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ABSTRACT. The Besicovitch covering theorem is well known to be the useful tools in
many fields of analysis. Federer extended the result of Besicovitch to a directionally
limited metric space. In this paper, we prove the Besicovitch covering theorem for
parabolic balls in Euclidean space, although the parabolic metric is not directionally
limited.

1. Introduction

Covering theorems are well known to be fundamental tools in many fields
of analysis. Although there are several types of covering results, all have the
same purpose; from an arbitrary cover of a set in a metric space, one extracts
a subcover as disjointed as possible. In this paper, we consider the so-called
Besicovitch covering theorem. The Besicovitch covering theorem is more
powerful than the well-known result of Vitali, because it does not require
us to enlarge balls. Besicovitch [2] proved this theorem for disks in the plane,
and Morse [9, Theorem 5.9] extended it to balls and more general sets in finite
dimensional normed vector spaces. (For a simple proof of Morse’s result, see
[3, Theorem 5.4].) The best constant in the Besicovitch covering theorem was
studied by Loeb [7], Sullivan [10] and Fiiredi-Loeb [6]. Moreover, Federer
[5, Theorem 2.8.14] extended the result of Besicovitch to directionally limited
metric spaces (see Definition 2.1). In this paper, we prove the Besicovitch
covering theorem for parabolic balls. Note that the parabolic metric is not
directionally limited. See Proposition 2.2. A more general result about the
Besicovitch covering theorem was proved by Le Donne and Rigot [4, Theorem
3.16]. In this paper, we give a different simple proof of the Besicovitch
covering theorem for parabolic balls in Euclidean space using homogeneity of
the parabolic metric.

2010 Mathematics Subject Classification. 05B40, 52C17, 28A75.
Key words and phrases. Besicovitch covering theorem, parabolic balls.



280 Tsubasa IToH

A point in the Euclidean n-space R”, n > 2, is denoted by x = (xy,...,x,)
or (x',x,) where x' = (x1,...,x,1) e R" . Let
X',y = /3 g
be the Euclidean norm of x’ = (x1,...,x,_1) € R""!. For x,y € R", we define

the parabolic metric d(x, y) by

d(x,y) = max{|x" = y'l, 1, v/|xn = yul}- (1.1)

Let B(x,r) ={yeIR":d(x,y) <r} denote the closed parabolic ball centered
at x € R"” with radius » > 0. Let m be the n-dimensional Lebesgue measure.
Note that there exists a constant o, > 0 such that m(B(x,r)) = a,"*! for any
xeR" and r > 0.

THEOREM 1.1. There exists a constant N = N, > 0, depending only on n,
with the following property: If F is any collection of closed parabolic balls in
R" with

R =sup{diam B: Be ¥} < «©

and if A is the set of centers of balls in &, then there exist 9,,..., %y C F such
that
(i) each 9; is a countable collection of disjoint balls,
N
g AcU U B
j=1Be%;
REMARK 1.2. Aimar-Forzani [1] proved the following weak version of

Besicovitch covering theorem for other parabolic balls. Let 0 < a; <ay <---
<a, and p > 1. Observe that for any x = (xj,...,x,) € R"\{0} the equation

of r
P P
(M) ++<M) =1
rai 7an

has a unique positive solution, which we call r,. We define p: R" x R" — R
by

ey if x# Y,

Although p is not a metric in general, p is a quasi-metric, that is, there exists a
positive constant C > 1 such that p(x, y) < C(p(x,z) + p(z, y)) for any x, y,z €
IR".  We define the p-ball B,(x,r) centered at x = (xi,...,x,) € R” with radius
r>0 by
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By(x,r) = {y e R": plx, ») <7}

_ p _ p
:{y: (yla"'7yl1) EIRn : <|XIraly1|) +"'+(|x—nra yn> < 1}

They proved that if a,/a; < p, then there exists a constant C > 0 with the
following property: If & is any collection of p-balls and if the set 4 of centers
of balls in & is bounded, then there exists ¥4 C & such that the balls in ¥
cover A, and every point in R” belongs to at most C balls in .

Applying Theorem 1.1, we can prove a weak version of Besicovitch
covering theorem for our parabolic balls. Our parabolic balls are used in
many fields of analysis more commonly than p-balls of Aimar-Forzani. In
particular, the parabolic metric (1.1) plays an important role in the study of the
mean curvature flow.

2. Proof of Theorem 1.1

Before we prove Theorem 1.1, we show that the parabolic metric is not
directionally limited. Federer [5, 2.8.9] introduced the following notion of the
directionally limited metric (slightly changed to suit our purposes). We write
Card(4) to denote the cardinality of the set A.

