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Global attractor and Lyapunov function for one-dimensional
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ABSTRACT. We study the global-in-time existence and the asymptotic behavior of
solutions to a one-dimensional chemotaxis system presented by Deneubourg (Insectes
Sociaux 24 (1977)). The system models the self-organized nest construction process of
social insects. In the limit as a time-scale coefficient tends to 0, the Deneubourg model
reduces to a parabolic-parabolic Keller-Segel system with linear degradation. We first
show the global-in-time existence of solutions. We next define the dynamical system
of solutions and construct the global attractor. In addition, under the assumption of a
large resting rate of worker insects, we construct a Lyapunov functional for the unique
homogeneous equilibrium, which indicates that the global attractor consists only of the
equilibrium.

1. Introduction

In the present paper, we study a chemotaxis system of three components:

u_u 0 [ ow .
R (ua>+f(u) in Q2 x (0, 00),
5%:—04—@! in Q x (0,00),

ow  *w . (E)
rafﬁ—erv in Q x (0,00),
ou ow
&()@t)_a_x(xal)_o atx—oc,ﬁ,te(O,oo),
u(x,0) = up(x), v(x,0)=vp(x), w(x,0)=wy(x) in Q.

Here, Q= (o,f) CR, —o0o<a<f < oo, is a one-dimensional bounded
interval. The system (E) was presented by Deneubourg [3] (see also [2, 14])
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for modeling the self-organized nest construction process of social insects,
specifically, termites. The unknown functions u(x,?), v(x,), and w(x,?) are
the densities of, respectively, worker insects, nest building material, and a
chemical substance at position x and time ¢. Workers deposit building ma-
terial in a working area, which is expressed in the second term of the second
equation of (E). It is assumed in the model (E) that a chemical substance that
workers mix with the material is emitted, which is expressed in the third term
of the third equation. The term —y(uw,), of the first equation represents the
advection of workers due to chemotaxis, and the coefficient y is a positive
constant which indicates the intensity of chemotaxis. The function f(u) con-
sists of the migration into the working area and the resting of workers.
Deneubourg [3] defined function f as

S)=1—pu (1)

where u is a positive constant. Here, the migration rate of workers is nor-
malized to 1, and u denotes the resting rate of workers. The first term of
the second equation and the second term of the third equation represent the
weathering of deposited materials and the decay of the chemical substance,
respectively. The coefficients 6 > 0 and 7 > 0 are the time-scale constants of
the reactions in the respective equations.

In the case of 6 =0 and f(u) =0 in (E), the equations reduce to the
equilibrium state v = u, and then the system (E) corresponds to the celebrated
Keller-Segel system [7]. For a two-dimensional case, the Keller-Segel system
admits blow-up solutions under suitably large product yluol[,, of the chemo-
tactic intensity y and the initial total mass of biological individuals [juol|, [5, 6,
12]. In addition, blow-up of solutions can occur even for sufficiently small
product yluol|;, in a higher-dimensional ball domain [21]. On the other hand,
for a one-dimensional Keller-Segel system, Osaki and Yagi [15] proved the
global-in-time existence of solutions and also constructed attractors, without
any restriction of y and [u|,,, in a one-dimensional bounded domain.
Although the Deneubourg chemotaxis system (E) has three components, we
expect the global-in-time existence of solutions without any restrictions on y
and [luol|;, in the one-dimensional case. In fact, we show in the present paper
the following result.

THEOREM 1. For each triplet of nonnegative initial functions (ug, v, wo) €
Ly(Q) x Ly(Q) x H'(Q), the system (E) admits a unique global-in-time solution
(u,v,w) in the function space

0<ue @' (0, 50); H'(Q)") N4([0, 50); L(2)) N 4((0, o0); H'(2)),
0 <ve %' (0, 0); Ly(2)) N ([0, 0); Lr(Q)), (2)
0 < w e € ((0, o0 La(@)) N 600, 0); H' (2)) N (0, 20): H}(2).
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In addition, the solution satisfies the boundedness by the norm of initial functions
such that

[z, + oz, + Ol < b(luoll, +llvollz, + [woll ), =0, (3)
for some increasing continuous function y(-).

