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ABSTRACT. In this paper, we study about estimating the probabilities of misclassifi-
cation in the high-dimensional data. In many cases, the cross-validation (CV) is often
used for estimations of the probabilities of misclassification. CV provides a nearly
unbiased estimate, using the original data when the sample sizes are large. On the
other hand, the properties of CV are not well-known when the dimension is large
as compared to the sample sizes. Therefore, we investigate asymptotic properties of
CV when the dimension and the sample sizes tend to be large. Furthermore, we
suggest the three methods for correcting the bias by using CV which is usable in the
high-dimensional data. We show performances of the estimators in the simulation
studies.

1. Introduction

In this paper, we consider estimating the probabilities of misclassification
which are expressed by

P(2|1) = Pr(the rule classifies x to I1,|x e Il}),
P(1|2) = Pr(the rule classifies x to 7| |x € IT,),

for a classification rule constructed from a training data. For k=1,2, the
training data X = (xkl,...,kak)T consists of N, observations where a' is
the transpose of a, and x; is ith p-variate feature vector belonging to kth
population [I7;. Furthermore, the classification rule using the discriminant

function d(x), which is constructed from X, (k=1,2), is given by
d(x)>c=xell, d(x) < c=xell,,

where ¢ is a cut-off point. By using the discriminant function d, the proba-
bilities of misclassification are expressed by
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PQ2|1) =Pr{d(x) < c|xe I},
P(1]2) = Pr{d(x) > c¢|x e IT,}.

Various discriminant functions have been proposed in many researches. For
example, Fisher’s discriminant function is given by

dp(x) = (f] —fz)TSI{x—%(fl —|—fz)},

where X; is the sample mean of X for (k=1,2), and S is the pooled sample
covariance matrix (Fisher, 1936). Moreover, we also consider the following
discriminant function,

Dy(x)=(x—%) 'S x—%) - bx—5) S (x—5),

where b is a constant. Dj, was introduced in Fujikoshi and Seo (1998) and
includes various discriminant functions, for example D, is the same as df
when b = 1. The two discriminant functions D, and dr are often used to the
discriminant analysis in the two normal populations.

For observation x, the statistician wishes to estimate the probabilities of
misclassification for a classification rule, because the probabilities of misclassi-
fication are natural risks to measure the goodness of discrimination. If we had
the exact evaluation of the probabilities of misclassification for all classifiers,
we could select the best classifier and can make an accurate classification.
However, in general, it is hard to obtain the exact evaluation of the prob-
abilities of misclassification, therefore it is necessary to estimate the proba-
bilities of misclassification from the observations. Estimation methods of the
probabilities of misclassification are separated between the parametric and the
non-parametric methods. In the parametric methods, we assume a distribution
and a classification rule and derive an approximation formula of the prob-
abilities of misclassification. For example, an approximation formula of the
probabilities of misclassification for dr was given by Okamoto (1963) and
Tonda, et al. (2017) etc. However, since it is necessary to assume a distri-
bution and a classification rule, the parametric methods can only be applied
to restrictively classification. On the other hand, the cross-validation (CV)
has been used to estimate the probabilities of misclassification for a long time
(see Lachenbruch and Mickey, 1968; Stone, 1974). CV is one of the non-
parametric methods and is so useful that the method of CV does not need
assumption of a distribution and a classification rule. Furthermore, CV pro-
vides a nearly unbiased estimate, using the original data when sample sizes
are large (see McLachlan, 1974; Efron, 1997). Recently, the data whose the
dimension is large are observed, for example, the image data and the genetic
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data. However, asymptotic properties of CV are not well-known in the high-
dimensional case. Hence, we investigate asymptotic properties of CV when the
dimension and the sample sizes are large. Furthermore, it is known that the
bias of CV increases with the dimension in the simulation studies. Therefore,
we suggest three methods for correcting the bias by using CV which are usable
in the high-dimensional data.

This paper is organized as follows: In section 2, we investigate asymptotic
properties of CV by using an asymptotic expansion in the high-dimensional
case. In section 3, we suggest three methods for correcting the bias by using
CV. In section 4, we show performances of the estimators in simulation
studies.

2. Asymptotic properties

In this section, we investigate asymptotic properties of CV for estimating
the probabilities of misclassification. Most of the asymptotic results of CV are
based on the large samples (LS) framework:

p is fixed, Ny, Ny — o0, —=0(1) (k=1,2),

where N = N; + N,. Regarding to estimate the probabilities of misclassifica-
tion by using CV, it is well-known that the bias is O, based on the LS
framework (see McLachlan, 1974), where O, means a term of the kth order
with respect to (N7, N;',p~',(N — p)~'). However, the data whose the
dimension is large as compared to the sample sizes has been observed in
recently. Therefore, we consider an asymptotic theory based on the high-
dimensional (HD) framework:

N

Ny, N — =
P, N1, Ny — 00, Ny

o) (k=12), %_) co € (0,1),

and N—p—-2>0.

REMARK 1. The Mahalanobis distance 4 = {(u; — ) 2" (u; — p;)}"/*
may tend to infinity depending on p. However, since P(2|1) — 0 with 4 — oo,
we assume that 4 = O(1) even when p — oo in this paper.

In this section, we assume that /7; is the normal population with the mean
vector g, and the covariance matrix 2 for k = 1,2, that is

I, :Ny(u,2),  IIr:Ny(m, X). (1)



376 Tomoyuki NAKAGAWA

Firstly, we consider the bias of the estimator using CV. The estimator Pcj
using CV is expressed as

Pcy = N{ Zl J(x1;) < ¢),

where 1(-) is the indicator function and (- is the discriminant function
constructed without xj;. Then we have the following theorem.

THEOREM 1. If the expansion of the probability of misclassification P(2|1)

is given by
PeI) =04+ 3 @ () + 0n @)

where Qo(x1,x2) and Q)(x1,x3) are C' class functions around (p/Ni, p/N3),
then it holds that

E[Pcy(2[1)] — P2)1) =

ProoF. From (2), an expectation of the estimator by CV is given by

E[PCV(2|1)]=Q0(N1”_1,N%) Q1< 115>+02
_of(L 2\ Lo (2 2
_Q°<N|’Nz>+NQ1(N1’N2)

P J PP
Jr]\71(]\71 — 1) axl QO(Nl ,Nz) + 02'

Since Qp is a C! class function, 0Qy/0x; is the continuous function and
0Q0/0x1(p/N1, p/N>) is bounded as Ny, N, p — co. Therefore

A

ElPer(QID)] - POI) = s o0 () + 0= 01

The proof of this theorem does not need to assume normality of the
populations. From the proof of this theorem, the estimator by CV is an
asymptotic unbiased estimator in the HD framework but the bias in HD
framework is a larger order than it in the LS framework. For the classifi-
cation using dr, the following theorem was given in Tonda et al (2017).