DEeriNiTION 2.1, Let (X, d) be a metric space, A C X and £ >0, 0<7y <
é, {eN. The metric d is said to be directionally (&,#,{)-limited at A if the
following holds:

(i) Ifa,b,ce A with 0 < d(a,c) < d(a,b), then there exists a point x € X
such that

d(a,x) =d(a,c) and d(b,x) =d(a,b) — d(a,c). (2.1)

(i) If ae 4 and BC AN (B(a,&)\{a}) such that

U

(x,¢)
d(a,c)

>

whenever b,ce B with b # ¢ and x € X satisfying (2.1), then Card(B) < (.

Federer [5, Theorem 2.8.14] proved that the generalized versions of
Besicovitch covering theorem for directionally limited metric spaces. However
the parabolic metric is not directionally limited. The following proposition
was shown by Menne [8].

PropoSITION 2.2. Let A CIR". Assume there exist a,b,c € A such that

0 < d(a,c) < d(a,b) = \/|an — bal. (2.2)
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Then the parabolic metric is not (&,n,()-directionally limited at A for any & > 0,
0<p<l CeN

ProoF. We prove that there exists no x € R” satisfying (2.1) for a,b,c e
A. Assume that there exists x € R” satisfying (2.1), that is,

d(a,x) =d(a,c) and d(b,x) =d(a,b) —d(a,c).

Then we have

\/‘an - xn| + \/|xn - bn‘ < d(a,X) + d(x, b)
= d(a,b)
= \/|a” - b”| < \/|al1 - xn| + \/|xn - bn"

Observe that either x = a or x = b holds. This would contradict the assump-
tion (2.2). Hence there exists no x € R” satisfying (2.1) for a,b,c € A and so
Proposition 2.2 holds. O

For r > 0 we define the scaling transformation f, by

x' x,

fr(x) = filx' %) = (7’7_2) for xe R".

Next we observe the following property of f,.

ProrosiTiON 2.3. Let x,y e R" and r,ri,r, > 0. Then
(1) filx+ )= filx) + f:(D),
(ll) frl Ofrz = frz ofl‘l = frlrv
(i) d(f(x), £() = 1d(x, ).

Proor. Let x = (x',x,), y= (), yu) e R".
(1)

flovt ) = (S (L8 (2 25) = )+ A0

r r2 rr? r
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(iii)

d(ﬁ(x),ﬁ(y)) max{|x/_y/|nl, |xnr_ J’n|}

r

1
= max{|x" — ¥'|, 1, V%0 — yal}

1

We divide the proof of Theorem 1.1 into several lemmas. Our proof is
based on the result by Morse [9, Theorem 5.9]. One of the new ingredients in
our proof is Lemma 4, which requires the geometric properties specific to the
parabolic metric d. Hereafter, let % be a collection of closed parabolic balls
in R" with

R=sup{diam B: Be #} < w
and let A be the set of centers of balls in Z.

LemMma 1. If A is bounded, then there exists {B(x,,r,)}j \ C F such that
(i) ifi< ], then x; ¢ B(x;,r;) and r; < 2r;,
(i) AcC U 1 B(xj. 1))

Moreover (i) zmplzes that {B(x,,r,/3)} ', are digjoint.

Proor. Choose any ball B(x,r) € # such that r; > R/4. Inductively
choose {B(xj,r;)} as follows. Assume that B(xi,r),...,B(xj_1,rj—1) are
defined. Let 4; = A\|J/| B(x;,r;) and let R; =sup{r: B(x,r)e 7, ,x e 4;}.
If 4; =¥, then stop and set J=j—1. If 4; # (&, then choose any ball
B(xj,rj) € # such that x;e€ 4; and r; > R;/2. If A; # & for all j, then set
J =

8

i) Assume that i< j. Then xjeAj:A\Ul.f;l B(x;,r;) and so x;¢
B(x;,r;). Since x; € A; C A,

—

2r; > Ry =sup{r: B(x,r) e #,xe A;} > r;.
Thus the property (i) holds. Moreover, we obtain

2
d(x,-,xj) >r; :ﬁ—f—l

L
33 3

Ty
3
Therefore {B(x],r,/3)} ', are dlSjOlIlt

(i) We prove that 4 C U 4 B(xj,r;). If J < oo, this is trivial. Suppose
J = 0. Since A4 is bounded, there is a constant Ry > 0 such that B(x;,r;/3) C
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B(0, Ry) for all j. Because {B(x;,7;/3)}2, are disjoint, we have

00

D o(r/3)" =" m(B(x;,1,/3))
=1

J=1

=m ( O B(x;, rj/3)> <m(B(0,Rp)) < o0

j=1

Hence lim;_,, r; = 0.