For the Keller-Segel system, the conservative quantity |lu(z)||;, = |luoll;, has
an important role. For the proof of Theorem 1, the uniform boundedness
from above and below of [[u(?)[|;, plays a crucial role in the same way as in the
case of the Keller-Segel system (Lemma 1). There is also a modified system
with a saturating effect on v, specifically, a system with the second equation
of the system (E) changed to 6% = —v+ (1 —£)u. With this modification,
vp < K implies automatically the L.-boundedness of v < K even in the three-
dimensional case [23]. On the other hand, the system (E) does not have such
a property, and therefore we should confirm the L,-boundedness of v as a first
step. This point is the essential difference from the system with a saturating
effect.

Secondly, we examine the asymptotic behavior of the global solutions by
defining the dynamical system. We here note that the second equation of (E)
does not have any diffusion term, which generates the compactness of solution
operators. This means that the dynamical system defined by Theorem 1 does
not admit a compact attractor in its present form. Such a system is referred
to as a partly dissipative system [8, 19]. We derive an inherent global attractor
by decomposing the semigroup of solution operators into a compact semigroup
and a perturbation vanishing as ¢ — oo (Theorem 4).

We finally construct a global Lyapunov functional for the constant
equilibrium (1/u¢,1/u,1/u) under a largeness condition for u. For the two-
component chemotaxis system with quadratic degradation [10] (the case of
0=0 and f(u) =u(l —mu) in (E), see also [16, 22, 24]), He and Zheng [4]
constructed a Lyapunov functional for constant equilibrium under the condi-
tion u > y/4 in a two-dimensional bounded domain. On the other hand, for
the first equation of (E) with a y-th degradation f(u) = u”~'(1 — uu), the same
procedure as [4] derives the result that

&t = 1 = toglyanax

2
_ uy UWy 1 a2
=— JQ 2 dx + ng—u dx —u JQ P (u—u™) dx.

This shows that, although quadratic degradation y = 2 introduces an L, absorb-
ing term —u?|ju — u*Hiz, the linear degradation y =1 in (1) only introduces
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an L; absorbing —z?||ul|,, where u*=1/u is the first component of the
equilibrium. To overcome this difficulty, we show the uniform boundedness
of the H'-norm of u after the passage of sufficient time. Indeed, from the
embedding of H'!'(Q) C #(Q), the uniform boundedness of ||u(?)||,: < r indi-
cates that there exists a uniform constant K, such that ||u(?)||, < Cl|lu(?)||y <
K,. We can then construct an L, absorbing term —(u?/K,)|u — u*Hiz, which
shows that the Lyapunov functional is monotone decreasing for the eventual
dynamical system.

The remainder of this paper is organized as follows. We first provide
preliminary results that we utilize in subsequent sections. In Section 3, we
show the local-in-time existence of solutions by using a semigroup method.
In Section 4, we construct several a priori energy estimates by using energy
methods and then give the proof of Theorem 1. In Section 5, we define the
dynamical system generated by the global-in-time solutions and study the
asymptotic behavior of the solutions.

Notation. Let 2 be a bounded interval in IR. For 1 < p < oo, the space
of complex-valued L, functions in Q is denoted by L,(22) with the usual norm
[-ll.,- The complex Sobolev space in £ of order k, k=0,1,2,..., is de-
noted by H¥(Q) with norm || -||,;+. The Sobolev space of fractional order
s >0 is denoted by H*(2) with norm | -||5,. The space of complex-valued
continuous functions on € is denoted by %(Q) with norm | -|,. Let X
be a Banach space and I be an interval of R. %(I;X) and %'(I;X) de-
note the spaces of X-valued continuous functions and of X-valued con-
tinuously differentiable functions, respectively. %(I; X) denotes the space of
X-valued bounded functions. For simplicity, we will use the universal nota-
tion C to denote various constants that are determined for each specific occur-
rence of Q. In a situation where C also depends on some parameter, say 7,
this will be denoted by C,. In addition, by the universal notation y(-), we will
denote a continuous increasing function, which may change depending on the
context.

2. Preliminaries
In this section, we shall list some well-known results in the theories of

function spaces and linear operators [18, 20, 23]. Here, Q = («,f) is a
bounded interval in R.

Interpolation of Sobolev spaces. For 0 < sy <s<s; < oo, H(Q) is the inter-
polation space [H*(Q),H"(Q)], between H*(Q) and H"(Q), where s=
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(1 — 0)sy + 0Os;, with the estimate
Wl < Clwllgra Wl for we H (). (4)

See [23, Theorem 1.35].