THEOREM 2. Let x €11y, then P(2|1) can be expanded as

PQ2I1) = @(v) + ¢(v)Fi(4) + O,
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where ¢(-) is the density function of N(0,1),

v=1(4?)
1/2 -1/2
_ NN e N =N =D N =D
2\N -1 NiN, NIV,
Moreover Fi(4) is given as follows:
T,
Fi(4) = Ty —%Tu),
where m = N\N»/N and
. (N — D)m?4*(p — 1 + m4a?) . m(N — 1)(N; — Na)(p — 1 + ma*)*
1= ’ 2 = ;
NN =p—=1*(N-p) N(N = p—1*(N = p)
To)=q1 + q,
:Ti@ 2(1971)+4;7szr 8 . 20p-1)
4 \(p—14+ma*>? N-p-1 (N-p)(N-1)
1 (p—1)7° 2
+q; 1+ +
ql{mA2< N-p(p-2)) N-p-1
2(p — 1) + dmA* 2 1
+ 43 - +—
q2<(p—1+mA2)2 N-p—-1) N
2 4
—qiT, +
a (0)<p—l—|—mA2 N—p—1>
2(p — 1) + dmaA? 4
— Ty, (r—1 it
(p—1+ma*>> N-p-—1
2 ( I )
q192 p—limi2 N-p—1)
7. Lo (2p=1)+8ma”  2(p-1)
DR\ o1 ma)r (N=p(N-1)

1 ma*
p—14+ma? qz(p—l—kmAz)z.

+q1

Therefore, the classification using dp satisfies assumption (2). From
Theorem 1, we obtain the following corollary.
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COROLLARY 1. In the case of classification using dp, the bias of CV has
order O;.

Secondly, we consider evaluating the mean squared error (MSE) of
Pcy(2|1). The straightforward calculations give

MSE(Pcy(2|1)) = Bias(Pcy(2]1))* + Var(Pey(2]1)),
Var(Pcy(2|1))
= Pr(d"V(xn) < ¢,d 7P (x12) < ¢) — Pr(d "V (xy) < ¢)?

+ Ni [Pr(d "V (x11) < ¢) = Pr(d "V (x1) < ¢,d 72 (x12) < )]
1

Note that Py (2[1) has consistency if dV)(x;;) and d?(x,) are asymptoti-
cally independent, that is

Pr(d"V(x1)) < ¢,d"? (x12) < ¢) = Pr(d“V(x11) < ¢)* — 0, (3)
as Ni,Ny, p — 0.

ExamMPLE 1. In the case of the LS framework, the classification rule
using the discriminant function Dy clearly satisfies condition (3) from Slutsky’s
theorem.

Hereafter, we show that MSE of CV for the discriminant function D, in
the HD framework.

LemMA 1. Let x €I, then Dp(x) is expressed as
Dy(x) = tr(AU) (4)

where U =TV 'T", Vi ~ W3(N — p,I3), Va=TT" ~ W3(p,15,9), and V)
and T are independent, and

H/Nz 0 —l’l/\/N_Z
A= 0 7nb/N1 nb/\/Nl 5

—n//N, nb/\/Ni n(l—0b)
n=N—2.
The proof is given in the appendix.

THEOREM 3. Let x€lIl; and b=1+ Oy, then P(2|1) is expanded as
follows:

P(2|1) = &(v) + Oy, (5)
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where
y=ys"! (c—n).
Here n and s are given in the appendix.

The proof was given in Fujikoshi and Seo (1998) and Fujikoshi (2000).
On the other hand, we can show the different way of the proof in the
appendix. This theorem means that the estimator of the probabilities of
misclassification using CV is an asymptotic unbiased estimator in the case
of classification using D, and the order of its bias is O; in the HD framework.

LeMMA 2. The sample mean and the sample covariance matrix of Il are
expressed as follows:

nlfl

mS) = (n — I)SYD 4 (x — J_c(ii))(x _ J?(ﬂ'))T’

ni

for k=1,2. Moreover,

nS=(n-— 1)S(‘i> Jrnln—_l(x _ J_C(_i))(x . J_Cl(i))T,
1
K nﬁ ; [{5(70}71 _ Tfl{s(—i)}q(x _ ff‘”)(x _ fg_i))T{S<,i)},1],
—1 s ) .
T = %_’_ (x _ xi ’))T{S(*l)}fl(x - f( z))7
1

where ny = N1 — 1, np = N, — 1, and .?,(C_i), S,((_i) and S are the sample mean,
the sample covariance matrix and the pool covariance matrix without Xy, for
example, f,((_'), S,(c_’) and 87V for k =1 are expressed as

(i) ZN‘
(=) _ 1
xl = I’ll X1j7

J#i
N,

S ==Y - ® )y - ® )
J#i
S = (N, =2)81) + 1,8,
It is easy to prove Lemma 2, so we omit the proof. Suppose that D,g*i)
is Dp constructed without xj;. From Lemma 2, we have the following
lemma.
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LEMMA 3. Dl(;")(xu) and Dl(;j)(xlj) are expressed by

Dy (x17) = (A4 U) — T} 'a] Uy Uay, ©)
Ny —1
T, = tr(B U
1 Nl _2+ r( 1 )7
D{) (xy)) = tr(AyU) — T5'a] UAy U, (7)
N —1
T = B
2 N1—2+tr( 2U>7

where U =TV 'T", Vi~ WyN —p,1y), Va=TT" ~ Wy(p,14,92), and
Vi and T are independent, and a; = (0, —nfl/z,O, I)T, a; = (0, —n;1/27 l,O)T,

B,’ = a,-a,-T (l = 1,2),

NEI 0 _N2—1/2 0
A =(n-1) 0 —b(ny — Dny2 b(ny — D)7t by —1)20;2
_N2*1/2 b(l/ll N 1)1/2’11,1 1—b bn;l ,
0 b(n; — 1)"n;2 bny! 2
N271 O () _N;1/2
Ay =(n—1) 0 —b(ny — D> bl — 1) bl — 1) ay!
0 b(n — 1)1/2nl_z b2 !
_szl/z b(n; — 1)1/2111*1 bnfl -

The proof is given in the appendix. By using this lemma, we obtain the
following theorem.

THEOREM 4. Let b= 1+ Oy then
Pr(D}(;l)(x”) <cg, D,(;z)(xlz) <c¢) - Pr(Df(;l)(xn) <o)?=0;.
Therefore, it holds that
MSE(Pcy (2]1) = 0.

ProoF. The characteristic function ¢(#) = ¢(¢, t2) of the joint distribution

of Dg_l)(xll) and Dé_z)(xlz) is expanded as
. r . r
o) = exp{ztlnl - 3/111} exp{ztlnz — 5222} + 0.

By inverting the characteristic function, we obtain the following formula.

Pr(2; 2DV (x11) — ) < x1, 20 2 (DS P (x12) — 1) < x2) = D(x1)D(x2) + O
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From this formula and Theorem 3,
Pr(D,()_l)(xn) <c, D,()_z) (x12) <¢)
= () (e =)l (¢ = 12)) + O
= ®(i) *(c—m)* + O,
Pr(Dy " (xn) <) = (s (e =) + O,
Therefore, we complete the proof of this theorem.

From this theorem, the estimator of CV has consistency to P(2|1) in
the HD framework. On the other hand, the following theorem was given in
Tonda et al. (2017).

THEOREM 5. MSE of the proposed estimator tends to 0 as O) order in the
normal populations.

Theorems 4 and 5 mean that MSE of CV is the same order as that of the
estimator in Tonda et al (2017) and the two estimators have consistency to
PQ2|1).

3. Correcting the bias of CV

In this section, we suggest three methods for correcting the bias of the
estimator using CV. In the previous section, we showed that if the sample
sizes are sufficiently large, CV is a good estimation method even if the dimen-
sion is large. However, the bias of estimator using CV is large for the small
sample sizes and increases with the dimension. Therefore, it is necessary to
correct the bias of estimator using CV in the HD framework.