If xeA, then there is a ball B(x,r)e #. Since lim;_, r; =0, there
exists j such that r; <r/2. Assume that x ¢ U-i’:_l1 B(xj,r;). Then x e A4; and
S0

R;

> 7’ %sup{r B(x,r) e F,x€ A;} >

l\-)\‘i

which is a contradiction. Hence we have xe [J/| B(x;,r;) and so the
property (ii) holds. ]

LemMmA 2. Given balls {B(Xiv”j)}}lzl and a finite subset I C {i:i<J}.
Then there exists a finite partition Ly,L,,...,Lg of I such that

(i) if j=12,...,K, m(j) =min L; and i€ L;, then X, € B(x;,1;),

i) ifi<j< K then m(i) < m(j) and X, e,éB(xm S Tm(j))-

Proor. Let m(l) =min/ and let L; = {ie[l: x,q) € B(x;,r;)}. Induc-
tively choose {L;} as follows. Assume that L;,...,L; | are defined. Let J; =
I\U{;l Li. If I; =, then stop and set K =;—1. If I; # ¢J, then let
m(j) =min [; and let L; = {i € I; : x,,jy € B(x;,r;)}. Since I is finite, there is
a j such that I; = &. Obviously, the property (i) holds.

Assume i< j<K. By I; C I, we have m(i) = min [; < min ; = m(j).
Since m(j) € [;\\Li, we see Xy & B(Xp(j),"m(;)). Thus the property (ii) holds.

O

LemMMA 3. Suppose that balls {B(x;, rj)}jj , satisfy the property (i) in
Lemma 1, k< J, I C{i:i<k} and B(x;,r;) N\ B(xy,ri) # & for all iel
(i) If ri < 3rg for all iel, then Card(I) < 30"+
(it) If I # &, m=min I and x,, € B(x;,r;) for all i eI, then Card(I) <
5n+l.
(i) If 3rx < for all i e I and x; ¢ B(x;,r;) for all i,j eI with i < j, then
Card(1) < 7.

We obtain Lemma 3 (iii) by the following crucial lemma.
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LEMMA 4. Suppose that {B(x;,1j)};_ 5 satisfy
B(xj, 1)) N B(x3,r3) # &, x3 ¢ B(x;, 1) and 3r3 <y for j=1,2.
Let di = d(xj,x3) for j=12. If
di < dy and d(fa, (x1 — x3), fa, (X2 — x3)) < 1/3,
then xi € B(xy,r2).
Proor. Let 0 <l=d;/d, < 1. Fix ye B(xz,r2) N B(x3,r3) and let
z=y+filx1 =)

We show that z € B(x;,r;). By Proposition 2.3 and the translation invariance
of d, we have

d(x3 = fi(x3),x2 = fi(x1)) = d(fi(x1 — x3),x2 — x3)
=d(f1)a, © Ja, (X1 = X3), f1/a, © Jar (X2 — X3))
=d> - d(fa,(x1 — X3), far (X2 — x3))
dy

< —. 2.3
<2 (23)
Since y € B(x3,r3), we obtain that
1 1 1 r
1—=)y —(1== ! =(=-1 r— ! 3
’( l)y ( l) (X3> - (l )|y (X3> |n71 < l ’
1 1 1 3
\/Kl—l—z)qu—(l—l—z)(xs)n :\/(1_2_1) |J’n—(X3)n‘ST7
and so
r
d(y = fi(y).xs = filxs) < 7 (24)
By x3 ¢ B(xy,r1) and 3r; <r;, we have
d = d(xl,X3) > r; > 3r;. (2.5)
Since y € B(xa,12) N B(x3,r3) and 3r; < ry, we get
4
dy =d(x2,x3) <d(x2,p) +d(y,x3) <m+r3 < =r. (2.6)

3
Combining (2.3), (2.4), (2.5) and (2.6), we obtain
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d(z,x2) =d(y — fily),x2 — fi(x1))
<d(y— fi(y);x3 = fi(x3)) + d(x3 = fi(x3), x2 — fi(x1))
r3 d2 < d2 d] é < 87’2

< =
STty sS4 3ty =9 =

Hence we see that z € B(xy,r).
Finally we prove x; € B(x,,r;). Observe that

xi=y+ fiplz=y) = (L= 0y +1, (1= ) yu+ Pzy).
By y,z € B(xy,r2), we obtain
[Gen)" = (2) oy < (L= 1)+ |91 = (62) oy + 1 |27 = (x2) ],y
<(I=Dra+1Ir =r,
[(61), = ()l < (L= 12w = (2), | + 2+ |z = (x2),| < (L= )3 + PPry = 13,
and so xj € B(xy,r2). ]
PrOOF OF LEMMA 3. (i) Assume that r; < 3r; forall iel. Fixiel. By

B(x;,11) N B(xk, 1) # &, we have for any y e B(x;,r;/3)

’
d(y,xi) < d(y,x;) +d(xi,xx) < §1+Vi + i < Sry.

