leq C_{\psi}$ for any $x \in \bar{\Delta}$. Since $\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi} \geq 1$, by Lemma 3.3 we have that $\left|\overline{\mathcal{L}}^{j+2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right)(\bar{x})\right| \leq K_{3}\left(C_{\psi}+a_{\psi}\right) \bar{c}_{0}$ for any $x \in \bar{\Delta}$. (1) is shown.

We prove (2). For any $\bar{x}, \bar{y} \in \bar{\Delta}_{\ell, i}$, let $\left\{\bar{x}_{j}^{\prime}\right\}_{j \in \mathbb{N}},\left\{\bar{y}_{j}^{\prime}\right\}_{j \in \mathbb{N}}$ be the paired
preimages of \bar{x}, \bar{y} by $\bar{F}^{2 k}$, i.e. for any $j \in \mathbb{N}, \bar{F}^{2 k}\left(\bar{x}_{j}^{\prime}\right)=\bar{x}$ and $\bar{F}^{2 k}\left(\bar{y}_{j}^{\prime}\right)=\bar{y}$, and for each $j \in \mathbb{N}$ and every $h \in\{0, \ldots, 2 k\}, \bar{F}^{h}\left(\bar{x}_{j}^{\prime}\right)$ and $\bar{F}^{h}\left(\bar{y}_{j}^{\prime}\right)$ belong to the same element of $\overline{\mathcal{D}}$. Using that $\bar{\psi}_{k}+a_{\psi} \geq 1$, we have that

$$
\left|\overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}_{k}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}_{k}+a_{\psi}\right) d \bar{\nu}}\right)(\bar{x})-\overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}_{k}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}_{k}+a_{\psi}\right) d \bar{\nu}}\right)(\bar{y})\right| \leq(\mathrm{III})+(\mathrm{IV})
$$

where

$$
\begin{aligned}
& (\mathrm{III})=\sum_{j=1}^{\infty} \frac{1}{J\left(\bar{F}^{2 k}\right)\left(\bar{x}_{j}^{\prime}\right)}\left|\left(\bar{\psi}_{k}\left(\bar{x}_{j}^{\prime}\right)+a_{\psi}\right) \bar{\varrho}\left(\bar{x}_{j}^{\prime}\right)-\left(\bar{\psi}_{k}\left(\bar{y}_{j}^{\prime}\right)+a_{\psi}\right) \bar{\varrho}\left(\bar{y}_{j}^{\prime}\right)\right|, \\
& (\mathrm{IV})=\sum_{j=1}^{\infty}\left|\left(\bar{\psi}_{k}\left(\bar{y}_{j}^{\prime}\right)+a_{\psi}\right) \bar{\varrho}\left(\bar{y}_{j}^{\prime}\right)\right| \frac{1}{J\left(\bar{F}^{2 k}\right)\left(\bar{y}_{j}^{\prime}\right)}\left|\frac{J\left(\bar{F}^{2 k}\right)\left(\bar{y}_{j}^{\prime}\right)}{J\left(\bar{F}^{2 k}\right)\left(\bar{x}_{j}^{\prime}\right)}-1\right|
\end{aligned}
$$

We estimate (III). By the definition of $\bar{\psi}_{k}, \bar{\psi}_{k}$ is constant on each element of $\overline{\mathcal{D}}_{2 k}$ where $\overline{\mathcal{D}}_{j}:=\mathrm{V}_{i=0}^{j} \bar{F}^{-i}(\overline{\mathcal{D}})$. Since \bar{x}_{j}^{\prime} and \bar{y}_{j}^{\prime} are belong to the same element of $\overline{\mathcal{D}}_{2 k}$, we have that for any $j \in \mathbb{N},\left(\bar{\psi}_{k}\right)\left(\bar{x}_{j}^{\prime}\right)=\left(\bar{\psi}_{k}\right)\left(\bar{y}_{j}^{\prime}\right)$. So we estimate that

$$
\begin{aligned}
& \left|\left(\bar{\psi}_{k}\left(\bar{x}_{j}^{\prime}\right)+a_{\psi}\right) \bar{\varrho}\left(\bar{x}_{j}^{\prime}\right)-\left(\bar{\psi}_{k}\left(\bar{y}_{j}^{\prime}\right)+a_{\psi}\right) \bar{\varrho}\left(\bar{y}_{j}^{\prime}\right)\right| \\
& \quad=\left|\left(\bar{\psi}_{k}\left(\bar{x}_{j}^{\prime}\right)+a_{\psi}\right)\left(\bar{\varrho}\left(\bar{x}_{j}^{\prime}\right)-\bar{\varrho}\left(\bar{y}_{j}^{\prime}\right)\right)\right| \\
& \quad \leq 2 a_{\psi}\left|\bar{\varrho}\left(\bar{x}_{j}^{\prime}\right)-\bar{\varrho}\left(\bar{y}_{j}^{\prime}\right)\right| \\
& \quad \leq 2 a_{\psi} \overline{c_{0}} \beta^{\bar{s}\left(\bar{x}_{j}^{\prime}, \bar{y}_{j}^{\prime}\right)} \quad(\because \text { Lemma 3.4)} \\
& \quad \leq 2 a_{\psi} \overline{c_{0}} \beta^{\bar{s}\left(\bar{x}^{\prime}, \bar{y}^{\prime}\right)} \quad\left(\because \bar{s}\left(\bar{x}_{j}^{\prime}, \bar{y}_{j}^{\prime}\right) \geq \bar{s}(\bar{x}, \bar{y})\right) .
\end{aligned}
$$

Substituting this into (III) and using the inequality $\sum_{\bar{x}^{\prime}: \bar{F}^{2 k}\left(\bar{x}^{\prime}\right)=\bar{x}}$ $\cdot \frac{1}{J\left(\bar{F}^{2 k}\right)\left(\bar{x}^{\prime}\right)} \leq K_{3}$ ([10] Lemma 3.5), we have that

$$
(\mathrm{III}) \leq 2 a_{\psi} \overline{c_{0}} K_{3} \beta^{\bar{s}(\bar{x}, \bar{y})}
$$