3.1. Method I: Using the leave-two-out CV. The method I is one of the
non-parametric methods for correcting the bias of the information criterion
proposed by Yanagihara and Fujisawa (2012). In this section, we use this idea
to estimate the probabilities of misclassification. The leave-two-out CV is
expressed by

D5 ) 1@ xy) < o),

i<j 2ke{i,j}

where Nj(_/) =N;—¢, N©) =N — ¢ and d="7) is the discriminant function
constructed without x;; and x;;. Then
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E[PCV(2|1)]=Q0<N£1»N£2> e <z€ 252)

. 1
ElPer, 21D)] = o (N%%) +50 (N%N%)

2p 0 P P
0
TN 5x1Q<N W)
. p 0 p D
E[Pcy(21)] — P2|1) = ———+ — + 0y
[Per(2[1)] = P(2[1) N1N1(1)6x1Q<N1N> ’
) ) p 0, (p p
E[Pcy,(2]1) = Per(2]1)] = ———— — '
[Pcy, (2]1) — Pey(2]1)] NN i & (N N>+02

Therefore, a new estimator is given by

(=2)

Pi(2|1) = {Pcv(2|1) - (Pey, (211) —Pcv(21))}-

Then it holds that
E[P1(2[1)] - P2]1) =

Hence, we can correct the bias of CV by using the leave-two-out CV in the HD
framework. Furthermore, the similar method for correcting the bias can be
done by using the two estimators of leave-k-out CV of different k.

3.2. Method II: Leave-i-out CV. We consider leaving out A instead of one
from a training data by CV method. This idea was proposed by Yanagihara
et al. (2006) and Yanagihara et al. (2013) for correcting the bias of the infor-
mation criterion. In this section, we use this idea to estimate the probabilities
of misclassification. Suppose that F and F; are the empirical distributions
of xi1,...,X1-1,X1i41,..., X5, and xl,, respectively. The discriminant func-
tion d"%# is constructed by using (I — ui)F]s, '} +u,F;, where u) = (1—-21)/
(N; — ). For example, assuming the discriminant function dy is parameter-
ized, the maximum likelihood estimator of parameter 6 is given as follows:

L 1-7
0" = arg max{ AZIng x5 0) + N log f(xli;e)},

0eO Py
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where f is a probability density function of x;;. Then cAI(._':;)‘) is the same as
djin. In the normal case, the estimators of mean )_cgfm) and covariance

matrix S5 are given by

iy Ni—=1_y  1-2
S oy b I V|

i 1 ey NV i (i
s ’)Nu.){(N( S0 S (1= A= 1) (v - 5| ”)T}. (®)
1

In the case 42 =1, this method is the same as usually CV (leave-one-out CV).
We define by using d#%

5 1 &, L

Pcy,(2[1) = ﬁz l(d(ﬂ;}')(xU) <o).

1530

This method is called leave-i-out CV in this paper. Suppose that the
expansion of Pr(d "% (x;;)) is given by

Prd ) < ) = 05 (- 4) 4y 0 () + 0

where Qg (x1,x2,x3) and Qj(x1,x2,x3) are C! class functions around (p/Ny,
p/Ny,1). Let A=1—-x/N, then we obtain the following expansion:

ElPen, )] = 03 (-0 2) + 3 €1 (7 2) + O

P\_x 0 5P P
_Q°< —1N> NaX3Q°(N1’N2’1>

(0,
+—= Ql(Nl—l N2)+ ).

Therefore, the bias of leave-i-out CV is given by

E[Pcy, (2]1)] - P(2]1)

P 0 PP 1 0 P P
— i ,1 0.
NI(NI—I)ale(Nl N) "N oxs (N Ny’ >+ ?
Thus, we can correct a bias by deciding x so that the term of O is 0, that is,
i 1s decided as follows:

. DN P P d . (p P
= e o @) 2 @ (1)
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EXAMPLE 2. In the case of dp and ¢ =0, A is decided as follows:

J=1-x(4)/N,

K(A):%{Z (A2+Nil+]52>l (A2+N£2—Nil>}. 9)

A derivation of this i is given in the appendix.

This method has the same computational complexity as CV and can
correct the bias of CV, while we must derive .

3.3. Method III: Modified a cutoff point. We propose a method for correct-
ing the bias by modifying a cut-off point ¢. We define Pcy, (2|1) as

Pey.(2]1) = Zl( (x1)) <c+§\17).

Suppose that the expansion of P(2|1) is given by

P(2|1) = Pr(d(x) < ¢|x € IT))

_QT(Zé’]f,’ >+ Ql( NN >+02

Then, we obtain the following expansion:

5 4 P 1
E[Pcy,(2]1)] = O} <m,E,C+ )

Therefore, the bias of Pcy (2]1) is given by

E[Pcy,(2]1)] - P(2]1)

p J PP 1 0 (p »p
___ 2 (L ~ 2ot (2.2 ) to,
Nl(Nl—l)ale(M N) ‘AN e QN ) T
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Thus, we can correct the bias by deriving ¢; so that the term of Oy is 0, that is,
c; 1s derived as follows:

f= PN 0o (L PN pi(p P
l_Nl(I’ll) 6)61 QO(N17N2)/6)C3QO N17N27c '

EXAMPLE 3. In the case of the classification rule using Dy, we can obtain c;
as follows;

[

Pl S (FE S AN TR A )
n N_p_l( o, T TR0 =t O
(S(—l))2:4(n_ I)Z(N— 1) (Az_i_P_bz_’_ﬁ)
3
(N-p-1) no N
:sz—l—s1+02,
N (A
R

where 5 and s> are given by Theorem 3, and
1 n p bp > bnp
g (N—P (Np)2>( N, N 1 ) (N — p)N?

Nn? 3 2 1 b? b*Nn?
5 =4—" 3< ——><A2+p+p>+4p”3.
(N—p)\N=p n N N N2J o NE(N - p)
This method has the same computational complexity as CV and can
correct the bias of CV, while we must derive c;.

4. Numerical study

In this section, we investigate performances of CV and the three methods
for the classification rule using dr by the Monte Carlo method. Without loss
of generality, we can assume that u, = A(1,...,1)"/2\/p, gy =—4(1,...,1)"/
2/p and 2 =1, CV, I, II, IIl, and TNW indicate the cross-validation,
the methods I, II, III in section 3, and the estimator in Tonda ef al (2017),
respectively. The configuration of the values of N;, N, p and 4 were
N1, N, = 15,20,25,30,35, p/N =1/5,3/5 and 4 = 1.05,1.68,2.56,3.29 satisfy-
ing N—p—2>0. The values of 4 correspond to the values 0.30, 0.20,
0.10, 0.05 of @(—A4/2), respectively. An estimator of A is necessary to use the
methods II and III, so that 4> was given by

AAz:n—P—3D2_ rN
n NlNz’
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Table 1. (Bias of estimators) x100

p/N 4 p N Ccv I 1I 111 TNW

1/5 | 1.05 6 15 | 0451 —0.021 0.043 0.015  1.402
10 25 | 0300 —-0.021 —0.049 —0.023 0.839
14 35 | 0.223 0.028 0.040 0.021  0.604

