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ABSTRACT. In this article, we introduce the space of formal power series of class IM
of Roumieu (resp., Beurling) type, which is the generalization of the space of entire
functions of normal (resp., minimal) type with respect to a proximate order. And we
characterize continuous endomorphisms of these spaces.

1. Introduction

In [3] and [4], R. Ishimura proved that any continuous endomorphism of
the sheaf or stalks of holomorphic functions has been characterized as a par-
tial differential operator with holomorphic coefficients of infinite order. In [5],
R. Ishimura tried to solve the characterization problem of continuous endo-
morphism for the case of space of entire functions of normal type with respect
to a proximate order.

Recently, in [1], Aoki, Ishimura, Okada, Struppa, and Uchida charac-
terized continuous endomorphism of the spaces of entire functions of normal
type and minimal type with respect to a given order. Furthermore, in [2], they
generalized these conclusions to the case of proximate order.

In the present paper, we introduce the spaces of formal power series of
class IM of Roumieu type and of Beurling type. The idea of IM is from [8],
so are the name of Roumieu type and of Beurling type. It turns out that these
two spaces are more general than all the spaces referred above. We char-
acterize continuous endomorphisms of these spaces. As an application of our
main results, we extend the theorems of [2].

2. Preliminary
In this article, we employ the same notations as [6]: for a point z:=
(z1,...,2y) € C" and for multi-indexes o = («1,...,0%), f=(B,...,p,) € N"
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with N :={0,1,2,...}, we set
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Let M := (M,),.n» be a sequence of positive real numbers with the following
property:
(M1) There exist C,¢>1 such that for all «, e N”, we have

M,.; M,Mj
—L 3 K Cl\a+ﬁ|_
max{M“Mﬂ R MaJrﬂ

We take a constant 7> 1 that satisfies (M1) and fix it in the sequel.

REMARK 1. Observe that

(i) if peR and (M,), N satisfies (ML), then so does ((M,)"),cnn

(it) if both of (M,),cnn and (M)),.n» satisfy (ML), then so does
(MlMo/c):xe]N”'

DeFNITION 1. Suppose that f(z) ==, .n» f22% r>0, and that the
sequence IM satisfies (M1). We define a subspace of the space of formal
power series:

BM = {f(z) e O[]

M,
1/, = sup |fil 52 < oo |,
oeN" r

which is a Banach space with norm |- ||, Now we consider the space of
formal power series of class IM of Roumieu type

7M.~ lim BM,
e

and the space of formal power series of class IM of Beurling type

F M = lim BM.

r—0

We have that 7 ™} (resp., # ™) is a (DFS)-space (resp., an (FS)-space),
as the following lemma.
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LemmA 1. If 0<s<r, then the inclusion mapping BM — BM s
compact.

PrOOF. Set B:={feBM:|f|,<1}. We need to show that the set B
is relatively compact in B™. Suppose f/(z) € B for all je N, where f/(z) :=
Syene fiz% Tt suffices to show that there exists an accumulation point
f(2) =3, enn fu2* of the sequence (f/(z)); in BM.

First, we construct this f(z). For each o € N", we have

sl

J < J <
<P < o

(2.1)

whenever jeN. Thus, there exists a subsequence (ko(j)); of N such that
fOkO( — fo as j— oo. For the same reason, there exists a subsequence
(k1(j )) of the sequence (ko(/)); such that for each |uf=1, we have
fu ki) _, f. as j— oo. Repeating this process, we obtain f, for each

aeN. Set f(z):=>,.nn Suz”

Now we show that for any ¢ > 0, there exists a subsequence k(j) of
N such that || /%)(z) — f(z)|, <& whenever jeN. Since r > s, there exists

N > 0 such that
S\ e
— < —
() <

whenever |o| > N. In view of (2.1), we have |f;| <s*/M, for all xeN,
which implies that ||f(z)||, < 1. Thus, for all j €N, we have that

XXH—ﬂﬂ“——pr’fuh

Jo| >N P |/ >N

Jod Jod
) M, (s
< sup [£15 0+WWWO
lo|>N r |o|>N N r

<7l +Hf( )II (2.2)

l\)lm

On the other hand, by the construction of the sequence (ky(/));, there exists
J € N such that