By Lemma 3.3(3) we have that for any $\bar{x}, \bar{y} \in \bar{D} \in \overline{\mathcal{D}}_{2 k},\left|\frac{J\left(\bar{F}^{2 k}\right)(\bar{x})}{J\left(\bar{F}^{2 k}\right)(\bar{y})}-1\right| \leq$ $C_{1} \beta^{\bar{s}\left(\bar{F}^{2 k}(\bar{x}), \bar{F}^{2 k}(\bar{y})\right)}$ (see [10] Lemma 3.5(1)). Using this inequality and Lemma 3.4, we esimate that (IV) $\leq\left(C_{\psi}+a_{\psi}\right) \overline{c_{0}} K_{3} C_{4} \beta_{4}^{\bar{s}(\bar{x}, \bar{y})}$. Therefore

$$
(\mathrm{III})+(\mathrm{IV}) \leq 2 K_{3} \overline{c_{0}}\left(C_{\psi}+a\right) C_{4} \beta_{4}^{\bar{s}(\bar{x}, \bar{y})}
$$

(2) is proved.

Let $\tau>1$ be as in (K-2). For any $1<\tau^{\prime}<\tau$, let $v(t)=1(0 \leq t<1)$ and $v(t)=t^{\tau^{\prime}-1}(t \geq 1)$. Then by Lemmas 2.5 and 2.6, we have that $\sum_{\ell=0}^{\infty} v(\ell) \bar{m}\left(\bar{\Delta}_{\ell}\right)<\infty$. By Lemma 3.8(2), $\overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right) \in C_{\beta_{4}}(\bar{\Delta})$. Then by (3.5) we have that

$$
\begin{align*}
& \sup _{\bar{x} \in \bar{\Delta}_{\ell}}\left|\overline{\mathcal{L}}^{n-2 k} \circ \overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right)(\bar{x})-\bar{\varrho}(\bar{x})\right| \\
& \quad \leq C_{5}^{\prime}\left(\overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right)\right) \cdot \frac{v(\ell)}{v\left(\frac{n-2 k}{2}\right)} \quad(n \geq 1) \tag{3.11}
\end{align*}
$$

By (3.6) and Lemmas 3.4 and 3.8, we have that $C_{5}^{\prime}\left(\overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right)\right)$ $\leq C_{9}$ where $C_{9}:=\max \left\{\frac{v\left(\frac{k_{1}}{2}\right)}{v(0)}\left(C_{8}+\bar{c}_{0}\right), C_{5} C_{8}\right\}($ see [10] Lemma 3.12). Thus by (3.11) we have that

$$
\begin{equation*}
\sup _{\bar{x} \in \bar{\Delta}_{\ell}}\left|\overline{\mathcal{L}}^{n-2 k} \circ \overline{\mathcal{L}}^{2 k}\left(\frac{\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) \bar{\varrho}}{\int\left(\bar{\psi}^{k} \circ \bar{\pi}^{-1}+a_{\psi}\right) d \bar{\nu}}\right)(x)-\bar{\varrho}(x)\right| \leq C_{9} \frac{v(\ell)}{v\left(\frac{n-2 k}{2}\right)} \quad(n \geq 1) \tag{3.12}
\end{equation*}
$$

By (3.9), (3.10) and (3.12) we have that

$$
\operatorname{Cor}_{n}(\varphi, \psi ; \nu) \leq C_{10} \frac{1}{v\left(\frac{n-2 k}{2}\right)}+C_{7} k^{-\tau \eta} \quad(n \geq 1)
$$

where $C_{10}=2 a_{\psi} \max |\varphi| C_{9} \sum_{\ell=0}^{\infty} v(\ell) \bar{m}\left(\bar{\Delta}_{\ell}\right) . \quad$ Since $k \in\left[\frac{n}{6}, \frac{n}{4}\right]$ and $v(t)$ increases with t, we have that $v\left(\frac{n}{4}\right) \leq v\left(\frac{n-2 k}{2}\right)$, and obtain that

$$
\operatorname{Cor}_{n}(\varphi, \psi ; \nu) \leq C_{10} \frac{1}{v\left(\frac{n}{4}\right)}+C_{7} k^{-\tau \eta} \leq C_{10}\left(\frac{4}{n}\right)^{\tau^{\prime}-1}+3^{\tau \eta} C_{7} n^{-\tau \eta}
$$

The proof of Key Lemma is complete.

4. Appendix A: Proofs of Lemmas 2.1-2.6

In this section we prove Lemmas 2.1-2.6. Throughout this section we assume that $f: M \circlearrowleft$ is an almost Anosov diffeomorphism with uniformly contracting direction (not necessarily co-dimension one uniformly contracting direction). We begin by noting the basic properties of the local stable and center unstable manifolds. We have the following ([23]):
(i) $T_{x} W_{\varepsilon}^{\sigma}(x)=E^{\sigma}(x)$ for $\sigma=s, u$,
(ii) $W_{\varepsilon}^{s}(x) \subset\left\{y \in M \mid d\left(f^{n}(x), f^{n}(y)\right) \leq \varepsilon\right.$ for any $\left.n \in \mathbb{Z}^{+}\right\}$,
(iii) $f\left(W_{\varepsilon}^{s}(x)\right) \subset W_{\varepsilon}^{s}(f(x))$,
(iv) $f\left(W_{\varepsilon}^{u}(x)\right) \supset W_{\varepsilon^{\prime}}^{u}(f(x))$ for some $\varepsilon^{\prime} \in(0, \varepsilon]$,
(v) there exists $L_{1}>0$ independent of x and ε such that for any $y \in$ $W_{\varepsilon}^{\sigma}(x)(\sigma=s, u)$,

$$
\begin{equation*}
d^{\sigma}(y, x)<L_{1} d(y, x) \tag{4.1}
\end{equation*}
$$

where d^{σ} denotes the Riemannian distance measured along $W_{\varepsilon}^{\sigma}(x)$.
Since the correspondence $x \mapsto W_{\varepsilon}^{u}(x)$ is continuous w.r.t. the C^{1} metric, there exists $\delta_{1}>0$ such that if x, y satisfies $d(x, y)<\delta_{1}$, then $W_{\varepsilon}^{s}(x)$ and $W_{\varepsilon}^{u}(y)$ have a single transeverse intersection point, so write

$$
\begin{equation*}
[x, y]=W_{\varepsilon}^{s}(x) \cap W_{\varepsilon}^{u}(y) \quad\left(x, y \in M \text { with } d(x, y)<\delta_{1}\right) \tag{4.2}
\end{equation*}
$$