Embedding theorem of Sobolev spaces. When s >1, H’(Q) C 4(Q) with

1
|| ! ||(6’ < CS” : ||H"" s > E (5)

As usual, we take the identification of L?(Q) and its dual L?(Q)" and con-
sider that H'(Q) C L*(Q) C H'(2)'. Then, (5) implies that, for any s> 1,
L'(Q) c H*(Q)' with

1
|| : H(H\)’ < Cs” . HLI, s > 5 (6)
See [23, Theorem 1.36].

Gagliardo-Nirenberg inequality. Let 1 < ¢ <r < oo. Then the embedding
H'(Q)NL,(2) C L,(2) holds with the estimate

1—
lel, < Corlleelzpollull,“ for we H'(Q), ()

where a = (1/¢—1/r)/(1/2+1/q).

Norms of a product of two functions. We shall use the following estimates for
the product of functions. In view of (5), it holds that

luv|| gy < Cllul| gy |V]) gy for u,ve H™(Q), m=1,2. (8)
If ue H'(Q) and we H}(Q), then
(Wy) o VD g1y e = — (U, Ux) 2 for ve HY(Q).
Therefore, from (5),

[[@w) My < Cllel 2 lwell o < Cllaall 21w 7

, 3
for ueHl(.Q),weHj\,(.Q),s>§. 9)

Here, H3 () for s> 3/2 denotes a closed subspace of H*(L2) such that

m@) ={uer@ifm=Fw-of >3
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Domains of fractional powers of linear operator. Let 4 = —(d?/dx?) +1,
where d?/dx? is a second-order differential operator in L,(2) with the
Neumann boundary condition, the domain of which is Hy(Q2). Then, the
domains of the fractional powers of 4 are characterized by

(4% - {H29(Q) for 0 <0 <3,

10
HY(Q) for 3<6<1, (10)

with norm equivalence.

3. Local solution

We first review the existence theorem for local solutions to an abstract
equation in a Banach space [23, Chap. 4] (also [17]). Let X be a Banach space
with norm | - ||,. We consider the following Cauchy problem for a semilinear
abstract evolution equation in X:

dU
— HAU=F(U), >0, an
U(0) = Up.

Here, 4 is a sectorial operator of X satisfying that its spectral set is con-
tained in a sectorial domain X = {1 € C; |arg A| < ¢} for some 0 < ¢ < 7/2,
and ||(/1—A)_1||3<X> <M/(|2|+ 1), where 1 ¢ X and M is a constant. The
nonlinear operator F is a mapping from Z(A4") to X, where 0 <# < 1, and
it also satisfies a Lipschitz condition:

IF(U) = F(U)lly < (|47 Ully + | 47Ully) x [II4"(U = O) ||y
+(|47U|ly + 47Tl )147(U = O],
U,Ue2(A"), (12)

where y is an exponent such that 0 <y <# < 1, and ¥(-) is some increasing
continuous function. The initial value Uj is taken in Z(A4”). Then, from [23,
Theorem 4.1] (or [17, Theorem 3.1]), we have the existence theorem of the local
solutions to (11):

ProposITION 1 ([23, Theorem 4.1]). Under the above assumptions, for any
Uy e 2(A7), the equation (11) possesses a unique local solution in the function
space:

{ U €' ((0, Ty, ; X) N %010, TuyJ: 2(47)) N 6((0, Tuy): 2(4)),
17U e %((0, Tu,); 2(A4))



Global attractor for Deneubourg chemotaxis system 257

with the estimate
AU ||y + 147U |y < Cu, 0<t<Ty,.

Here, Ty, and Cy, are positive constants depending only on the norm || A7 Uy y.
In addition, the mapping Uy — U(t) is continuous in 9(A7).

By applying Proposition 1, we can show the existence of the local-in-time
solutions to (E).

THEOREM 2. For each triplet of initial functions (ug,vo,wo) € Lo(Q) X
Ly(Q) x HY(Q), the problem (E) admits a unique local-in-time solution
(u,v,w) in the function space

ue@'((0, T} H'(2)) N%([0, T): La(2)) N %((0, T); H'(2)),
v e €' ((0, T]; Lo(2)) N ([0, T Ly(9)), (13)
we @ (0, T); La(2)) N 6(0, T]; H'(2)) N 6((0, T); H3(€2))

with the estimate

P+ W@z} + L@, + 10Oz, + ()]}
<C, 0<t<T, (14)
where T and C are positive constants depending only on the norm |uo| ., +

llvoll,, + bwoll 1. In  addition, the mapping (uo,vo, wo) — (u(t),v(t), w(t)) is
continuous in Ly(Q) x Ly(Q) x H'(Q).