1
k(D) £ < ¢ min - 23
g Sl < 5 min 5 (2.3)

whenever j > J and || < N. By (2.2) and (2.3), we have
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||ka(j)(Z) _ f(Z)”r _ Z (feckN(j) —fy,)Z“

Jo| =0

<|| 20 OV = L)%+ || D0 (Y = f)2?

o <N P |o|>N

r

< max (< min i M“—&—g
< = e =t
lej<N\2 |l<N Mpg

PE)
whenever j > J. Therefore, we see that f(z) is an accumulation point of the
sequence (f/ (z));, in BM  as desired.

By the definitions of & M} and 7™ we have the following propositions
immediately.

PROPOSITION 1. Suppose that f(z) =), .\ faz* is a formal power
series.
(1) f(2) belongs to 7™ if and only if we have that

lim sup(| f;| M) /" < 0.

Jot| — 00
(2) f(2) belongs to F™ if and only if we have that

limsup(| ;| M,) "/ = 0.

|ot] — o0

By the binomial theorem, for all o, € N", we have

(OC—‘rﬂ)'i OC-‘rﬂ CZ"‘ﬁ _ Alatpl
bs = ( , )ggﬂx A )2+’

which means that (a!), - satisfies (M1). By Remark 1 (i), in the following
cases, the sequence (M,), -~ satisfies (M1):

(1) M, := (a))'”, where p > 0. 1In this case, the spaces # ™} and 7 ™)
coincide with the spaces studied in [1] (in the sense of topological
space), respectively.

(2) M, := Ay, where A}, is given by (6.1). In this case, which is the
generalization of (1), the spaces # (™ and # ™) coincide with the
spaces studied in [2] (in the sense of topological space), respectively.
In the end of this paper, we will take a close look at this case as
an application of our main results.

(3) M, := (a!)’, where p < 0. This case was first considered by R.
Ishimura and studied by S. Tatemichi.
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3. Formal theory

The set of all formal differential operators of the form
Pi=P(z,0:) == Y a,(2)0? (3.1)
oeN”"

is denoted by &, where a,(z) € C[[z]]. For any f(z) € C[[z]] and ve N", we
set 0._of(z) := 0.f(0). The set of all formal differential operators of the form
(in the sequel, we assume Q has the following form)

Q:=0(z,0:m0) == »_ by(2)d
velN"

is denoted by ¢, where b,(z) € C[[z]]. We define the mapping I by

1:9— &,

P— Q:= Z P(Zv—:)a;_o.

velN"

In what follows, we always assume a,(z) and b,(z) have the form:

a,(z) == Z alzl and by(z) := Z blizt.
fenn HEN"

LemMMA 2. Let Pe2 and Qe ¥. Then the following statements are
equivalent:

(1) 1(P)=0
(2) For all ve N", we have

LY AU
(3) For all o€ N", we have
)
) = 3 )
(4) For all v,ueN", we have
i — af]'__;f“.
P ;
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(5) For all viueN", we have

n ( ); H—7a
a, _ZTb» At
u

PN
ININ

Consequently, the mapping I : 9 — & is bijective.

ProOF. By the definition of the mapping I, we see (1) is equivalent
to (2). Hence, for each ve N", we have

V—u

3 bt = by(z) = Z(vz_ia)!aa(z)

neN”" a<y
alzP
=23 e
a<y /ZelN”
= Z Y
A<v feN" A<vpueN" A<pu

where 1 :=v—o and p:=f+ . Thus, (2) is equivalent to (4). By the same
process, we see (3) is equivalent to (5).
To see (2) implies (3), observe that for each y < «, we have

(_1)|17V‘ o—7 a—v
2 o a—y'z<a—v> ne=o

y<v<o y<v<ao

Thus, for each o € N”, we have

S = S G ot

v<o v<oz y<t
B ( 1)|z—v\
=N "7, (z) L —,(z),
; ’ y;v;a(fx—ﬂ(v—y) ’

as required. By the same process, we see (3) implies (2).