Proof of Lemma 2.1. It suffices to show that for any $x \in M$ and $y \in$ $W_{\delta_{1}}^{u}(x), T_{y} W_{\varepsilon}^{u}(x)=E^{u}(y)$. Arguing by contradiction, assume that there exist $x \in M$ and $y \in W_{\delta_{1}}^{u}(x)$ such that $T_{y} W_{\varepsilon}^{u}(x) \neq E^{u}(y)$. Then there exist $z \in B_{\delta_{1}}(x) \backslash W_{\delta_{1}}^{u}(x)$ and a piecewise C^{1}-curve $\mathcal{C}:[0,1] \rightarrow M$ with $\mathcal{C}(0)=x$ and $\mathcal{C}(1)=z$ such that (a) the length of $\mathcal{C}([0,1])$ is less than δ_{1} and (b) $\frac{d \mathcal{C}}{d t}(t) \in E^{u}(\mathcal{C}(t))$ for any $0 \leq t \leq 1$. Indeed, since the set $A:=\left\{z \in W_{\delta_{1}}^{u}(x) \mid T_{z} W_{\varepsilon}^{u}(x)=E^{u}(z)\right\}$ is closed in $W_{\varepsilon}^{u}(x)$, the set A^{c} is open. We let $y^{\prime} \in \mathrm{Cl}\left(A^{c}\right)$ be such that $d^{u}\left(x, y^{\prime}\right)=d^{u}\left(x, \mathrm{Cl}\left(A^{c}\right)\right)$. We take a C^{1}-curve $\gamma_{1}:\left[0, \frac{1}{2}\right] \rightarrow W_{\delta_{1}}^{u}(x)$ with $\gamma_{1}(0)=x$ and $\gamma_{1}\left(\frac{1}{2}\right)=y^{\prime}$ such that $\frac{d \gamma_{1}}{d t}(t) \in E^{u}\left(\gamma_{1}(t)\right)$ for any $0 \leq t \leq \frac{1}{2}$, and the length of γ_{1} is less than $\delta_{1} / 2$. Then we can find a C^{1}-curve $\gamma_{2}:\left[\frac{1}{2}, 1\right] \rightarrow B_{\delta_{1}}\left(y^{\prime}\right)$ with $\gamma_{2}\left(\frac{1}{2}\right)=y^{\prime}$ and $z:=\gamma_{2}(1) \notin W_{\varepsilon}^{u}(x)$ such that $\frac{d \gamma_{2}}{d t}(t) \in E^{u}\left(\gamma_{2}(t)\right)$ for any $\frac{1}{2} \leq t \leq 1$, and the length of γ_{2} is less than $\delta_{1} / 2$. It is clear that a piecewise C^{1}-curve $\mathcal{C}:[0,1] \rightarrow W_{\varepsilon}^{u}(x)$ defined by $\mathcal{C}_{\left[0, \frac{1}{2}\right]}:=\gamma_{1}$ and $\mathcal{C}_{\left[\frac{1}{2}, 1\right]}:=\gamma_{2}$ is desired. Since

Figure 1. a figure of $\mathcal{C}([0,1])$
$d(z, x)$ is less than the length of $\mathcal{C}([0,1])$, by (a) we have that $d(z, x)<\delta_{1}$. Thus $W_{\varepsilon}^{s}(z)$ and $W_{\varepsilon}^{u}(x)$ have a single transeverse intersection, $w=[z, x]$ (see Figure 1).

Since $\left\|\left.D_{q} f^{-n}\right|_{T_{q} \mathcal{C}([0,1])}\right\| \leq\left\|\left.D_{q} f^{-n}\right|_{E^{u}(q)}\right\| \leq 1$ for any $q \in \mathcal{C}([0,1])$ and $n \in \mathbb{Z}^{+}$by (b), we have that for any $n \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
d_{f^{-n} \mathcal{C}}\left(f^{-n}(z), f^{-n}(x)\right) \leq d_{\mathcal{C}}(z, x)\left(<\delta_{1}\right) \tag{4.3}
\end{equation*}
$$

where $d_{f^{-n} \mathcal{C}}$ is the Riemannian metric on $f^{-n}(\mathcal{C}([0,1]))$. Then we have that for any $n \in \mathbb{Z}^{+}, d\left(f^{-n}(z), f^{-n}(x)\right)<\delta_{1}$, and so we can define for any $n \in \mathbb{Z}^{+}$,

$$
\left[f^{-n}(z), f^{-n}(x)\right]=W_{\varepsilon}^{s}\left(f^{-n}(z)\right) \cap W_{\varepsilon}^{u}\left(f^{-n}(x)\right)
$$

Since w is the single transeverse intersection of $W_{\varepsilon}^{s}(z)$ and $W_{\varepsilon}^{u}(x)$, we have $f^{-1}(w)=\left[f^{-1}(z), f^{-1}(x)\right]$. Repeating this manner, we have that for any $n \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
f^{-n}(w)=\left[f^{-n}(z), f^{-n}(x)\right], \quad f^{-n}(w) \neq f^{-n}(z) \tag{4.4}
\end{equation*}
$$

Thus, for any $n \in \mathbb{Z}^{+}, f^{-n}(w) \in W_{\varepsilon}^{s}\left(f^{-n}(z)\right)$, and then $d\left(f^{-n}(z), f^{-n}(w)\right)$ $<\varepsilon$. By (2.1) we have that for any $n \in \mathbb{Z}^{+}$,

$$
d(z, w) \leq L_{1} \lambda_{s}^{n} d\left(f^{-n}(z), f^{-n}(w)\right) \leq L \lambda_{s}^{n} \varepsilon
$$

Therefore, taking the limit as $n \rightarrow \infty$, we obtain that $d(z, w)=0$. This is a contradiction since $z \neq w$.