1.68 6 15 | 0.392 0.030 0.083 0.038  1.309
10 25 | 0.186 —0.030 0.009 —0.033 0.753
14 35 | 0.163 0.004 0.038 0.007  0.556

2.56 6 15 | 0.275 0.035 0.101 0.045 0.978
10 25 [ 0.112 —0.041 0.014 —0.025 0.554
14 35 | 0.104 0.001 0.037 0.003  0.404

3.29 6 15 | 0.157 —0.015 0.058 0.013  0.662
10 25 { 0.072 —0.028 0.019 —-0.017 0.393
14 35 | 0.075 0.004 0.039 0.009 0.293

3/5 | 1.05 | 18 15 | 0.807 0.043 0.166 0.275 1.086
30 25 | 0.516 0.047 0.132 0.126  0.652
56 35 | 0.335 0.002 0.067 0.042 0434

1.68 | 18 15 [ 0912 0.040 0.303 0.282  1.301
30 25 | 0516 —0.024 0.168 0.069 0.758
56 35 | 0.396 0.024 0.156 0.061 0.554

256 | 18 15 | 0.953 0.002 0.466 0.302  1.355
30 25 | 0.583 0.019 0.324 0.137  0.862
56 35 | 0.397 0.003 0.219 0.055  0.609

329 | 18 15 | 0910 —0.039 0.539 0323 1.255
30 25 | 0.538 —0.008 0.346 0.120  0.784
56 35 | 0377 —0.004 0.253 0.061  0.544

where D? = (¥ — )_cz)TS*I(itl —X). A? is unbiased and a consistent estimator
of 4 under both of the approximation frameworks (see Tonda et al (2017)).
In the tables, the 1-2 columns indicate the rate of the dimension p and the
sample size N and 4, respectively. The 3-4 columns indicate the dimension p
and the sample size Ny, respectively. In table 1, the 5-9 columns indicate 100
times the biases of the estimators for CV, I, II, III, and TNW in the case
Ni = N,. In the table 2, the 5-9 columns indicate 100 times the MSEs of the
estimators for CV, 1, II, III, and TNW in the case N; = N,.

In table 1, we can see that the biases of the three methods I, II, III are
small than CV and TNW. On the other hand, we can see that MSE of TNW
is smaller than other estimators in table 2. From figure 1 and 2, a bias of all
estimators tend to 0 when N is large in both case p/N = 1/5 and 3/5. From
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Table 2. (MSE of estimators) x100

p/N 4 p N Cv 1 1I 11T TNW

1/5 | 1.05 6 15 | 1437 1.704 1424 1429 0.877
10 25 [ 0.846 0978 0.838 0.839 0.496
14 35 | 0.607 0.687 0.602 0.603 0.357

1.68 6 15 | 1.111  1.294 1.092 1.094 0.625
10 25 | 0.664 0.755 0.657 0.658 0.366
14 35 | 0473 0529 0470 0.470 0.259

2.56 6 15 [ 0.733 0.846 0.720 0.720 0.369
10 25 [ 0433 0487 0429 0429 0.212
14 35 | 0.308 0.341 0306 0.306 0.150

3.29 6 15 | 0460 0.530 0.454 0452 0.199
10 25 | 0274 0307 0272 0.271 0.116
14 35 [ 0.194 0215 0.193 0.193 0.081

3/5 | 1.05 | 18 15 | 1.679 2.187 1.671 1.709 1.033
30 25 | 0996 1.238 0.990 1.005 0.611
56 35 | 0.707 0.856 0.703 0.711 0.437

1.68 | 18 15 | 1.578 2.029 1.546 1.578 0.967
30 25 | 0920 1.132 0908 0.921 0.565
56 35 | 0.654 0.784 0.647 0.654 0.400

256 | 18 15 | 1.367 1.737 1.331 1.348 0.826
30 25 | 0.793 0964 0.781 0.786 0.482
56 35 | 0.564 0.669 0.558 0.560 0.341

329 | 18 15 | 1.142 1435 1.110 1.112 0.676
30 25 | 0.660 0.797 0.649 0.649 0.388
56 35 | 0460 0.542 0.455 0.454 0.270

figure 3 and 4, we can see that MSEs of all estimators also tend to 0 when N is
large, and MSE of the estimators in the case p/N = 1/5 are smaller than the
case p/N =3/5. Moreover, from figure 5 and 6, we can see that a variance of
TNW is smaller than other estimators and a variance of the method I is larger
than other estimators. The results mean that a variance of CV is large so that
MSE of CV is large, and a variance of the method I is larger than CV.

5. Conclusion

In this paper, we showed that CV is an asymptotic unbiased and a con-
sistent estimator even if the dimension is large. However, the bias of CV
increases with the dimension. We knew that MSE of CV is same as MSE
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Fig. 1. The figures plot the biases of the estimators for each 4 in the case of p/N =1/5. CV, 1,
II, III, and TNW indicate the cross-validation, the methods I, II, III in section 3, and the estimator
in Tonda et al. (2017), respectively.
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Fig. 2. The figures plot the biases of the estimators for each 4 in the case of p/N =3/5. CV, 1,
II, 111, and TNW indicate the cross-validation, the methods I, 11, III in section 3, and the estimator
in Tonda et al. (2017), respectively.
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Fig. 3. The figures plot MSEs of the estimators for each 4 in the case of p/N =1/5. CV, L, II,
III, and TNW indicate the cross-validation, the methods I, II, III in section 3, and the estimator in
Tonda et al. (2017), respectively.

A =1.05 A =1.68

0.025 0.025

0.02 0.02
0.015 0.015
0.01 0.01
0.005
0 0

5 20 25 3 35 15 20 25 30 35

Fig. 4. The figures plot MSEs of the estimators for each 4 in the case of p/N =3/5. CV, L, II,
II1, and TNW indicate the cross-validation, the methods I, II, III in section 3, and the estimator in
Tonda er al. (2017), respectively.
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Fig. 5. The figures are the boxplots of P(2[1) — P(2|1) for each 4 in the case of Nj =35 and
p/N =1/5. CV, L, II, ITI, and TNW indicate the cross-validation, the methods I, IL, III in section
3, and the estimator in Tonda et al (2017), respectively.
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Fig. 6. The figures are the boxplot of P(2|1) — P(2]1) for each 4 in the case of Ny =35 and
p/N =3/5. CV, L, II, III, and TNW indicate the cross-validation, the methods I, II, III in section
3, and the estimator in Tonda er al (2017), respectively.
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of the estimator in Tonda et al. (2017). Therefore, we knew that CV is a good
estimation method of probabilities of misclassification if the sample sizes are
sufficiently large. Moreover, we proposed the three methods for correcting the
bias of CV in the HD framework and investigated the performances of the
three methods in the simulation studies. In simulation studies, we knew that
the method I can be applied to many cases, while its MSE is larger than that of
other methods. On the other hand, MSEs of the methods II and III are the
same as that of CV, while it is necessary to derive the parameters x and c;.
The method I is a good method if only bias correction is considered, because
its method can correct the bias of CV without assumptions. On the other
hand, if we can derive the optimal value of x and d, the methods II and III are
better than other methods from a viewpoint of MSE and the computational
complexity. However, when the sample sizes are small, we knew that an
approximation formula is better than the non-parametric methods. In the
future work, we need to show asymptotic properties of CV for various cases
(e.g. the non-normal case and the quadratic discriminant) and consider the non-
parametric methods for decreasing MSE.
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Appendix

A.1. Lemma of moments. In this section, we show key lemmas for the proof
of theorems.