In (2), we see that b,(z) € C[[z]] whenever a,(z) € C[[z]]. Thus, the
mapping [ : 2 — & is well-defined. For the similar reason, (3) yields that
the mapping 7 is surjective. Finally, (5) implies that the mapping / is injective.

For any Pe 2 and f(z):=),.n» fr2' € C[[z]], we have formally
Pf =" a, ()0 f(2)

oeN"

¥ ( 3 agzﬂ> (Z ht ) =Y el

oeN" \ feN" v=o oeN"
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where

vl
cy(z) == E E a’ o= OC)!fV zH,
pHeN" \ f+v—o=u
v=o

For each o« e N", ¢,(z) is a formal power series. However, for each ye N",
the sum of the coefficients of z# in the series ), n»¢4(2z) is not necessarily
convergent. So we need the following definition to ensure that Pf is not
ambiguous.

DEFINITION 2. Suppose Pe 2 and f(z):=>,.n frz' € Cl[z]]. We say
P is formally well-defined at f provided that for all e N” we have

2.2

veN" A<y
AS

a”f.iv—!
=4 )

fv' < 0.

Let S be a subset of C[[z]]. We say P is formally well-defined on S if P is
formally well-defined at any f € S.

ProposITION 2. If P is formally well-defined at f, then Pf =I(P)f e
C[z].

Proor. Since P is formally well-defined at f, by Lemma 2, there exists
Qe % such that Q =1I(P), and for all ue N", we have that

V!
D B D D lal S < o,
veN" veN" i<y :
A<

which implies that the series > _n»0/V!f, is absolutely convergent. Hence,
setting 4 :=v—a and u:=f+ 4, we obtain that

5 (55 )

aeIN" \ peN" \ f+v—a=pu

,u,/:V! . P
Dl berE it

neN"\ veN" | A<y
A<p

=Y (Z biy! f;,>zﬂ
nelN" \veN"

=) b= b(2)2f(0) = I(P)f.

velN”" velN"
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It follows that I(P)f eC[z]] from the convergence of the series

S bl

veN"

4. Continuous endomorphisms of 7 (M}

DEFINITION 3. Let M™ := (M), _n», Where M :=al/M,. A differential
operator P € Z is of class {IM*} (resp., of class (IM*)) provided that for any
¢ > 0, there exist C,r > 0 (resp., for any r > 0, there exist C,& > 0) such that

for all x e N". The set of all differential operators of class {IM*} (resp., of
class (IM*)) is denoted by 2™} (resp., 2™")). For convenience, we also

set

for any ¢ > 0, there exist C,r > 0 such that

b
&
c
i f

for any ¢ > 0, there exist C,r > 0 such that

M = {Q ey

16y, <

o= fges

Iv]
16y (2)|l, < C]:J* for all ve]N”}.

v

LemMa 3. There exists C >0 such that for all feN", r>0 and
f e Cl[z]], we have

/@1, < CUFG, L.

Proor. By (M1), there exists C > 0 such that for all e N", r >0 and
f € C][[z]], we have that

Z f ZaHr/f

aeN"

M, My 5 (1\*7 My
< . — < .
< s il 0 50 () <AV

ot+[)’

= SUP \foJW

1£ ()27,

as desired.
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By the following proposition, we see that the mapping I : 2™’} — @ {M’}
is bijective.

ProposiTioN 3. P e 2™} if and only if I(P)e #M},

Proor. (Necessity). For any ¢ > 0, we choose some 0 < d < ¢/t. Since
Pe 2™} we have that there exist C; >0 and 6+ 1/r < ¢/t such that
M,
lan(2)l, < Co™ 2
ol
for all xe N". By Lemma 2 (2) and Lemma 3, we have that there exist
C) < C, < C3 < C such that

16v(2 Hnﬁ\ Z ,M llax(2)2" I,

,{<l

<Y e v_a,M a1l - “, i

oc<v

Z C3y! Ma(sm M,_,
(v—o)!M, o plv=al

|or 1 vl
¥ v 0 s L ¥
< Ct Z ( ) prar Ct <5+ r) < Ce

a<y

for all ve N”, which means I(P)e M},
(Sufficiency). If I(P) e ™’} then Lemma 2 (3) holds. By the same
process as above, we have Pe 2™},