Proof of Lemma 2.2. Since the correspondence $x \mapsto W_{\varepsilon}^{\sigma}(x)$ is continuous w.r.t. the C^{1} topology $(\sigma=s, u)$, there exists $\delta^{\prime}>0$ such that if $d\left(y, y^{\prime}\right)<\delta^{\prime}$, then $d\left(y,\left[y, y^{\prime}\right]\right)<\delta_{1} / 2$ and $d\left(y,\left[y^{\prime}, y\right]\right)<\delta_{1} / 2$. Assume, by a contradiction, that there exist $y, y^{\prime} \in B_{\delta^{\prime}}(x)$ with $[x, y] \neq\left[x, y^{\prime}\right]$ such that $W_{\varepsilon}^{u}(y) \cap W_{\varepsilon}^{u}\left(y^{\prime}\right) \cap B_{\delta^{\prime}}(x) \neq \emptyset$. Then there exist $z \in W_{\varepsilon}^{u}(y) \cap W_{\varepsilon}^{u}\left(y^{\prime}\right) \cap B_{\delta^{\prime}}(x)$ and $z^{\prime} \in\left(W_{\varepsilon}^{u}\left(y^{\prime}\right) \backslash W_{\varepsilon}^{u}(y)\right) \cap B_{\delta^{\prime}}(x)$. By definition of $\delta^{\prime}, d\left(z, z^{\prime}\right)<\delta_{1}$. By (4.2), $W_{\varepsilon}^{u}(z)$ and $W_{\varepsilon}^{s}\left(z^{\prime}\right)$ have a single transeverse intersection, $w:=\left[z^{\prime}, z\right]$. We have that

$$
f^{-n}(w)=\left[f^{-n}\left(z^{\prime}\right), f^{-n}(z)\right], \quad f^{-n}(w) \neq f^{-n}\left(z^{\prime}\right) \quad(n \geq 0)
$$

This implies that $f^{-n}(w) \in W_{\varepsilon}^{s}\left(f^{-n}\left(z^{\prime}\right)\right)$ for any $n \geq 0$. Since $d\left(f^{-n}(w)\right.$, $\left.f^{-n}\left(z^{\prime}\right)\right)<\varepsilon$, we have by (2.1) that $d\left(w, z^{\prime}\right) \leq L \lambda_{s}^{n} \varepsilon(n \geq 0)$ and thus $d\left(w, z^{\prime}\right)=0$. This is a contradiction with the fact that $w \neq z^{\prime}$.

For any $\eta>0$ and $x \in M$ let $\bar{W}_{\eta}^{u}(x):=\left\{y \in M \mid d\left(f^{-n}(y), f^{-n}(x)\right) \leq\right.$ $\eta(n \geq 0)\}$ and $\bar{W}_{\eta}^{s}(x):=\left\{y \in M \mid d\left(f^{n}(y), f^{n}(x)\right) \leq \eta(n \geq 0)\right\}$. For the proof of Lemma 2.3 we need the following Lemma 4.1.
Lemma 4.1 For any $x \in M, \bar{W}_{\delta_{1} / 2}^{\sigma}(x) \subset W_{\varepsilon}^{\sigma}(x) \subset \bar{W}_{L_{1} \varepsilon}^{\sigma}(x)(\sigma=s, u)$.
Proof. We show that $\bar{W}_{\delta_{1} / 2}^{u}(x) \subset W_{\varepsilon}^{u}(x)$. Take $z \in \bar{W}_{\delta_{1} / 2}^{u}(x)$ and assume $z \notin W_{\varepsilon}^{u}(x)$. Then $W_{\varepsilon}^{s}(z)$ and $W_{\varepsilon}^{u}(x)$ have a single transeverse intersection, $w=[z, x]$. By the same argument as in (4.4) we have $f^{-k}(w)=$ $\left[f^{-k}(z), f^{-k}(x)\right], f^{-k}(w) \neq f^{-k}(z)(k \geq 0)$. Using (2.1) we have $d(w, z)=$ 0 . This contradicts that $z \neq w$.

To prove that $W_{\varepsilon}^{u}(x) \subset \bar{W}_{L_{1} \varepsilon}^{u}(x)$, it is enough to show that for any $y \in W_{\varepsilon}^{u}(x)$ and $n \geq 0, d^{u}\left(f^{-n}(x), f^{-n}(y)\right)<L_{1} \varepsilon$. Since $d^{u}(x, y)<L_{1} \varepsilon$ for $y \in W_{\varepsilon}^{u}(x)$, it is obvious the case when $n=0$. Assume that $d^{u}\left(f^{-n}(x), f^{-n}(y)\right)<L_{1} \varepsilon$. Then we have that

$$
\begin{aligned}
& d^{u}\left(f^{-n-1}(x), f^{-n-1}(y)\right) \\
& \quad \leq \sup \left\{\left\|D_{w}\left(f^{-1}\right)^{u}\right\| \mid w \in f^{-n}\left(W_{\varepsilon}^{u}(x)\right)\right\} d^{u}\left(f^{-n}(x), f^{-n}(y)\right)
\end{aligned}
$$

Since $\left\|D_{w}\left(f^{-1}\right)^{u}\right\|=\left\|\left.D_{w} f^{-1}\right|_{E^{u}\left(f^{-n}(x)\right)}\right\| \leq 1$ for any $w \in W_{\varepsilon}^{u}\left(f^{-n}(x)\right)$ by Lemma 2.1, we have that $d^{u}\left(f^{-n-1}(x), f^{-n-1}(y)\right)<L_{1} \varepsilon$. Therefore our disire is proved for $n+1$. The case $\sigma=u$ is proved. The similar arguments as above works for the case $\sigma=s$.
f has canonical coordinates if for any $\eta>0$ there exists $\delta(\eta)>0$ such that $d(x, y) \leq \delta(\eta)$ implies $\bar{W}_{\eta}^{s}(x) \cap \bar{W}_{\eta}^{u}(y) \neq \emptyset$.