LeMMA A4. Let A and B be p x p symmetric matrices, and let Z be
an n x p random matrix and have a normal distribution with E[Z) =M and
Cov(vec(Z")) = X ®1,, denoted by Z ~ Ny»y(M, X ®1,). Then, we have the
following moments,

E[tr(AZ"Z)] = tr{A(nX + M"M)},
E[tr(AZ"ZBZ " Z)] = n tr(AX) tr(BX) + n(n + 1) tr(AXBX)

+(m+1) tr(AM "MBX) + (n+ 1) tr(AXBM "M)
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+tr(AX) tr(BM "M) + tr(AM " M) tr(BX)
+tr(AM "MBM "M),
E[tr(4Z"Z) tr(BZ " Z)] = n* tr(AX) tr(BX) + 2n tr(AXBX)
+ntr(AM M) tr(BX) +n tr(AX) tr(BM ™M)
+2tr(AXBM "M) + 2 tr(AM "M BX)
+tr(AM "M) tt(BM " M).

The proof of the lemma is given in Gupta and Nagar (2000). From
Lemma A.4, we have the following lemma.

LemMMmA A.5. Let A and B be p x p symmetric matrices, and let W be a
p X p random matrix and have a central Wishart distribution with n degrees of
Sfreedom, covariance matrix X, denoted by W ~ W,(n,%). Then, we have the

following moments,
E[tr(AW)] = n tr(4X),
E[tr(AW) tr(BW)] = 2n tr(AZBX) + n” tr(AX) tr(BX),
E[tr(AWBW)] = n(n+ 1) tr(AZBX) + n tr(42) tr(BX).

LeMMA A.6. Let A and B be p x p symmetric matrices, and let Z ~
Nop(M, 1, ® I,,) and
1
W= ﬁ(-ZTZ— Q).
n

Then, it holds that

Elexp{tr(dW)}g(Z" Z)]
b —n/2 o
=l = JoA| Elg(Z'Z)

-1
X exp [—nl/z tr(AQ) 4+ n~1/? tr{MTMA (Ip - %A) H )

where @ =1,+n"'"M"M and

-1 -1
Z~Nnx,,<M<11,—jﬁA> ,(Ip—jﬁ/o ®1n).
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A.2. Proof of Lemma 1. Suppose that
u=X"P(x—m) ~ Ny(0,1,),
W=nx 28272 <~ W,(n1,),
z1 = \/ﬁlz_l/z(fl =) ~ Ny(0,1,),

D=V N2271/2(22 _:ul) ~ NP( V N25a I]))a

where 6 =2X""2(uy—p,), =M'M and M = (\/N:5,0,0). Let Q=
(w,z1,22), then

VZ = QTQ ~ W3(p71379)7
Mi=TQ'W'Q ' TT ~ Wi(N —p,I5),
QTW?IQ: TVlflTT’

where T is Bartlett’s decomposition of V>, thatis, ¥, = TT'. Let U = (uj) =
Q' W'Q then we show that D(x) is expressed by u;. Therefore, we easily
have (4).

A.3. Proof of Theorem 3. Put W, =/N—p((N—p) 'Vi—1I;) = O,(1).
From Lemma 1,

v=r1v'r’
= P V= ) PTWET  (V = p) W 4 O, (N = ).
tr(AU) = Nlip{tr(Af/z) Vao+ar}+ Op(N—p)h),

where T = p 2T and V, = p V>,

a, = NLp(_U/H(N —p) (AT W T,

Then it can be expanded as

Elexp{it tr(AU)} | V3]

= Bfexpir 2 st +an-+ | [ 13] + 00 = )7

—exp i T (A7) [E (1 4 00) | V2] O,V = )7,
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where i = v —1,

blzi[Np aj.

From V) ~ Ws(N — p,1I3), ap = tt(MyW;) and Lemma A.6,

E[e"g(Vy) | V7]

—(N-p)/2 L
B ep{—y/N = p (M)} Elg(Z] Z)
= exp(tr(MR 1+ M) [EG(Z] )]+ O,((N = 1))

where

N 2 -1
Zy ~ Nn_p)x3 (07 (13 _ﬁM()) ®INp>7

L ) -1
ZTZI ~ W3 N—p, (I3——M0>
1 VN—p
are independent of V», and Mo = —itp(N — p) T AT and g(V}) =1+ b,.
The moments are given by

Ela1|V2],

. 1 2
tr{TTAT(N—plszl —13> }

_ ﬁ 4 tr(AP) + 3 tr(TTATMO)] + O,((N — p) )

E[b1|V2] = ile

E[a1 | Vz] =E

T +0,((N =),

4tr(AV) — 31‘;@ t{(AV)%)

Secondly, let W, = /p(p~'V,—R"), then W, = 0,(1) from the central
limit theorem, where Q* =I5+ p~'Q. We can obtain the following
expansions:

V,=p(@ +p'*W)),

tr(My) = itp(N — p) >/ tr(AV3),
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tr(AVs) = tr(A(Q" + p~'>W»))

= tr(AQ") + p~ 2 tr(AW>),
tr(M§) = (it)’p* (N — p) * tr{(4V2)},
tr{(A¥)*} = tr{(A(Q" + p~'* W)’}

= tr{ (A7)} + 2p7 2 tr(AQ* AW,) + 0, (1),

tr(M3) = —(it)’p* (N = p) " tr{(4¥5)’},
tr{(41)°} = u{(42°)°} + O, (p™'?) = O1 2.

Since V, ~ W3(p,I5,R2), we obtain the following expansions:

exp{itN[i 5 tr(AV,) + tr(Mé)}

» P2
= exp{itN tr(A4Q") + itN » tr(AW,)

P ) (a0
x exp{2(it)*p** (N — p) 7> tr(AQ"AW,) + O, (N — p) 1)},
exp{2(it)*p**(N — p) > tr(A2" AW3) + O,(N — p) ')}
=14 2(it)*p**(N — p) > tr(AQ* AW)) + 0.
Put M} = itp*(N — p) >4. From Lemma A.6, we can have

Elexp{tr(MW2)}h(Z, Z>)]

-p/2

2 AV

Is——-M;

VP

5 -1
X exp [—pl/z tr(M;Q*) + p'/? tr{QMg (13 - ﬁMa‘) H

= expltr{(Is + 2p ') (M) E[W(Z, Z,)]

X [1 +% tr{(I5 + 3p—19)(Mg)3}] + 0.

Moreover, since tr{(I3 + 3p’1!))(M§)3} = 01,
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Elexp{tr((M{W2)}h(Z, Z>)]
= expltr{(I3 + 2p "' 2)(M;)*}YE[h(Z] Z,)] + O,

where h(Z) Z,) = (1 +2(it)*p~ " 2(N — p) " tr(4Q*AW>)), and Z, and Z are
the random matrices that satisfy

Vy=Z, Z,,

Zy, ~NysM, I; ®1,),

Zy ~ Nps(M (I3 = 2p7 ' 2M) 7 (I = 2p7 2 M) T @ 1).
The moments are given by

E[h(Z) Zy)] = 1 +2(it)*p~ > (N — p) ™" tr(4Q2* AE[WA)),
VP

2 -1 2 -1
—I—p_l(13—|——M*> 9(13+—M*) — Q" =0,
N N/ /

EWy] = ws{ (1 +%M§)l

where

From above result, we have

P . n >, p b
= tr(AQ") = —— (4~ +— — — 1—5
Y r(427) N ( +N2 Nl“’( ))’

$$=2 lpz(N — p) P {42 +ﬁ tr{(I5 +2p~1Q2)4%)

Therefore, we have the characteristic function ¢(f) of Dp(x) as
¢(t) = exp(ity — 1*s*/2) + Oy.