Let Pe 2™}, To characterize continuous endomorphisms of 7 (M} we
need to show that the definition of P/ is unambiguous for all f e 7 (M}

LEMMA 4. Every element of 2™} is formally well-defined on 7™},

PrOOF. Suppose f(z) =), .\ foz' €F M} Then we have that there
exist C1,0 > 1 such that

Pl
M,

IH < G

for all ve N”. If Pe 2™} then we have that for any &> 0, there exist
Cy,r > 1 such that
glx\ 18|

B
|a;| < Gy M
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for all o, f € N". To see
such that 0 < 2edr < 1.
all ue N", we have

Xiaoran JIN

P is formally well-defined at f, we choose some ¢ > 0
By Lemma 2 (4), there exist C > C3 > 0 such that for

¥
gl lu—if V9"

33 |at AL PeYe
2 142
veN" A<y V ;' \g”; vi/h /1' M
A<u A<u
< Ci1C Z V‘Z v AMA M,ll
M, e ot = A M, MiMﬂ,
A<
< S () sy ()
M/‘ & veN" A<y A
I<p
Cy (1t l c [r\
<2 (= 2e00)" < —
M, (8) ‘§n( dt) M, \¢ <
as desired.
TuroreM 1 (Main Result 1). If Pe 2™t or I(P)e ™'}, then

P: 7M™ 7} js g continuous endomorphism.
Conversely, if F: 7M™ — M s 4 continuous linear operator, then we

have
(1) there exists a unique P e 9™} such that Ff = Pf for all f e 77 M},
(2) there exists a unique Q € L™} such that Ff = Qf for all f e 7 M,

Proor. In view of Proposition 3, we may assume both of Pe 2{M'}
and I(P) e #™'} hold. For any d >0, we choose some 0 < &< 1/5. By
Lemma 4 and Proposition 2, we have that there exist # >0 and C > C; >0
such that

> lIbu(=)a2f (0],

velN"

< Y Ib@lIAl

veN"

< Z Cls‘l

velN"

1BA 1l = (Pl <

sh
M,

V@3 < ClFGEs
for all f ez M

To see the converse part,
Proposition 2, it suffices to show (2).

in view of Proposition 3, Lemma 4, and
Since F(z") € C[[z]] for all veN",
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we have
Vv
0:=Y F(Zv—|) 0 e .
veN" :
Hence, for any f e % {]M}, we have
, 2"\ Ay
Ff =3 SFE) =) F(,) 0:1(0) =0
veN" veN" v:

It is obvious that Q € ¥ is unique.
Finally, we show Qe 2™’} For any ¢ >0, we choose some & > 1/e.
By the continuity of F, we have that there exist r > /& and C > 0 such that

Fz" <C o C M‘,< el
o V\WHZHh—ﬁ'W\ Mv*

for all ve N”, which implies Q e M},

5. Continuous endomorphisms of 7 ™)

By the following proposition, we see that the mapping I : ™) — M)
is bijective.
ProposiTION 4. P e ™) if and only if I1(P)e &™),

ProOF. (Necessity). Since Pe 2™ we have that for any ¢ > 0, there
exist C1,0 > 0 such that

M,
Jof 27
lax(2) s < C0™ =

for all « € N”. Thus, by Lemma 2 (2) and Lemma 3, we have that there exist
C) < Cy < C3 < C such that

1@y < X iz Il

y<y
C2V vaoc
< || oo — o
2 oy, 1Ol i
Cyv! A\
<S5 Mgy (2
;(v—cx)!M ol <8>

<aly ( > al( )M — i (5+£>v

for all ve N”, which means I(P)e M),
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(Sufficiency). If I(P)e #™") then Lemma 2 (3) holds. By the same
process as above, we have Pe oM.

Let Pe ™). To characterize continuous endomorphisms of # ™) we
need to show that the definition of Pf is unambiguous for all f e .7 ™),

LEMMA 5. Every element of ™) is formally well-defined on ™.