ProorF. The system (E) can be expressed as a semilinear parabolic
equation

du

—+ AU =F(U t>0
U(0) = Uy = Tug vo wo)

in a product Banach space
X = H'(Q) x Ly(Q) x Ly(Q).

Here, we define the linear operator 4 by

d?
-+l 0 0
A= 0 o} 0 . 9(A) = H'(Q) x L,(Q) x H:(Q).

0 0 (-&+1)
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The nonlinear operator F is defined by

= (uw)  + f () +u
F(U) = 07w

1y

U="Tluv wlez(d") =H'*Q)x Ly(Q) x H/*(Q)

with » =%. Here, f(u) =1—u for ue C. The initial value Uj is taken in

the function space
G(A7) = Ly(Q) x Ly(Q) x H'(Q)

with y = % Under this setting, we need to verify only the Lipschitz condition

(12). Let U= "Tu v w), U="T[a & w]e Z(A"). Then, we have
IF(U) = F(O)llx < 2l uws = @) [l gy + (e D)l = il g1
+0 u - all, + v — 0|,
For the first term of the right-hand side, we have from (6) with s=3/4
[Qowse = @) Nl gy < Cllu = all L, Dl gsse + 1atll 2, |00 = W) [l e)
< C(l[all L, [w = Wl gos + il gl = all )
Hence, we obtain
IE(U) = E(O)lly < 2Cllill 1w — ¥l g+ 9] sl — ] )
(et Dl lly, 467 fu— il + o,
<M 4u+0" + 7"+ ,C(+ il )]

X [lw =g + (Wl s + DNl = all , + llo = oll,)]-

Thus, we have verified (12); we have completed the proof. O

PROPOSITION 2.  Under the assumptions in Theorem 2, if ug > 0, vy > 0, and
wo = 0, then the solution (u,v,w) also satisfies u(t) >0, v(¢) =0, and w(t) =0
for 0<t<T.

Proor. We first note that the solution (u,v,w) is real valued. Indeed,
the complex conjugate (i, 7, w) is also a solution to (E). From the uniqueness
of the solution, we have (u,v,w) = (&,0,w). We shall show the nonnegativity
of the local solutions. Let H(u) be a decreasing %> function defined for u e
(=00, 00) such that H(u) > 0 for u < 0 and H(u) = 0 for u > 0. Moreover, let
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H(u) satisfy the following conditions:
0 < H'(u)u < CH(u), ue(—o,0),
0 < H"(u)u*> < CH(u), ue (—oo,0)
with some constant C (For example, H(u)=4u* for u<0; 0 for u>0).
Then, the function
o(t) = JQH(u(x, 1))dx, 0<t<T,

is a nonnegative %'-function with the derivative

o'(1) = j H (1)t — 2(w), + f ()] dx

= —J H" (u)u? dx+)(J
Q

H"(u)uy - uwy dx + J H'(u) f (u)dx.
Q

Q
Here we note that [, H'(u) f(u)dx < 0. The integral term from the chemotaxis
term can be estimated as

1 2
z JQ uH" (u)uy - wy dx < 3 JQ H"(u)u? dx + % L w?w2H" (u)dx.

From Theorem 2, we have for the second term

2
%J ww2H" (u)dx < C\|wx||?{3/4j w?H" (u)dx < C||WH§17/4J H(u)dx
Q Q Q

< C\|w||},/?||w|\§l/fj H(u)dx < c;-3/4j H(u)dx.
Q Q

This indicates that ¢’(f) < Ct=3/*p(), and consequently ¢(7) < exp(Ct'/4)p(0).

Then, uo(x) >0 gives that ¢(z) =0, that is, u(x,7) >0 for 0 <r<T. The

nonnegativity of v(x,7) and w(x,7) can be also proved by the comparison

principle. ]

4. A priori estimates and global-in-time solutions

ProPOSITION 3. Let (u,v,w) be a local-in-time solution to (E). Then, it
holds that

Q Q
el = | ut s = e (Quall, =21+ 2L om0
Q U H
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In addition,

. Q Q
0< m1n{||u0||Ll,7|} < (@, < max{||u0|Ll,|lu—|} =Ko, 1>0.