From this expansion, we can have the result of Theorem 3 by using the
inversion formula.
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A.4. Proof of Lemma 3. The proof of Lemma 3 imitates the proof of
Lemma 1. Suppose that

;= Eil/z(xli — ) ~ Np(0,1,),

wy =X (x;; — ) ~ Ny(0,1,),

W=(n-2X 1280 x12 < w,(n—2,1,),
7 = \/lﬁzfl/z(f?’j} — ) ~ Np(0,1,),
2= \/]722_1/2()72 —m) ~ Np(mév 1),

where 0 = X2 (u, —p;), =M"M and M = (/N29,0,0,0).
Let Q = (uy;,uj,21,%2), then

Va=0"0~ Wi(p,14,9),
=T QW' 'T~Wi(N - p, L),
OWIlQ=TV T,
where T is Bartlett’s decomposition of V5, thatis, Vo = TT'. Let U = (uy) =

Q" W'Q then DY(xy;) and DY)(xj;) are expressed by u; from Lemma 2.
Therefore, we easily have (6), (7).

A.S. Expansion Of ¢(t). Let
! N — P ! ’

then W, = O,(1) from the central limit theorem. From Lemma 2,

1
V= (NP)<I4+mW1),
DV (xy) = tr(A,U) — T \a] UAUay, (i =1,2).

1

Then, we obtain an expansion of U as follows:
U=Tv'T’

1 .
- W} T + 0,(N7?),

P s 2
=—T<1;— 14 W,
N_p {4 1+ 1

where T = p~'2T = 0,(1). From above result, it can be expanded as
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tr(4;U) = Nli {tr(4: V) + ai o + i} + O,(N?),
N -1 B s
Ty =5 —5 +tr(BiU) =bio+bi1+bia+ Op(N772),

-

2 ~ ~
aiT UA;Ua; = (Npi)z{ai—r VadiVa; + cio+ ci1 +cin} + Op(N73/2)7

T =504 81482+ 0,(N3/?),
where V5 = p~'¥V, and
aiy = (=1)TNN = p) IR (4, TWHTT), (¢ =0,1,2),

N —1
b, 1 p

i,0 = Bi~a
V=N T2 TN = HER)

bis=(—1) (N — p)—f/zNL w(BTW(TT), (¢/=1,2),

Ci70 = —(N — p)il/za;(fleiTWl TT + TW]TTA,'%)(II’,
ci1=(N=p) la] (TW\TTATW\T" + VoA, TWETT + TW2T A Vs)ay,
Si.0 :b,fol, i1 :bi,lb,ié Si2 :b,fS(b,%, — biobi2).

Then Dlg_i) is expanded as follows:

_ ) 2 .
D,(;l)(xw) = N’i , tr(A4;V2) — Si7o(]v117m2a; Vod;Vaa;

+Dig+Di1+ O,(N7Y),

where

2

(N-p)°

e
(si,0¢i,0 + sij1a; V2AiVaa),

2

p
(N-p)°

)4 T {7 o
D= a1 — (si,0¢i,1 + Sij1€i,0 + Si2a; V2A;Vaa).

N-p

We consider the characteristic function of joint distribution of D,(;D(x”) and
DS (x1), that is,

#(t) = Elexp{in D} " (x11) + i Dy (x12)}],

where 7= (1,1,) " and i=v/—1.



Estimating the probabilities of misclassification using CV 399

Firstly, we consider the following conditional expectation given V5,

Elexp{iti Dy " (x11) + it.Dy > (x12)}| V3]

~ 2 ~ ~
= exp |f[1 {Nli » tr(A1 V) — SLO(NIi—’»ZaIT V2A4, Vzal}

~ 2 ~ ~
+ itz{Nli » tr(A2V2) — Sz,oﬁ“; W4, Vz”zH

x Elexp(it D10 + itaDao + ity D11 + iaDy 1 + Op(N 7)) | W)
We expand the following conditional expectation,
Elexp(it; D10 + itaDao + it1 D11 + it D2 1 + OP(N_I)) | f/z]
= Elexp(ity D10 + ityD2,0)(1 + ity D1 1 + itaDa.1) | Va] + O,(N 7).
Let
My =itiM o+ itaM> o,
2

p P
A+
N-p (N-p)

Mjo=(N-p) ' ?T" l— 55/.0

— paj VZA]' %aij}

then we have
exp(itiD1,0 + itaDs o) = exp{tr(MoW})}.
From V| ~ Wy4(N — p,14) and and Lemma A.6,
Elexp{tr(MoW1)}g(V1) | V2]

—(N-p)/2

2 exp{—/N = p t(Mo)}Elg(Z] Z,) | V),

4— M,
VN —p

where

_ 2 -
Z] ~ N(pr)x4 (0, <I4 — \/Ni—pM0> ®IN—p>a

L 2 -1
ZITZI~W4<N—p,(I4— < Mo) )
-p
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are independent of ¥V,, and

gV) =1+ ity D11 +it2 Dy 1.
Put

h(Vz) = E[g(ZNFZN]H Vz] =1 —|—l'l|E[D171

Vz] + l'le[DZ’ 1 | Vz].

For i =1,2, we have

E[D1|Vs] = ﬁE[aUWZ}

R E— (S,“’()E[C,‘, 1 | Vz] + E[S,'ﬁ]C,‘7()| Vz] + al-T f/zA,' f/za,‘E[S,‘#ﬂ Vz]).
(N —p)?

The moments are given by

~ - 1 . 2
Ela; 1|V2] = Eltf{TTAfT<N—_pZITZl —I4> }

= ﬁ [5 tr(A;Va) + 4 te(TT A, TM3)] + O,((N — p) 1),

- - 1 [ - N 1 .
tr{ TTB,-T(—N Z'Z, - 14) TTAI-T<—N Z'Z - 14> }
-p -p
VQ]

V)

E[C,’Y 1 | Vz] =E

. o L 1 - . 2
+tr{(TTBiV2AiT+ T'A;V,B:T) <N—leTZl —14> }

1 - . . . .
=N p{tr(BszA[Vz) +4tr(T"B,TM,T" A, TM,)

+ tI‘(B,‘ Vz) tr(A[VQ) +5 tr(TTB,‘I}zA[T + TTA,'VzB[T)
+4tr((T"BVA,T + T A VAaB.T)M2)} + O, (N — p) 1),
Elsi,1ci,01 V2] = b gEbi1ci0|Val,

Els;2|Va] = b; o (E[b} | |V2] — bi.oE[bi 2| V2]),

P =T p A 1 o1
——EB\t{ T B\T|\————Z,Z, -1
ity

N - . 1 .
X tr{(TTB,- VAT + T" A4;V,B;T) (N—_pzle - 14> } ‘ Vz}

Elb; 1¢i 0| V2]
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2 o
— L {B(DB VoA Vs + VoA VB, V)}

(N-p)
+2tr(T " B;TM,) tr{(T "B V>A;,T + T" A;V,B,T)M,}]

+0,(N=p)7),

2
E[blzl‘Vz] = (]vli—zp)zE (tr{TTBlT<ﬁZF21 —14) }) Vz
= L3 [tr{(B;¥5)*} + 2{tr(T " B,TM)}’] + O,((N — p)/?),
(N —p)
2
E[b,‘jz Vz] == (Nli p)E tr{TTB,T<ﬁZFZI —I4> } Vz]
=L _5tu(B¥h) +4te(T B,TMZ)] + O,(N — p) ).
(N —p)

Secondly, let
1
W2: ﬁ(; V2—9*>, (AlO)

then W, = 0,(1) from the central limit theorem where * =1, + p~'1Q. We
obtain the following expansion by using (A.S5).