Proor. If Pe 2™ then we have that for any 0 < ¢ < 1, there exist
Cy,r > 0 such that

0] < Cy Ayl I8

ol M,

for all a,feN". If f(z):=> nn Fr2" e 7M™ then we have that for any
0 > 0, there exists C; > 0 such that

sh
1
M,

A< C

for all ve N". To see P is formally well-defined at f, we choose some J > 0
such that 0 <o#(1 +r) < 1. By Lemma 2 (4), there exist C > C; > 0 such that
for all e N", we have

; v 3 s Wi 6|V‘
IPTESTIEETS s R
velN" A<y velN" A<y V— 'M z MV

/<ﬂ /L<‘u

< Cl C2 Z 5|V‘ Z ( ) |V7).‘ MLV—/'LM}L . M/l

M, veN” A<y M, MM,
A<u

C3[‘ﬂ‘ ) v

<SSy ()
M'“ veN" i<y

A

CytHl , Crlul

< @1+ < —— < o,
M/‘ VEZN” M/‘

as desired.

TueorREM 2 (Main Result 2). If Pe2™) or I(P)e ™) then
P:7M . 7M) js a continuous endomorphism.

Conversely, if F:FZM — 7M™ s g continuous linear operator, then we
have
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(1) there exists a unique P e ™) such that Ff = Pf for all fe FM™),
(2) there exists a unique Q € LM such that Ff = Of for all f e F| ]M

PROOF In view of Proposition 4, we may assume both of Pe 2™") and
I(P) e ™) hold. By the definition of #™") we have that for any & > 0,
there exist Cy,r > 0 such that

| i My
!

byl < Ci

for all ve N”. We choose some 0 <0 < 1/r. By Lemma 4 and Proposition
2, we have that there exist 2 >0 and C > C; such that

IBf1l, = 1)1, < Y Ibu(=)2l £ (O],

veN”"
< D IIbEINA]
veN"
M o"
<> Gt =F b f (= )”oM < CIfEIs
veN”"

for all feZzM™

To see the converse part, in view of Proposition 4, Lemma 4, and
Proposition 2, it suffices to show (2). Considering the proof of the converse
part of Theorem 1, we only need to prove that the operator Q defined in the
proof of Theorem 1 is in #™"). By the continuity of F, we have that for any
¢ >0, there exist C,h >0 and r > 1/h such that

Fz" <C ’ _C MV< i
o é\ﬁ”znh_ﬁ'm\ M

for all ve N”, which implies Q e M

6. Applications

We conclude this paper by applying the main results to the space of entire
functions of normal type or minimal type with respect to a proximate order.
In this section, we assume p > 0. Let p(r) be a proximate order for the order
p (see Definition 1.15, [9]). We recall that lim,_,, p(r) =p. For any o >0,
we define the Banach space

By, = {fe o@)| 171, = sup [/ ()fe " < +oo}
zeC"
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with norm || - ||, where w, := a]z|” (Z). Now we consider the space of entire

functions of normal type with respect to a proximate order p(r):

éal’(r) = lil’l Bwaa

g— 0

which is a (DFS)-space (see [6]), and the space of entire functions of minimal
type with respect to a proximate order p(r):

E}" :=1lim B,

a—0

which is an (FS)-space. Let ¢(g) be the inverse function of ¢ = r”") for all
sufficiently large ¢ € R. It’s well-known that ") is strictly increasing for all
sufficiently large r > 0. We may assume the function ¢(q) is strictly increasing
on ge[0,00). Let A:=(Ay),cn and A" := (4]), N, Where

EDR
(ep)lﬁ\//'

and A, :=o! /Ay. We remark that (see Proposition 1 [6] and Proposition 3.3
[7]):

PROPOSITION 5. Suppose that f(z) =), . f2" is an entire function.
Then,
(1) f(2) belongs to &) if and only if we have

Apy) = (6.1)

lim sup(| £y 4p,) /™ < oo

|| =0

(2) f(2) belongs to EL" if and only if we have

lim sup(| /|4, Ul — .