Proof of Lemma 2.3. We prove that f is expansive. Indeed take $x, y \in M$ with $d\left(f^{i}(x), f^{i}(y)\right)<\delta_{1} / 2(i \in \mathbb{Z})$. This implies that $y \in \bar{W}_{\delta_{1} / 2}^{s}(x) \cap$ $\bar{W}_{\delta_{1} / 2}^{u}(x)$. By Lemma 4.1 we have that $y \in W_{\varepsilon}^{s}(x) \cap W_{\varepsilon}^{u}(x)$. Thus by (4.2), $y=x$.

Let us show that f has canonical coordinates. Then the shadowing property of f follows from Theorem in [18]. If $\rho \in(0,1]$, then there exists $\delta^{\prime \prime} \in(0,1)$ such that (4.2) holds with replacing ε by ρ / L_{1} and δ by $\delta^{\prime \prime}$. Let x, y be such that $d(x, y) \leq \delta^{\prime \prime}$. By definition of $\delta^{\prime \prime}, W_{\rho / L_{1}}^{s}(x)$ and $W_{\rho / L_{1}}^{u}(y)$ have a single transeverse intersection point. On the one hand by Lemma 4.1 we have that $W_{\rho / L_{1}}^{s}(x) \subset \bar{W}_{\rho}^{s}(x)$ and $W_{\rho / L_{1}}^{u}(y) \subset \bar{W}_{\rho}^{u}(y)$. Combining the arguments above we have that $\bar{W}_{\rho}^{s}(x) \cap \bar{W}_{\rho}^{u}(y) \neq \emptyset$. If $\rho>1$, then there exists $\delta^{\prime \prime \prime} \in(0,1)$ such that (4.2) holds with replacing ε by $1 / L_{1}$ and δ by $\delta^{\prime \prime \prime}$. Then using the similar arguments as above allows us to have the disired result. (1) is proved. By (1), (2) follows from Theorem 4.2.8 in [3].

Let dist be the distance in the Grassmannian bundle generated by the Riemannian metric. An 1-dimensional distribution E is (δ, L, ξ)-Hölder continuous if for any $x, y \in M$ with $d(x, y)<\delta$, $\operatorname{dist}(E(x), E(y)) \leq L d(x, y)^{\xi}$. It follows from [4] (Theorem 2.3.2) that there exist $\delta_{2} \in\left(0, \delta_{1}\right), L_{2}>0$ and $\xi_{1} \in(0, \alpha]$ such that the distributions E^{s} and E^{u} are $\left(\delta_{2}, L_{2}, \xi_{1}\right)$-Hölder continuous.

Lemma 4.2 There exist $C_{11}>0$ and $\delta_{3} \in\left(0, \delta_{2}\right)$ such that the following hold for any $x, y, z \in M$:
(1) For any $y, z \in W_{\delta_{3}}^{\sigma}(x)(\sigma=s, u), \log \frac{\left|\operatorname{det}\left(D_{y} f^{u}\right)\right|}{\left|\operatorname{det}\left(D_{z} f^{u}\right)\right|} \leq C_{11} d(y, z)^{\xi_{1}}$,
(2) Especially if f satisfies Conditions 1 and 2, then for any $y, z \in W_{\delta_{3}}^{u}(x)$, $\log \frac{\left|\operatorname{det}\left(D_{y} f^{u}\right)\right|}{\left|\operatorname{det}\left(D_{z} f^{u}\right)\right|} \leq C_{11} d(y, z)^{\alpha}$.

Proof. Using the arguments in [4] (page 104) together with [14] (Lemma 3.2 (page 49)), there exist $K_{4}>0$ and $\varsigma_{1} \in\left(0, \delta_{2}\right)$ such that for any $x \in M$ and $y, z \in B_{\varsigma_{1}}(x)$,

$$
\left|\operatorname{det}\left(D_{y} f^{u}\right)-\operatorname{det}\left(D_{z} f^{u}\right)\right| \leq K_{4}\left(\operatorname{dist}\left(E^{u}(y), E^{u}(z)\right)+d(y, z)^{\alpha}\right) .
$$

Then (1) follows from the fact that E^{u} is $\left(\delta_{2}, C_{10}, \xi_{1}\right)$-Hölder continuous. Condition 2 combined with Lemma 2.1 tells us that the correspondence $w \mapsto E^{u}(w)$ is C^{1} on each $W_{\delta_{1}}^{u}(x)$. So there exist $K_{5}>0$ and $\varsigma_{2} \in\left(0, \varsigma_{1}\right)$ such that for any $x \in M$ and $y, z \in W_{\varsigma_{2}}^{u}(x), \operatorname{dist}\left(E^{u}(y), E^{u}(z)\right) \leq K_{5} d(y, z)$. This combined with the ineqality above gives the proof of (2).

By Lemma 2.3 (2) we may assume that the diameter of the Markov partition $\left\{\mathcal{Q}_{i}\right\}$ is less than δ_{3}. To show Lemma 2.4, we need the following Lemma 4.3.

Lemma 4.3 There exist $C_{12}>0$ and $0<\beta_{5}<1$ such that for any $x \in \Lambda$, $y \in \gamma^{u}(x)$ with $s(x, y)<\infty$, and $0 \leq k \leq s(x, y)-1$, $d\left(f^{k}(y), f^{k}(x)\right) \leq$ $C_{12} \beta_{5}^{s(x, y)-k}$.

Proof. We put $\lambda_{u}:=\max \left\{\left\|\left.D_{x} f^{-1}\right|_{E^{u}(x)}\right\| \mid x \in \Lambda\right\}(<1)$. Let $x \in \Lambda$, $y \in \gamma^{u}(x)$ with $s(x, y)<\infty$, and $0 \leq k \leq s(x, y)-1$. There exist $\left\{n_{i}\right\}_{i \geq 1}$ and $\left\{m_{i}\right\}_{i \geq 1}$ with $0=m_{0}=n_{0} \leq n_{1}<m_{1}<n_{2}<m_{2}<\cdots n_{\ell}<m_{\ell}<\cdots$ such that $f^{n_{i}+j}(x), f^{n_{i}+j}(y) \notin \mathcal{P} \quad\left(0 \leq j \leq m_{i}-n_{i}-1, i \geq 1\right)$, and $f^{m_{i}+j}(x), f^{m_{i}+j}(y) \in \mathcal{P} \quad\left(0 \leq j \leq n_{i+1}-m_{i}-1, i \geq 0\right)$. Then one of the following two cases holds:
(i) $f^{k}(x), f^{k}(y) \in \mathcal{P}$, i.e. $m_{i-1} \leq k \leq n_{i}-1(i \geq 1)$,
(ii) $f^{k}(x), f^{k}(y) \notin \mathcal{P}$, i.e. $n_{i} \leq k \leq m_{i}-1$.