Proor. Integrating the first equation of (E) over Q, we have

ij udx:J f(u)dx:|Q|—uJ u dx. (17)
dt 0 Q Q

By solving this in [[u(¢)]|;,, we obtain (16). Also, this provides the lower and
upper estimates for [[u(7)|, - O

ProOPOSITION 4. Let (u,v,w) be a local-in-time solution to (E). Then, it
holds that

(), + @], + (@) g
< (lluoll, + llvoll, +lwolln),  0<e<T, (18)
where Y(-) is some increasing continuous function.

Proor. Multiplying the first equation of (E) by u and integrating over Q,
we have

1d
——J u’ dx+J u? dx—i—uJ u? dx < )—(J WP | weldx + ||ul|, -
Here, we put
4(Kp) = 5 vo = min{1, 1}
0 :75 0 = ) )
Ci4X2K02

where K is the supremum of |[u(z)||,,, and Cj 4 is an embedding constant of the
Gagliardo-Nirenberg inequality (7) with r =4 and ¢ = 1. Then, the integral
from the chemotaxis term can be estimated as

2 2 2
XJQ u|wieldx < xllullz, wellz, < 2CLallullgllull g, w2,

1
2 2
< vollullizs + 72 Iwxdllz,-

Then, we have

1
ij u? dx—i—J u? dx—i—,uJ u? dx < — ||wxx\|i2 + 2|[ul|, - (19)
dt Jo Q Q 4q
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Meanwhile, multiplying the second equation of (E) by v and integrating
over 2, we have

od 2 1 2 1 2 C1 2 4/3 2/3
- — + - < — d
3 IJ v dx 2J vodx < 2J u-ax < || || || ||

Voq
< —lu \IH1+C Ko (20)

Similarly, multiplying the third equation of (E) by (—wyy, + w) and integrating
over 2, we have

1
: ij (w? +whdx + = J (w2 4+ w2 +w?)dx < J v? dx. (21)
2 dt 2 o Q

Multiplying (19) by ¢, (20) by 2, and (21) by 1/2, and adding all of these up,
we obtain

i RO, + 10013, + S

2 2 T 2
o aEolll, + 3101, + 5 vl

X
< 2q(K c 1<3<C 2K oK
(Ko) ., + (g 283)

where

—minvo L1 —minlﬂ L1
o= 22577 TN 2°2°267 7
Solving this, we obtain that
T
q(Ko)[|u(1)]|7, +dllo()]|7, 7 Iw(@)]l7

. , . T ) C Vo
ge”°’[q<Ko>||uo||Lz+5llvo“Lz+z'W0'H‘} n(X2K K°> -

This shows that |[[u(z)||;, is estimated from above by v (|luoll,, + [lvoll,, +
wollz1).  The norms of [[v(7)||,, and [w(z)l|;, can be also estimated from
above by Y (|[uoll,, + [lvoll, + [[woll1) by solving again (20) and (21). O

Proposition 4 indicates the global-in-time existence of solutions to (E):

ProoF oF THEOREM 1. From Theorem 2 and Proposition 2, for each
triplet of nonnegative initial functions (uo,vo,wp), there exists a unique non-
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negative local solution (u,v,w) on an interval [0, 7], where the existence time
T depends only on the norm of initial function |luol|,, + [lvoll,, + [[wol[zi. In
addition, from Proposition 4, the norm [lu(?)||,, + [[o(2)[lz, + [[W(D)][1, 0 <t <
T, is estimated from above by a uniform constant y(||uol|, + [lvoll, + [[woll 1)
which depends only on the norm ||uol|,, + [[vol[z, + [[woll;;1.  Hence, the exis-
tence interval can be extended to [0, 7+ T, and the norm [[u(¢)||,, + |lv(#)[,, +
[w(@)llz1, 0<t<T+T, is estimated again by the same constant v(|[uol|, +
llvoll ., + lIwolly1), from Proposition 4. Then, the existence time can be ex-
tended to T +27. Iteration of this procedure proves the global-in-time exis-
tence of solutions with the boundedness (3). O

In the last part of this section, we shall construct higher order a priori
estimates for the local-in-time solutions by taking higher order initial functions.