Jot| — o0

Therefore, we see F# = &”0) and #® = E/") in the sense of set
because of the following lemma.

LEMMA 6. The sequence A satisfies (M1).

Proor. We remark that (see the proof of Theorem 1.23 [9]) for any
0 <e<1/p, there exists S, > 0 such that

l—e g10 s<£10 (s) < lJrls ilo s
P ds & ds 8¢ P ds &
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whenever s > S,. Set £:=1/p+e¢ For any p,q > S,, integrating each side
from p to p+¢q, we have

1 p+q o(p+q) <1 ) pP+q
——¢)log— = <logm—— < | —-+¢]lo .
<p ) £ g o(p) p £

Hence, for all p,q > S,, we have that

—1_ -1
(p + q>(” P _ ((p(p -+ 61))” - (p + q)(” P
P o(p) p

By the same reason, for all p,q > S,, we have that

)71*8 g -1 &
(p+q)(’ )q< <go(p+q)>’< (p—l—q)(p +e)q
q o(q) q

Therefore, for all p,q > S, we have that

Aprg _ o0 +9)" _ <(P(P + q))” (fﬂ(l? + q))"
4,4, o(p)o(q)? o(p) o(q)

(p~'+e)p (p~'+e)q
< (P_W> (P_w) < el M)
p q

and

A4y 9(0)0(0)" _ ( 9(p) )’( 9(q) )"
Aprg  op+q)’ \olp+4q)) \o(p+4q)

1 1

(p~'=o)p (p~'=2)q
S N ) B
p+q p+q

And the assertion follows immediately.

N

We recall an important lemma (see Lemma 6.3 [7]):

LEMMA 7. Assume that, for each qeZ., r:=r(q) is the solution of
equation

d p(r
g e "y =0. (6.2)

lim (7 —art\VE N1
i - =(-)] .
q—0 A, o

Then we have that
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The following lemma shows that the topology of &”) (resp., Egm) coin-
cides with the topology of Z{#} (resp., F (A)), that is 7 (&} = gr0) (resp.,
FWB) = Eé’m) in the sense of topological spaces.

LemMA 8. Suppose p >0 and M, = Ay, for all o€ N".  Then
(1) For any 8 >0, there exist o,C >0 such that for all f e BM, we
have

[/ 1s
?S < ||me7 < CHf||(5

(2) For any o >0, there exist 6,C >0 such that for all f € B,,, we
have

Wl _
2= <l < CIf

PrROOF. Let S:= (s,...,s)e R} and r:=sy/n. By the Cauchy inequal-
ity, for any s > 0 and any ¢ > 0, we have

[or]
£l =01 < o sw @< (5) s 1162)
’ Z lz| <sv/n

(Z) |C —grPn) > e arP(r)

||f||w ‘M‘A‘alegrﬂ(;-)
< o
< (Vi) =

Il
RS
‘|§
~~_

=

~ ~
N«
s
=

For each |0|eZ,, we choose some r >0 satisfying (6.2). Continuing the
estimate, by Lemma 7, we have that for any &> 0, there exists C > 0 such
that

1 < e (g 4 e
lod

for all x e N”. To see the first inequality in (1) (resp., the second inequality in
(2)), for any 0 > 0 (resp., ¢ > 0), we choose some ¢ > 0 and o > 0 (resp., d > 0)
such that \/ng'/” 4 ¢ < d. Hence, there exists C > 0 such that

1/ 1ls = sup |/
aeN"

A‘ —|o
B sup [l +) 7 < €,
0 aeN"

for all /e BM (resp., f € B,,).
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To see the second inequality in (1) (resp., the first inequality in (2)), we
remark that (see the proof of Lemma 6.4 in [7]) if p,o > 0, then

o 1/la| 1/p
z¥,, 1
limsup<|| ”””) < (—) .
=\ Ap o
For any 0 > 0 (resp., ¢ > 0), we choose some ¢ >0 and ¢ > 0 (resp., 6 > 0)
such that 6((1/0)"” + &) <1. Then there exists C >0 such that

aeN" aeN"

1 1/p lod
i, < 3 11, < Y |fx|A|a<(;) +e>
1 1/p lol
<||f||(526“<(5) +e) < cil,

oeN"
for all /e BM (resp., f € B,,), as desired.