Let γ_{ℓ} denote the curve of the minimum length in $W_{\varepsilon}^{u}\left(\left(f^{R}\right)^{\ell}(x)\right)$ which connects between $\left(f^{R}\right)^{\ell}(x)$ and $\left(f^{R}\right)^{\ell}(y)$ for any $0 \leq \ell \leq s(x, y)-1$. We denote $\ell\left(\gamma_{\ell}\right)$ the length of γ_{ℓ}. We deal with case (i). Case (ii) is estimated similarly as case (i). Since $s\left(f^{n_{i}}(x), f^{n_{i}}(y)\right)=s(x, y)-\left\{i+\sum_{j=0}^{i-1}\left(m_{j}-n_{j}\right)\right\}$ holds, by Condition 1 and Lemma 2.1 we have

$$
\begin{aligned}
& d\left(f^{k}(x), f^{k}(y)\right) \\
& \quad \leq \sup \left\{\left\|\left.D_{z} f^{-s\left(f^{n_{i}}(x), f^{n_{i}}(y)\right)+1}\right|_{E^{u}(z)}\right\| \mid z \in \gamma_{s\left(f^{n_{i}}(x), f^{n_{i}}(y)\right)-1}\right\} \\
& \quad \cdot \ell\left(\eta_{s\left(f^{n_{i}}(x), f^{n_{i}}(y)\right)-1}\right) \\
& \quad \leq \lambda_{u}^{s\left(f^{n_{i}}(x), f^{n_{i}}(y)\right)-1}=\frac{1}{\lambda_{u}} \lambda_{u}^{s(x, y)-\left\{i+\sum_{j=0}^{i-1}\left(m_{j}-n_{j}\right)\right\}} .
\end{aligned}
$$

Since $k \geq i+\sum_{j=0}^{i-1}\left(m_{j}-n_{j}\right)$, the last term above is bounded above by $\leq \frac{1}{\lambda_{u}} \lambda_{u}^{s(x, y)-k}$.

Proof of Lemma 2.4. Let $x, y \in \gamma \in \Gamma^{u}$ be such that $s(x, y)<\infty$. Since $d\left(f^{i}(x), f^{i}(y)\right)<\delta_{3}$ for any $0 \leq i \leq s(x, y)-1$, Lemmas 4.2(1) for case $\sigma=u$ and 4.3 conclude the proof.

Proof of Lemma 2.5. Since the diameter of the Markov parition is less than δ^{\prime}, for any $x, y \in \gamma^{s} \in \Gamma^{s}, d(x, y)<\delta_{3}$. Then Lemma 4.2(1) for case $\sigma=s$ and (2.1) conclude the proof.

Proof of Lemma 2.6. For any $\gamma, \gamma^{\prime} \in \Gamma^{u}$ let $\Theta=\Theta_{\gamma, \gamma^{\prime}}: \gamma \cap \Lambda \rightarrow \gamma^{\prime} \cap \Lambda$ be the holonomy map. To show the lemma, it suffices to prove that there exists $K_{6}>0$ such that for any $x \in \gamma$ and any $r>0$,

$$
\begin{equation*}
\left|\frac{m_{\gamma^{\prime}}(\Theta(B(x, r)))}{m_{\gamma}(B(x, r))}-1\right| \leq K_{6} d\left(\gamma, \gamma^{\prime}\right)^{\zeta} \tag{4.5}
\end{equation*}
$$

for m_{γ}-a.e. $x \in \gamma$. Here $d\left(\gamma, \gamma^{\prime}\right)=\sup \{d(x, \Theta(x)) \mid x \in \gamma\}$. If (4.5) is proved, then the same arguments as in [4] (p.110) allows us to have the desired result. Since $x \mapsto W_{\varepsilon}^{u}(x)$ is C^{1}-continuous by Condition 1, we can find partitions $\left\{\gamma_{i}\right\}_{i \geq 1}$ of $\gamma \cap B(y, r)\left(\bmod m_{\gamma}\right)$ and $\left\{\gamma_{i}^{\prime}\right\}_{i \geq 1}$ of $\gamma^{\prime} \cap \Theta(B(y, r))$ $\left(\bmod m_{\gamma^{\prime}}\right)$ with the following properties:
(a) γ_{i} and γ_{i}^{\prime} are intervals such that $\gamma_{i}^{\prime}=\Theta\left(\gamma_{i}\right)$,
(b) for any $i \geq 1$ there exists $n_{i} \geq 1$ such that $\left(f^{R}\right)^{n_{i}}\left(\gamma_{i}\right)$ and $\left(f^{R}\right)^{n_{i}}\left(\gamma_{i}^{\prime}\right)$ are intervals such that $\left(f^{R}\right)^{n_{i}}\left(\gamma_{i}^{\prime}\right)$ is the Θ_{i} image of $\left(f^{R}\right)^{n_{i}}\left(\gamma_{i}\right)$. Here $\overline{\gamma_{i}},{\overline{\gamma_{i}}}^{\prime} \in \Gamma^{u}$ satisfy $\left(f^{R}\right)^{n_{i}}\left(\gamma_{i}\right) \subset \overline{\gamma_{i}} \in \Gamma^{u},\left(f^{R}\right)^{n_{i}}\left(\gamma_{i}^{\prime}\right) \subset{\overline{\gamma_{i}}}^{\prime}$, and Θ_{i} : $\overline{\gamma_{i}} \rightarrow{\overline{\gamma_{i}}}^{\prime}$ is a holonomy map sliding along stable disks,
(c) for any $x, y \in \gamma_{i}, \beta^{s\left(\left(f^{R}\right)^{n_{i}}(x),\left(f^{R}\right)^{n_{i}}(y)\right)}<d\left(\gamma, \gamma^{\prime}\right)$, and the same holds for $x, y \in \gamma_{i}^{\prime}$, and
(d) there exists $K_{7}>0$ such that $\left|\frac{m_{\overline{\gamma_{i}}}\left(\left(f^{R}\right)^{n_{i}}\left(\gamma_{i}\right)\right)}{m_{\overline{\gamma_{i}}}\left(\left(f^{R}\right)^{n_{i}}\left(\gamma_{i}^{\prime}\right)\right)}-1\right| \leq K_{7} d\left(\gamma, \gamma^{\prime}\right)$.