Hence we see that B(x;,r;/3) C B(x,5rr). Because {B(xj,rj)}/il satisfy the
property Lemma 1 (i), r, < 2r; for all iel and {B(x;r;/3)},., are disjoint.
Hence

o (5r)" T = m(B(xx, 5r¢)) > m(U B(xi,ri/3)> = Z o (ri/3)" !
iel iel
> o,(r /6)" " - Card(1),

so that Card(l) < 30"*!.
(i) Assume that I # ¢, m =min [ and x,, € B(x;,r;) for all iel. Let
ieI\{m}. Since r; <2r, and x,, € B(x;,r;), we obtain for any y € B(x;,rn/2)

d(y,xm) < d(y,x;) +d(x;, %) < Fm/2+ 71 < Srp/2.

Hence we see that B(x;,7,,/2) C B(xm, 5rm/2). 1f i,j e I\{m} with i < j, then
X; ¢ B(xi,1i), Xi € B(Xp,¥m), Xm € B(x;,r;) and so that

d(x;,x;) > ri = d(Xpm, X;) > I'n.
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Therefore {B(x;,rn/2)};.,; are disjoint. Hence
0 (51 /2)" ! = m(B(xx, 511 /2))

> m<U B(X;, /2)) = 0, (r/2)""" - Card(I),
iel
so that Card(I) < 5"+,
(iii) Assume 3r, <r; for all iel and x; ¢ B(x;,r;) for all i,jel with
i<j. Leti,jel with i< j Since x; ¢ B(x;,r;) and x; ¢ B(x;,r;), it follows
from Lemma 4 that

d(f(.f,‘(xi - xk)aft.l,‘(xj - Xk)) > 1/31

where d; = d(x;,xx) and d; =d(xj,xc). Let y;= f4(x;—xx) for iel. By
d(yi, y;j) > 1/3, {B(»i,1/6)},., are disjoint. Since

d(0) = d(fa (), (o)) = i w) = 1,

1

we have B(y;,1/6) C B(0,7/6) for ielI. Hence

iel

4,(7/6)"" = m(B(0,7/6)) > m (U B(y;, 1 /6)) = a,(1/6)""" - Card([),

so that Card(I) < 7"+ O

ProOOF OF THEOREM 1.1. Assume that 4 is bounded. By Lemma 1, there
exists {B(xj,rj)}_/.":l C & such that

(1) if i< j, then x; ¢ B(x;,r;) and r; < 2r;,

(i) AU BGy.r).
Fix k>2. Let L, ={l<i<k:B(x;r)NBxyr) # I} and let Ly=
{iel;:r;<3ri}. Then there exists a finite partition L;, L,,...,Lg of It\Lo
satisfying the properties (i), (ii) in Lemma 2. It follows from Lemma 3 that
Card(Ly) < 30", Card(L;) < 5" for j=1,...,K and K <7"*!. Therefore
we obtain

K
Card(I) = Card(Lo) + Y _ L; < 30" 435"+,
=1
The right hand side of this inequality is independent of k > 2. Set N =N, =
3071 43571 1. Next we determine %, ...,%y. We defineo: {1,2,...} —
{1,2,...,N}. Let o(i)=1i for i=1,...,N. For k> N inductively define
o(k) as follows. Assume that o(1),...,0(k — 1) are defined. Since

Card(Il) = Card({1 <i < k : B(x;, 1)) N B(xk,1i) # I}) < N,
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there exists /€ {1,2,...,N} such that B(x;,r;) N B(xk,ri) = & for all j with
a(j)=1 (1<j<k). Set olk)=1. Now, let 4 ={B(x;,r;):0(i)=j} for
j=1,...,N. By the construction of o, each ¥; consists of disjoint balls in
Z. Moreover, we see that

N

ACU (xj,17) L:JLJ

J=1

Thus Theorem 1.1 holds for the case that A is bounded.
Finally we extend the result to general (unbounded) A. For leN,

~

set A4j={xeAd:3R(I-1)<d(x,0) < 3Rl} and 7' ={B(x,r)e Z :xe A4;}.
Then there exist countable collections %/, ..., %} of disjoint balls in #' such
that

A;CLNJUB.

J=1 Bey/

For j=1,...,N, let

oo o0
21-1 21
= =1

If Be %l then B C {xeR": R3] -1) <d(x,0) < R(3/+1)}. Therefore
each %; (1—1 2,...,2N) is a countable collection of disjoint balls in Z.
Moreover we see that

Thus Theorem 1.1 holds. O
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