1
V2:p(9*+_W2>7
VP
2

P > 4 AR 7
tr Ale =S 0———>4a; V2A,~V2a,j
N AR

)4 »’ T
= tr AZQ* — 35,00 54 Q*A,-Q*a,-
N> (4:427) N2

+ajo+a; + O0p(p7h),
bio=bio0,0+bio1,
Si,0 = 8i,0,0 + Si,0,1 + 8i0,2+ Op(me),
tr(M?) = tr{(Z202")°} + 2 tr{Z0Q" (p~ 2 E W2 + Z127)} + 0, (p7"),

(M) = t{(Z02")"} + 0, (p™'7),
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h(V) = h(pQ*) + O,(p™' (N — p)~'/?)

=1 + 017
where
»?
al.’fo = —72&"()71(1;9*14[9*(1[
' (N —p)
1 4 p2 T O* T *
+7ﬁ N — » tI'(A,'WZ) — msﬁo,o(ai Q A,-Wza,- + a; WZA,'Q al-) s
P’ p
a, = —ﬁsi’oﬂzaIQ*AiQ*ai - 725'[70,0(1: WrA;W-a,
' (N —p) N=p)
P2
————si01(a] Q" A;Wsa; + a] W,4,2"a;),
(N—-p)"

n
1_1_1’

* ny P 1
r(BQ") = S .
m—-1 N-p r(B2) n1—1+N—p< +n1>7

P
bio1 = N\/——p tr(B;W>),

bioo =

ni(nm — 1)(N = p)
ni(N —p)+ p(ny — 1)(m + 1)’

g
(=)
=
>
=l
=
Il

-2 -3 72
$i,0,1 = _bi,O,Obi,O-,h $i,0,2 = bi,o,obi,o,la

Ey=inE | +ihEyy,

- -1/2 p
Eio=(N-p ———A;
Js ( ) [ N_p

2
P * * P * *
+———=5j003 BiR2°A; + A2 B; + 5 0.0 ——a;2°4;Q2 aB}
(N—p)z ./,0,0{ ) J J ) '/'O’ON—p J J ad

)

2
Ej,l = (N - P)il/z(]vli—’f.?j’o’l(BjQ*Aj + Aj.Q*Bj + Sj’()_yoajTQ*AjQ*aij)

1
+ ﬁsj%ojo(a]TQ*Aj Wgaij + ajT WZA]Q*HJB]) + 5.0, lajT.Q*Aj.Q*aij

Let
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Mg =inMj , +iM;

R/ P’ O
Mj,O :N—p (N_p)Zslzooa/T‘Q A].Q llij"‘Aj

Nli ij,O,O(B./‘Q*AJ +4,Q2°B;) }
then we have

exp(itiay o + ita; o) = exp{tr(MgW)}.
Therefore, we can expand ¢(¢) as follows:
2

. )4 >, P T >
¢(t) = E|exp|it; tr(A\V2) —s1.0————a;, VA Wha
0 ) st

~ 2 ~ ~
+ itz{N]i » tr(A2V2) — 52,0 (Nli—mza; £¥ ) Vzaz}

x exp{tr<M§>}{ tr(MS)}h<V2> LON - p) Y

4
e =
+3\/N—p

— exp{(Z02°)2}[1 + tr{ (202°)*}}A(pR2")

2
X exXp lill{Np » tr(AIQ*) — S1.0,0(Npim2a1T9*A19*“1}

2
. p * p T N* *
ity tr(A, %) — s 00————a, 2" A, Q% a,
{N—p (4:2°) PN - p)?

x Elexp{tr(MgW2)}[1 +itia; | + ita; |
+2tr{Z0Q* (p~1PE W, + £:2%)}]] + O1.
From above result and and Lemma A.6,

Elexp{te(MoW>)}h"(V2)]

X e:xp{—pl/2 tr(M; ) + p~ 1% tr

QM; (1 - %M{;)I] }
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= expltr{ (L4 + 2p "' 2)(M;)*}YE[h* (Z) Z>)]

|13 e+ 30720037} + 07

Z, ~ px4<M<I—%M§>1,<I jﬁM0> @1)

The moments are given by

where

E[tr{Z,Q" (p 2502 Z, + 212°)}] = O(p),

: o
Blu] = sl @ A Ll Wad )
3/2 - 5
B (prisz[S/,a 1(a) Q" A;Wha; + a) WaA,Q" )],
Els; 02] = b3 y—L— E[{tr(B;W5)*}]
57.0,2 '/’O’O(N—p)z jYV2 )

E[{tr(B;W3)?}] = 4{tr(B;M)}* + O(p~'/%) = 0(p™'/?),

Ela] Wod;Waaj] = E[te(B;Wrd;Wh)] = 4 (Mg BiM Q7 4,27) + O(1) = O(1),

* 1, P — T * T
E[Sj,(),lajTQ AjI’Vzaj} = NL_pbj,g,OE[tr(Bj%) tr(BjQ A]I’VZ)},

E[tr(B;W>) tr(B; Q" 4;W1)] = 4 tr(B;M) tr(B;4;2" M) + O(1) = O(1),
where
. [ i
W, = ﬁ(pZzTZZ—Q )
Since (14 + 3»10‘1!2)(M5‘)3 = 0y, we have the following expansion:
Elexp(it Dy)] = exp{it g — " At/2} + O, (A1)
where 7 = (;,7,)" and

4
”j_N_

2
* p TO* *
tr(A4;,2%) — i 0.0———a, Q*°4,Q%a;,
P (] ) J,O,O(N_p)z 'j J J

n—1 p p(ny —1) 1
= AP+ £ p 1-5(1
N—p{ N P o
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b szz(nl—l)(n—l) <1+2(n1—1)1/2+n1—1>
ni{(N —p)”+m(N —p)p(m —1)(m + 1) n

n—1 p p(m —1) 1
= A p— 1-b1+— )
Np{ +N2 n% +p +n% + 0On,

A A o L
A= (/1; /12122 )7 Ay = 2[tr(Z;, 027 E;,02%) + tr{(Is + 2p~ ' Q)M M o},

hy = w{(5;,02°)"} + u{(Ls + 2p7'2)(M} )’}

_1)?
4[N <Az+£_bzﬁz+bz£)+ol,
(N-p) N m ny

Ay = tr(E),02°5,,02%) + tr((ls + 2p ' Q)M (M)

= 0.