Then by (c) and (K-1) for any $x, y \in \gamma_{i}$,

$$
\begin{equation*}
\sum_{i=0}^{n_{i}-1} \log \left|\frac{\operatorname{det}\left(D_{\left(f^{R}\right)^{i}(x)}\left(f^{R}\right)^{u}\right.}{\operatorname{det}\left(D_{\left(f^{R}\right)^{i}(y)}\left(f^{R}\right)^{u}\right.}\right| \leq \frac{C_{1}}{1-\beta_{1}} d\left(\gamma, \gamma^{\prime}\right) \tag{4.6}
\end{equation*}
$$

Then by the same estimation as above, (4.6) holds with γ_{i}^{\prime} instead of γ_{i}. By Lemma 4.2(1) for case $\sigma=s$ and (2.1) we have that for any $z \in \gamma$,

$$
\begin{equation*}
\sum_{i=0}^{n_{i}-1} \log \left|\frac{\operatorname{det}\left(D_{\left(f^{R}\right)^{i}(z)}\left(f^{R}\right)^{u}\right.}{\operatorname{det}\left(D_{\left(f^{R}\right)^{i}(\Theta(z)}\left(f^{R}\right)^{u}\right.}\right| \leq \frac{C_{11} L^{\zeta}}{1-\lambda_{s}^{\zeta}} d\left(\gamma, \gamma^{\prime}\right)^{\zeta} \tag{4.7}
\end{equation*}
$$

Combining (d), (4.6) and (4.7) we have (4.5).

5. Appendix B: Verifying (K-1) and (K-2) under Conditions 1-3

In this section we show that Conditions 1-4 imply (K-1) and (K-2) of Key Lemma. Throughout this section we assume that f satisfies Conditions $1-4$. We say that I is an interval belonged to $W_{\varepsilon}^{u}(x)$ if there exists an interval $J \subset D_{\varepsilon}^{u}$ such that $\phi^{u}(x)(J)=I$. For any interval $I \subset W_{\varepsilon}^{u}(x)$, let $\ell(I)$ denote the length of I, and for any $x, q \in M$ with $d(x, q)<\delta$, we put $[I, q]=\{[y, q] \mid y \in I\}$.
Lemma 5.1 There exists $C_{13}>0$ such that

$$
C_{13}^{-1} \ell(J) \leq \ell([J, q]) \leq C_{13} \ell(J)
$$

for any interval $J \subset W_{\varepsilon}^{u}(y)$ and any $y, q \in M$ with $d(y, q)<\delta$.
Proof. By Conditions 1, 4 and Lemma 4.2 the same argument from [12] (Proposition 2.5) allows us to have the desired result.

By Conditions 2, 3 and Lemma 5.1 we easily have the following Lemma 5.2, which implies (K-2).

Lemma 5.2 There exists $C_{14}>0$ such that for any $\gamma \in \Gamma^{u}$,

$$
m_{\gamma}(\{R>n\}) \leq C_{14} n^{-\frac{1}{\alpha}} \quad(n \geq 1)
$$

The next Lemma 5.3 implies (K-1).
Lemma 5.3 There exist $C_{15}>0$ such that

$$
\left|\frac{\mid \operatorname{det}\left(D_{x}\left(f^{i}\right)^{u} \mid\right.}{\mid \operatorname{det}\left(D_{y}\left(f^{i}\right)^{u} \mid\right.}-1\right| \leq C_{15} d^{u}\left(f^{i}(x), f^{i}(y)\right)^{\alpha}
$$

for any $i \geq 1,1 \leq j \leq r, x \in \Lambda_{i}^{j}$ and $y \in \Lambda_{i}^{j} \cap \gamma^{u}(x)$.
Proof. To show the lemma, it suffices to prove that there exists $K_{8}=$ $K_{8}(\alpha)>0$ such that

$$
\begin{equation*}
\frac{1}{K_{8}} \leq \frac{\mid \operatorname{det}\left(D_{x}\left(f^{\ell}\right)^{u} \mid\right.}{\mid \operatorname{det}\left(D_{x^{\prime}}\left(f^{\ell}\right)^{u} \mid\right.} \leq K_{8} \quad(1 \leq \ell \leq i) \tag{5.1}
\end{equation*}
$$

for any $i \geq 1,1 \leq q \leq r, x \in \Lambda_{i}^{q}$ and $x^{\prime} \in \Lambda_{i}^{q} \cap \gamma^{u}(x)$.
Let $x \in \Lambda_{i}^{q}$ and $x^{\prime} \in \Lambda_{i}^{q} \cap \gamma^{u}(x)$. Let $I_{x, i}$ be the connected component of $\gamma^{u}(x) \cap \Lambda_{i}^{q}$ which contains $x \in \Lambda_{i}^{q}$. Fix $p \in S$. Let Θ_{p} be a holonomy map to $f\left(\gamma^{u}(p)\right)$ by sliding along stable disks. We denote $I_{i}=\Theta_{p} \circ f^{i}\left(I_{x}\right)$, and $I=f\left(\gamma^{u}(p)\right) \backslash \gamma^{u}(p)$. Then we have that $I_{i} \subset I$ for any $i \geq 1$. By Lemma 5.1 we have that $\ell\left(f^{j}\left(I_{x, i}\right)\right) \leq C_{13} \ell\left(f^{j-i}\left(I_{i}\right)\right)$ for $0 \leq j \leq i$. Then we have that

$$
\begin{equation*}
d^{u}\left(f^{j}(x), f^{j}\left(x^{\prime}\right)\right) \leq C_{13} \ell\left(f^{j-i}\left(I_{i}\right)\right) \quad(0 \leq j \leq i) \tag{5.2}
\end{equation*}
$$