Finally, applying the preceding lemma and the main results, we have the
following corollaries immediately.

COROLLARY 1. Let Pe 2 and assume that one of the following conditions
holds:
(i) Pegt
(i) I(P)e 2i*,
(iii) For any &> 0, there exist C,a >0 such that for all o€ N", we

have
gl
Hat%(z)”m7 = C%
(iv) For any € >0, there exist C,a >0 such that for all veN", we
have
o o
P|— <C .
H (V') Wy Am

Then P: &) — &7 is a continuous endomorphism.
Conversely, if F:&"") — &°Y) is a continuous linear operator, then we
have
(1) There exists a unique P € 9 satisfying condition (iii) or (iv) such that
Ff = Pf for all fe&Y.
(2) There exists a unique P e G} such that Ff = Pf for all f e &Y.
(3) There exists a unique Q € L2} such that Ff = Of for all f € &Y.
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COROLLARY 2. Let Pe 2 and assume that one of the following conditions
holds:
(i) Peg®).
(ii) I(P)e ™),
(i) For any & >0, there exist C,0 >0 such that for all o€ N", we
have
ol

||a1(Z)Hw,; < C_*
e

(iv) For any &> 0, there exist C,0 >0 such that for all veN", we

have
H (ZV)
!

Then P: E} ®_, E) ")"is a continuous endomorphism.
Conversely, if F : Ej " Eé'(r) is a continuous linear operator, then we have
(1) There exists a unique P € & satisfying condition (iii) or (iv) such that
Ff = Pf for all feE".
(2) There exists a unique Pe 2™ such that Ff = Pf for all f € Eé)m.
(3) There exists a unique Q € L) such that Ff = Qf for all f € E(’))m‘

ol
<C—r.
4 CA*

vl

W,

In [2], continuous endomorphisms of the space &”) (resp., E")) are

characterized by condition (iii) of Corollary 1 (resp., Corollary 2). Hence,
these two corollaries could be considered as the extension of the theorems
in [2].

References

[1] T. Aoki, R. Ishimura, Y. Okada, D. C. Struppa and S. Uchida, Characterization
of Continuous Endomorphisms in the Space of Entire Functions of a Given Order,
arXiv:1805.00663v1 [math.FA].

[2] T. Aoki, R. Ishimura, Y. Okada, D. C. Struppa and S. Uchida, Characterization of
Endomorphisms of the Space of Entire Functions for a Proximate Order, preprint.

[3] R. Ishimura, Homomorphismes du faisceau des germes de functions holomorphes dans
lui-méme et op’erateurs différentis, Mem. Fac. Sci. Kyushu Univ. 32 (1978), 301-312.

[4] R.Ishimura, Endomorphismes de 'espace des germes de fonctions holomorphes en un point
et op’erateurs différentiels d’ordre infini, Ann. Polo. Math. 49 (1988), 129-133.

[5] R. Ishimura, Endomorphisms of the space of higher-order entire functions and infinite-order
differential operators, Kyushu J. Math. 61 (2007), 83-94.

[6] R. Ishimura and X. Jin, Infinite order differential equations in the space of entire functions
of normal type with respect to a proximate order, North-W. Eur. J. of Math. 5 (2019),
69-87.



The space of formal power series of class M 135

[7] X. Jin, Infinite order differential equations in the space of entire functions of minimal type

with respect to a proximate order, preprint.
[8] H. Komatsu, Ultradistributions I, Structure theorems and a characterization, J. Fac. Sci.

Univ. Tokyo, Sec. IA, 20 (1973), 25-105.
[9] P. Lelong and L. Gruman, Entire functions of several complex variables, Grung. Math.
Wiss., Berlin, Hidelberg, New York, Springer vol. 282, 1986.

Xiaoran Jin
Graduate School of Science
Course of Mathematics and Informatics
Chiba University
Yayoicho, Chiba 263-8522, Japan
E-mail: jinxiaoran@gmail.com