PROPOSITION 5. Let (u,v,w) be a local-in-time solution to (E). Then, for
an arbitrary number ty € (0, T, it holds that

(/) (1= At (1 s
Iwer(D17, < 2%~ V0w (1) 17, +57J eI (Jlu(s)||7, + [lo(s)]17,)ds

)

FA@I,  w<e<T. o

PrOOF. Applying operator d/d¢ to the third equation of (E) and multi-
plying by w,, and then integrating over Q, we have

1

T d ) 1 2 1 2 2 2
5 %”Wr”L2 + llwxellz, +§||WT||L2 = §||Ut||L2 < 52 (lullz, + 1ol z,)-

Solving this in ||w,(t)||i2 from ¢ to ¢, we have

hwellz, < e/l (10) 1,

2 (" _q/o0-
s | I, + ) wsi<T,

fo

Since
2 2 2 2
Iwallz, = 2wz, = Iwliz, = lIvllz,

=+ 2J WWyy dX — ZJ
Q

Wiy dx + 2 J ow dx
Q

Q
< 12 2 1 2 iyl
< llwillz, + 5 waellz, + 2ll0llz,,

we obtain the estimate (23). O
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ProPOSITION 6. Let (u,v,w) be a local-in-time solution to (E), and t; €
(0,T) be arbitrarily fixed. Then,

t
2 2 —7in(t— 2 2 —75(t—s 2
ullZ, +6lollz, < e ™ (|lu(to) | 71 +5||v(to)||L2)+J e lu(s)]|7,
to
C 4
x <1 +v0+v"||w(s)||§,z>ds, th<t<T,
0

where vo = min{1, u}, 7, = min{,u, (ls}

ProoF. Multiplying the first equation of (E) by u.,, we have

1d
7—J uf dx—}—,uj u)zc dx—i—J ufm dxzxj U (U Wy + U,y )dx
2dt)o Q Q Q
1
< —J u dx—i—){zj (Ww? 4 u?w? )dx.
2] ™ Q

The two terms coming from the chemotaxis term can be estimated as

follows:

2
2lull o el

2 2
2| e e < 2wl ol <
4
< Pl + <l Il

2
x Jgu Wi dx < 2 lullz wllZ, < Clull gl I

Cz
—H ullg + == Hu”Lz”W”HZ
with vo = min{1,u}. We then obtain
d 2 2 2 C){4 4
g Nl - allusllz, < lullz, { vo +T0||WHH2 : (24)

Next, multiplying the second equation of (E) by v, and integrating over 0,
we have

d
SN, + 50, < 5 . (25)

N

Multiplying (25) by 2 and adding the result to (24), we have
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7, +lvllZ,]

d _
—llleallZ, +SlolZ,] + o
d

Cy*
2 X 4
<}, (14 v0 + Ll ).

where 7, = min{x,§}. Solving this from 7y to 7, we obtain the estimate.
U

5. Dynamical systems, attractors, and a Lyapunov function

We study the asymptotic behavior of the global solutions obtained in
Theorem 1. Let

H = H'(Q) x Ly(Q) x Ly(Q)

be the universal space of a dynamical system. We set the initial function
space as

H = {T[uo Vo Wo] ELz(Q) X Lz(.Q) X HI(Q), Uugy, Uy, Wo > 0},

1ol = lluollz, + llvoll, + [[woll g1 Uo = "luo vo w).

Theorem 1 with the strong comparison principle (e.g. [9, p. 331]) defines a
continuous semigroup of the solution operator S(¢): # — #". We will con-
sider the dynamical system (S(¢),#, #) hereafter.

THEOREM 3. A ball % in A with sufficiently large radius r,
B = {(u,v,w) € H'(Q) x Ly(Q) x Hy(Q);
lull g+ N[oll g, + Wl g2 < 7 0y 0,w > 0} C A7,

is an absorbing set for the dynamical system (S(t), A, ). In addition, the
radius r of the ball # is of order O(1) for large p.

PrOOF. Propositions 5 and 6 directly show the theorem, using the esti-
mate (26) in Lemma 2 below. O

To complete the proof of Theorem 3, we provide two lemmas.

LemMmA 1. Let B be an arbitrary bounded set of 4. Then, for any Uy € B,
there exists a uniform time tg in B such that

2|

5 < u@l,, < for all t> tg.
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ProoF. From Proposition 3, if [Juof,, >%, then for all 7>1 :=

" log(Q 7 fuol, — 1), it holds that u(7)],, < 22

. Since
u

< CB?

1/2
luollz, < 121" o] .,
we can choose
tp = ,u_l log(.Q*l,uCB — 1) > 1,
which shows the conclusion. The other case is proved in a similar manner.