A.6. Derivation of 1(4) in the case of dr. In this section, we show that x(A)
is decided as (9) in the case of dr and ¢ = 0. dl(,_i> is estimator of dr for the
method II and is derived as

— —k. _ _ — 1 —(—k, A —
o) = G ) s S ) |

=tr(4;U) — (1 - 2)T;'a"UA; Ua,

N&
T) =—=+(1-2) t(BU),
N
where f;ik’ " and SCF4 are given by (8), and U is the same as U in Lemma 1,
and a = (O,nfl/z, )", B=aa" and
N;! 0 —N, 2
N4 )y — )y —
A== 0 —m{NTT m Ny
12 320 (M) - _ _
—N, ! ”1/ {Nl( '} 13,(—)2) (2 *,\1,<—/},>>

1

Put W, = /N —p{(N — p) 'V, —I3}. From 1 — /N, we have an expansion
of d}_;*)(x) as

1

P

tr(A;75) + a0+ ar + O, (N — p) ™),

tr(A;U) — (1 = )T, 'a" UA,Ua = ¥
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P

—T ~
W tr(T A}_.TW])7

apg = —

P S L C L AR R
| =— TIWD) +———— 2A4; Vsa,
(N-p)° N (N - p)?

where T = p~1/2T and ¥, = TT'. Then, the characteristic function of " (x)
is expressed as

E[e”dr{ﬂ(")} = E[E [exp{it(Nli 5 tr(A; 172) +ag+ a1> + Op((N — p)_l)} ’ Vz”,

E{exp{itNi » tr(4; 172) +ao+ay + O,((N — P)l)} ‘ VZ}

_ exp{ith . tr(A,sz)}E[{eif”O(l +itay)} | Vo] + O,(N = p) 7).

Put My = itp(N — p)73/2TTA,1T. From Lemma A.6,

E[{eimo(l + ital)} | Vz]

—(N-p)/2 o
=L —\/Nz—_pMo exp{—\/N — p t((Mo)}Elg(Z] Z))]
= exp(tr(MH 1 + 5 wM3) [ELG(Z 2]+ O,((N = ) )

where

. 2 -1
Z, ~ N(N—p)><3 (0, <I3 - ﬁM()) ® INp>7

Z~1TZ~1 ~ W3<N—p, (13—

=) )

are independent of V,, and My = —itp(N — p) **TTAT and g(V}) = 1 + ita;.

The moments are given by
=T 4 1 >T 5 ?
tr< T AAT(N——[)ZI Z1 — 13)

2
K V4 T 1 %
+————=a WA, Vsa
N (N -p)?

Elai|V)] :NL_pE
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1 _ L
=57 [4tr(A; V) +3tr(T" A4, TM,)]

+ 7)2aTI~/2Aﬂ~/2a+0p((N—p)’l)

1 ~ . 4 AT
_N—_p 4tr(A)V2)—3llm tr{(AjV2> }

+£p72aTI7A~I7a+O((N— )
N(N—p)2 24,V P p .

Secondly, let W> = /p(p~'V,— Q%), then W, = O,(1) from the central limit
theorem where 2 =I5+ p~'©2. We can obtain the following expansions:

Va=p(@' +p ' PW),
tr(Mo) = itp(N — p) > tr(4V3),
tr(AVy) = tr(A(Q* + p~ 12 W>))

=tr(AQ") + p~ 2 tr(AW>),
te(M3) = (it)’p*(N = p) = tr{(4V2)*},
tw{(4V2)} = w{(4(Q" + p~'PW2))%}

= tr{(4;Q°)*} + 2p7 1% tr(A4,2° 4, W) + 0,(1),

a' VA, ha=a"Q 4,2°a+ 0,(1) = 0,(1),
w(M3) = —(it)*p* (N = p) " u{(4;)*},
tr{(4; 1)’} = tr{(42°)°} + O, (p™'?) = O 2.

Since V, ~ W3(p,I5,R2), we obtain the following expansions:

exp{itNPi » tr(A, V) + tr(Mg)}

P p1/2
= eXp{ilN tr(Ai.Q*) + ilN > ‘[I'(A;L W2)

(0PN~ p)” tr{(Am*f}}

x exp{2(it)p¥A(N — p) > (4,2 A, W2) + O,(N — p) 1)},
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exp{2(it)*p**(N — p) > tr(4,2° A, W2) + Op(N = p) ')}
= 14 2(it)*p>*(N = p) 7> tr(4,Q° 4, W) + O,.
Put M = itp’*(N — p) °A4,. From Lemma A.6, we can have

Elexp{tr(M; W2)}h(Z, Z5)]

-p/2

2 ElW(Z) Z5)]

I——M;
3 \/13 0

) 1
X exp [—pl/z tr(My Q") 4 p~1/? tr{!)M(’)‘ <13 — ﬁM§> H

= expltr{(Is + 2p ') (M) E[(Z, Z,)]

X [1 + %ﬁ tr{(1; + 3p“!))(M5‘)3}] + 0.

Moreover, since tr{(I3 + 3p’1!2)(Mg)3} = 02,
Elexp{tt(MyW1)}h(Z, Z,)]
= expltr{(I5 + 2p'Q)(M;)*YJE[h(Z, Z,)] + Oy,

where h(Z) Z;) = (14 2(it)*p~ /2N — p) ' tr(4,Q2* 4, W>)), and Z, and Z
are the random matrices that satisfy

V= Z, Z,,

Z) ~Np3s(M, I3 1),

Zy ~ Npa(M(L — 2p™ M) (I = 2p7 M) @ 1,).
The moments are given by

E[h(Z) Z3)] = 1+ 2(i6)*p (N = p)" tr(4,2" 4, E[W3)),

B[] = ws{ (1 +%Ma‘)l

2 ! 2 !
+p—‘(1 +—M*> Q(I3+—M*> — Q" =0,
RV vp /
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where
7 l o %
W) =.\/p ;Zzlz—!l .

From the above result, we have

n :N ptl‘(Ai.Q*)

N2 1-A)% 21—
= S L 2_( H?f—F ( <—ﬂ>)p )
2(N - p) MY ) Ny ©

57=2 [pz(N —p) 7 tr{(4,2%)%} +ﬁ tr{(I5 + 2p19)Af}1

_ {N(fi)}zN 2 pni )4
- (47 + e T, )
(N —p) O A

Therefore, we have the characteristic function ¢(z) of dl(,_l)(x) as

¢(1) = expl(ity, — t*s7/2) + 0.
By using the inversion formula, we have
Pr(dy " (xn) < 0) = @(—s; ;) + O1.

From Theorem 3, the probability of misclassification P(2|1) of dr is given
as

Pr(dl(,fl)(x) <0|xell)

LN-DN( 5 p pN\( . p p\"?
o = (222 (42PN (pp Ll P 0,.
2( N ) ( A Nl>< +N1+Ng> + O

Since A=1-x/N,

1 /N V4 172 V4 V4 V4 p ~1/2
-1 2 2
S < N ) ( N> N1>< Ny Nz)

[\
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1/2 ~1/2
kp (N—p 2, PP
A S N 4 L S
nlN( N ) ( +n1+N2> + 02

LIN=-p\N?( 5 p N[, P, P\
(222} (L PN L P 0,.
2( N ) N TN Mty O

Therefore, x is given as (9).
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