Using Conditions 2 and 3 we have that $\ell\left(f^{-k}\left(I_{i}\right)\right) \leq K_{9} k^{-\frac{1}{\alpha}-1}$ for some $K_{9}>0$ ([26], see also [10] Lemma 4.6), from which $\sum_{k \geq 1} \ell\left(f^{-k}\left(I_{i}\right)\right)^{\alpha}<\infty$. Noting that $d\left(f^{j}(x), f^{j}(y)\right)<\delta_{3}$ for any $0 \leq j \leq i-1$, and combining the arguments as above with Lemma 4.2(2), we estimate that

$$
\begin{align*}
\sum_{j=0}^{\ell} \log \frac{\left|\operatorname{det}\left(D_{f^{j}(x)} f^{u}\right)\right|}{\left|\operatorname{det}\left(D_{f^{j}\left(x^{\prime}\right)} f^{u}\right)\right|} & \leq C_{11} \sum_{j=0}^{i-1} d\left(f^{j}(x), f^{j}\left(x^{\prime}\right)\right)^{\alpha} \\
& \leq C_{11} C_{13}^{\alpha} K_{9}^{\alpha} \sum_{k \geq 1} k^{-1-\alpha} \tag{5.3}
\end{align*}
$$

which proves (5.1) for $K_{10}=\exp \left\{C_{11} C_{13}^{\alpha} K_{9}^{\alpha} \sum_{k \geq 1} k^{-1-\alpha}\right\}$.
By (5.1), (5.2) and Lemma 5.1 we have that

$$
\frac{d^{u}\left(f^{j}(x), f^{j}(y)\right)}{\ell\left(f^{j-i}\left(I_{i}^{q}\right)\right)} \leq K_{8} C_{13}^{2} \frac{d^{u}\left(f^{i}(x), f^{i}(y)\right)}{\ell\left(I_{i}^{q}\right)} \quad(0 \leq j \leq i-1)
$$

Substituting this into (5.3), we conclude the proof.
Acknowledgements We wish to express our deep appreciation to the referee for his/her critical comments and valuable suggestions.

References

[1] Aaronson J., Denker M. and Urbanski M., Ergodic Theory for Markov fibred systems and parabolic rational maps, Trans. A.M.S. 337 (1993), 495-548.
[2] Aoki N., On homeomorphisms with pseudo-orbit tracing property, Tokyo. J. Math. 6 (1983), 329-334.
[3] Aoki N. and Hiraide K., Topological Theory of Dynamical Systems, Recent Advances 52, Elsevier North-Holand, 1994.
[4] Barreira L. and Pesin Y., Lyapunov Exponents and Smooth Ergodic Theory, A.M.S. 2002.
[5] Benedicks M. and Young L.-S., Markov extensions and decay of correlations for certain Hénon maps, Astérisque, 261 (2000), 13-56.
[6] Bowen R., Equilibrium States and The Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer-Verlag, (1975).
[7] Castro A.A., Fast mixing for attractors with mostly contracting central direction, Ergod. Th. and Dynam. Sys. 24 (2004), 17-44.
[8] Hatomoto J., Diffeomorphisms admitting SRB measures and their regularity, Kodai. Math. J. 29 (2006), 211-226.
[9] Hatomoto J., Ergodic measures of SRB attractors, Tokyo J. Math. 30 (2007), 257-282.
[10] Hatomoto J., Mixing properties for invertible maps with weak hyperbolic product structure, Far East J. Math. Sci. 29 (2008), 257-310.
[11] Hirsch M., Pugh C. and Shub M., Invariant Manifolds, Lecture Notes in Math. 583 (1977).
[12] Hu H. and Young L.-S., Nonexistence of SBR measures for some diffeomorphism that are 'Almost Anosov', Ergod. Th. and Dynam. Sys. 15 (1995), 67-76.
[13] Ito S. and Yuri M., Number theoretical transformations and their ergodic properties, Tokyo. J. Math. 10 (1987), 1-32.
[14] Katok A. and Strelcyn J.-M., Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Springer Lecture Notes in Math, 1222 (1986).
[15] Ledrappier F. and Strelcyn J., A proof of the estimation from below in Pesin's entropy formula, Ergod. Th. and Dynam. Sys. 2 (1982), 203-219.
[16] Thaler M., Estimates of the invariant densities of endomorphisms with indiferent fixed points, Israel. J. Math. 37 (1980), 303-314.
[17] Maume Deschamps V., Projective metrics and mixing properties on towers, Trans. A.M.S. 353 (2001), 3371-3389.
[18] Ombach J., Equivalent conditions for hyperbolic coordinates, Topology Appl. 23 (1986), 87-90.
[19] Pesin Y.B., Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys 32 (1977), 55-114.
[20] Pollicott M. and Yuri M., Statistical properties of maps with indifferent periodic points, Commun. Math. Phys. 217 (2001), 503-520.
[21] Rohlin V.A., On the fundamental ideas of measure theory, Mat. Sbornik, 251949.
[22] Ruelle D., A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976), 619-654.
[23] Shub M., Global Stability of Dynamical Systems, Springer-Verlag, 1987.
[24] Schweiger F., Ergodic theory of fibred systems and metric number theory, (Oxford: Oxford University Press).
[25] Sinai Ya.G., Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), 21-64.
[26] Young L.-S., Recurrence times and rates of mixing, Israel. J. Math. 110 (1999), 153-188.
[27] Young L.-S., Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. 147 (1998), 585-650.
[28] Yuri M., On the speed of convergence to equilibrium states for multidimensional maps with indifferent periodic points, Nonlinearity. 15 (2002), 429-445.
[29] Yuri M., Statistical properties for nonhyperbolic maps with finite range structure, Trans. A.M.S. 352 (2000), 2369-2388.

Department of Mathematics
Tokyo Institute of technology
Ohokayama, Meguro, Tokyo, 152-8551 Japan
E-mail: hatomoto.j.aa@m.titech.ac.jp