O

LEMMA 2. Let B be an arbitrary bounded set of #". Then, for any Uy € B,
there exist a uniform time tg in B and a uniform constant ry, independent of B,
such that

U (D)., < ro, t>tp. (26)
In addition, roy = O(1) for large .
ProoOF. Let 13 be a time obtained in Lemma 1. Then, set
— Yo
Ol

Consider again the inequalities (19) with ¢ = g(|[u(?)]|,,) and (21), as well as, in
place of (20),

t>0

q(llu@)]L,)

od ) 1 > voq | 12 X 3
EELU dx+§Lu dv < " Jully + C X (27)
Since it is clear that
dq, > 2vy 2
—ullz, = ————5 (L] — wllu(®)||,)l|ull
dr = Ct o llullf, ' ’
> 43, 123 _ Vod 2 vou!?
< 2C gl lull g < = lullp + € AR (28)

multiplying (19) by ¢, (27) by 2, and (21) by 1/2, and adding all of these to
(28), by noting that %(qHuHiz) =q4 ||u||i2 +%||u||iz, we obtain that

dt

d T
4 [q<||u<r>||L]>|u<r>||iz oo, + |w<r>||§,l}
T
- [q<||u<z>||h>|u||iz +ollol, + |w||i,1]

X 3
< 2q([lu)ll L) ull, + C;O ullz,

VO 3
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Solving this from ¢z to ¢, we obtain that

AU )1, + S, + Iw(e)

— — T
< el [g(|u<z3>||Ll>||u<zB>||iz +0llo(s)17, +Z||w<z3>||ip}

t 3/2
(e Vo X 3 Vol
+ CJ e mlt=s) | 2 + = |u(s + ds. 29
" XZHu(S)”LI Yo || ( )”Ll XZ ( )

By taking 7z again sufficiently large, we obtain from the uniform estimate of
lu(#)]|,, in Lemma 1 that

2 32
Y C /(v /Y
M 0"2 S, < 1+— <—°f+—x3 o > 1> tp.
4C} 4 %1€Q Mo \X° Vol X

This shows that [[u(?)||;, is bounded above independently of B for # > 7z. In
addition, the upper bound of [[u(f)],, is of order O(u~'/*) for large u. By
using this, we next show the uniform estimate of |lv(¢)|,,, instead of (29).
Indeed, from the differential inequality (20), there exists another large time ¢,
depending only on B, such that

t
le()I2, < e w12, +J e U u(s) |2 ds < 14 y(u'P), 1315,
- 0

Similarly, from the differential inequality (21), by taking ¢z once again suffi-
ciently large, we have

t
()13 < e [hwollZs +J N2 ds <ro, 1> 1p,
0

where ro = O(1) for large . O

We decompose the second component as v(#) = vi(f) + v2(f) where
13
vi(t) = J e~ (/0= (5)ds and vy (£) = e (1)1,
0

We then also decompose the solution operator S(f) into a compact opera-
tor Si(¢) and the perturbation S,(z) such that S(z) = S|(7) + S2(f), where
S1(2) = (uo,vo, wo) = (u(2),v1(1),w(z))  and  S5(7) : (uo, vo, wo) — (0,v2(1),0).
From |[jv2(2)||,, = e~ /9"|jg||,, we have that for every bounded set B C .7,

sup [|S2(0)Uoll,» — 0, 1 — 0.
UyeB

Meanwhile, we can show that all orbits of v;(¢) with Uj € B are uniformly
compact in #". Specifically, we have from Theorem 2 and Propositions 4, 5,
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and 6 that

|mnm<j-w“wwwmw

V(I Goll )J DI (T2 4 )ds < g (|| Uoll ).

This implies that (J,.,, Si(?)B is a relatively compact set in #". Then, by
applying [19, p. 23, Theorem 1.1], we can show the existence of the global
attractor for the partly dissipative system of the Deneubourg model:

THEOREM 4. The w-limit set of B, A =(\y<irco Uicsern S1(1)B, is the
global attractor for the dynamical system (S(t), 4", ). In addition, the global
attractor <f is connected in A .

Let us introduce a positively invariant set

7=\Jsnzsca
t>ty
The asymptotic behavior of the solutions thereby reduces to the eventual
dynamical system (S(¢),%,#). From the existence of a compact absorbing
set in & (Theorem 3), there exists a uniform constant K, for |lu(¢)||,, of order
O(1) for large p, that is,

l(®)llg < CUT@ e < C-7:= K,
for all U(r) = T[u(t) v(t) w(t)] e &, (30)

where C is an embedding constant of (5) and r is the radius of absorbing
ball %
In addition, with suitably large x, we can construct a global Lyapunov
functional for the unique constant equilibrium:
1 11
U* = Tu* v* w:= T[ — ] (31)
[T,
To construct the Lyapunov functional, the uniform boundedness (30) of the
maximum norm of u plays a crucial role. We then show the following:

THEOREM 5.  Assume that u > y/K,/4. Here, K, is the upper bound
defined in (30). Then, a functional on %

2 T 2

o(U(1)) = JQ {W — 1 log +5I’;

satisfies £@(U(1)) <0, &(U) >0 (U # U*), and &(U*) = 0.
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REMARK 1. Because K, = O(1) for large u, the region of (yx,u) contained
in ]Ri satisfying the inequality > yv/K,/4 is non-empty.

Proor. It is clear that @(U) >0 (U#U*) and @(U*)=0. We
can show 4@(U(r)) <0 in a similar manner to [4, 11], except for the
need to construct an L,-absorbing ||u—u*||i7 By noting ||u(t)|l, < K,, we
have

%L)(;m — log pu)dx = JQ (,u — le) [(tx — yuwy), + (1 — pu)|dx

o I U [ S o IR

ox ou

u? UW u )
< - —xdx—#J r— x——J (u—u*) dx.
JQ o u K)o

u? .

Similarly, we have

2 2 2
iJ on (U—v*)zdx:—z’u J (v—v*)zdx—i—zLJ (v—0v")(u—u")dx,
Q Q

dt Q Kr Kr Kr
and also
d sz %\ 2 * *
— | S==(w—w)%dx=| (w=w(tw)dx = | (w—w")(wyx + v — w)dx
dt)o 8 Q Q

2 2
:—X—J w? dx—i—){—J (v—0")(w—w")dx
4)o 4 Jao

S5}

FIE

J (w — w*)2dx.
Q

It is concluded that

2
o) =G [ L1 = tog 0 = 0+ % = w2

uz UxWy )(2 2 :u2 %\ 2
g—L?u—;dx—i—JQ)(T dx—ZL?wx dx—ZL?(u—u ) dx

2

24 J (v —v*)%dx
Q

r

2

+ 2£r JQ(U —v")(u—u")dx —

2

7 X
——J (w—w*)zdx—&——J (v—v")(w—w")dx
4 Jo 4 Jo
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2 2 2
H * X Kl‘ *
——Li(v—v ) — 8 (w—w )] dx

2 2
x 1K )2
) <1 16,u2> JQ(W w*) dx.

Therefore, we have 4£®(U(7)) <0 under the condition u > y/K,/4. O

Finally, we show the convergence of U to U™ with the maximum
norm.

PROPOSITION 7. Under the condition u > y\/K,/4, the convergence of U(t)
to U* is uniform for u and w:

lu()) =y =0, o) =7l = 0, () = willg =0, 1 .

ProOF. By referring to, e.g., [1], we can show the convergence. From
the proof of Theorem 5, we have

d
GO =

Q

[[(u —u")— (v—v)]* + [(v —0*) — Xgp{? (w—w*)

+ (w— W*)Z] dx,

where 7 _mm{‘ %2(1—)1(255)}. We set ot —jg{ u—u*)— (v—09))*+
2

[(v—v*) XS”K (w—w )} Jr(w—w*)2 dx. Then, by integrating (32) from 1
to ¢, we have [[” p(s)ds < 1 cD(U (1)) < oo. The positivity of ¢(¢) indicates that

p(t) =0 (1 — oo) We then have the convergence to the constant solution U*
in Ly-norm. Since the solution U belongs to the functional space (2), the
convergences in 4 and in the maximum norm are proved from the Gagliardo-
Nirenberg inequality, e.g., |jully < Cllullgss < C||u|\3/4||u|\l/4 and ||w|g <
Cliwll g < Clwl 1wl 0

REMARK 2. The linearized analysis [13] shows that if y > u(\/1 + 1)%, then
the constant equilibrium is unstable, and, conversely, that if y < u(\/u+ 1)2,
then the constant equilibrium is locally asymptotically stable. This implies that
the region (x, ) specified by the assumption of Theorem 5 and Proposition 7, or
equivalently, y < 4u/\/K,, should be included in the locally stable region of y <
u(\/m+ )% This shows that the upper bound K, in (30) can be estimated from
below: K, > 16, even if either y or 1/u is sufficiently small.
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