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Abstract. In the present paper, we discuss two categorical characterizations of local

fields. We first prove that a certain full subcategory of the category of finite flat

coverings of the spectrum of the ring of integers of a local field equipped with coherent

modules completely determines the isomorphism class of the local field. Next, we also

prove that a certain full subcategory of the category of irreducible schemes which are

finite over the spectrum of the ring of integers of a local field completely determines the

isomorphism class of the local field.

Introduction

Let K be a local field, i.e., a field which is isomorphic to a finite extension

of either Qp or FpððtÞÞ for some prime number p. Write OK for the ring of

integers of K and

BK

for the category of irreducible normal schemes which are finite, flat, and gener-

ically étale over OK [cf. Definition 1.2]. Then one may verify that the category

BK is, by the functor taking function fields, equivalent to the category of finite

separable extensions of K [cf. Lemma 1.4, (ii)]. Thus,

the category BK completely determines and is completely

determined by the absolute Galois group of K

[cf. Theorem 1.10]. In particular, one may conclude from [4], § 2, Theorem,

that

the equivalence class of the category BK does not determine

the isomorphism class of the field K

[cf. Corollary 1.12, (i)]. In the present paper, we introduce two categories

which contain, as a full subcategory, the above category BK and prove
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that these categories completely determine the isomorphism class of the field

K .

First, let us write

CK

for the category of pairs of objects of BK and coherent modules on the objects

[cf. Definition 2.1] and take a full subcategory

CK

of CK which satisfies the condition ðCÞ [cf. Definition 2.3], i.e., such that,

roughly speaking,

(C-a) CK is closed under the operation of taking submodules, and

(C-b) CK contains every object of CK whose module is torsion and

generated by a single element.

Then, by the conditions (C-a) and (C-b), one may regard the category BK as

a full subcategory of CK [cf. Lemma 2.4, (iii)].

Next, let us write

FK

for the category of irreducible schemes which are finite over OK [cf. Definition

3.1] and take a full subcategory

FK

of FK which satisfies the condition ðFÞ [cf. Definition 3.4], i.e., such that,

roughly speaking,

(F-a) FK contains the object SpecðOKÞ,
(F-b) FK is closed under the operation of taking normalizations of

objects which are the spectra of integral domains of dimension one,

(F-c) FK is closed under the operation of taking finite separable exten-

sions and subfields of the function fields of objects which are the spectra of

integral domains of dimension one, and

(F-d) FK is closed under the operation of taking closed subschemes.

Then, by the conditions (F-a), (F-b), and (F-c), one may regard the category

BK as a full subcategory of FK [cf. Lemma 3.5, (v)].

The main result of the present paper is as follows [cf. Theorem 2.14;

Theorem 3.20]:

Theorem A. Let K�, K� be local fields. Then the following hold:

(i) Let CK� , CK� be full subcategories of CK� , CK� as above, respectively.

Suppose that the category CK� is equivalent to the category CK� . Then the field

K� is isomorphic to the field K�.
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(ii) Let FK� , FK� be full subcategories of FK� , FK� as above, respectively.

Suppose that the category FK� is equivalent to the category FK� . Then the field

K� is isomorphic to the field K�.

In § 1, we discuss the category BK . In § 2, we prove Theorem, (i). In

§ 3, we prove Theorem, (ii). In the proof of Theorem, the main result of [2]

plays an important role. Here, let us recall that the main result of [2] was

generalized in [1].

1. Category of finite flat coverings

In the present § 1, let us discuss a category of certain finite flat cover-

ings of the spectrum of the ring of integers of a local field [cf. Definition

1.2].

Definition 1.1. If K is a local field, i.e., a field which is isomorphic to a

finite extension of either Qp or FpððtÞÞ for some prime number p, then we shall

write
� OK � K for the ring of integers of K ,
� mK � OK for the maximal ideal of OK , and

� K ¼def OK=mK for the residue field of OK .

In the remainder of the present § 1, let K be a local field.

Definition 1.2. We shall write BK for the category defined as follows:
� An object of BK is a pair ðS; fÞ consisting of a nonempty irreducible

normal scheme S and a morphism f : S ! SpecðOKÞ of schemes which is finite,

flat, and generically étale. To simplify the exposition, we shall often refer to S

[i.e., just the domain of the morphism f] as an ‘‘object of BK ’’.
� Let S, T be objects of BK . Then a morphism S ! T in BK is defined

as a morphism of schemes from S to T lying over OK .

Definition 1.3. Let S be an object of BK . Then we shall write KS for

the function field of S.

Lemma 1.4. The following hold:

(i) A terminal object of BK is given by the pair ðSpecðOKÞ; idSpecðOK ÞÞ.
(ii) The assignment ‘‘S 7! KS’’ determines an equivalence of categories of

BK with the category defined as follows:
� An object of the category is a finite separable extension of K.
� A morphism in the category is a homomorphism of fields over K.

Proof. These assertions follow immediately from the definition of the

category BK . r
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Definition 1.5.

(i) We shall say that a morphism f : S ! T in BK is Galois if the finite

separable extension KS=KT determined by f [cf. Lemma 1.4, (ii)] is Galois.

(ii) We shall say that an object S of BK is Galois if there exists a Galois

morphism from S to a terminal object of BK [cf. Lemma 1.4, (i)].

(iii) We shall say that a projective system ðSlÞl AL consisting of objects

and morphisms of BK is a basepoint of BK if Sl is Galois for each l A L, and,

moreover, for each object T of BK , there exist an element lT A L and a

morphism SlT ! T in BK .

(iv) Let ~SS ¼ ðSlÞl AL be a basepoint of BK . Then we shall write

K ~SS ¼
def

lim�!
l AL

KSl

for the field obtained by forming the injective limit of the KSl
’s and

P ~SS ¼
def

lim �
l AL

AutðSlÞ

for the profinite [cf. Lemma 1.4, (ii)] group obtained by forming the projective

limit of the AutðSlÞ’s.

Lemma 1.6. The following hold:

(i) There exists a basepoint of BK.

(ii) Let S be a Galois object of BK. Then AutðSÞ is isomorphic to

GalðKS=KÞ.
(iii) Let ~SS be a basepoint of BK. Then the field K ~SS is a separable closure

of K. Moreover, the profinite group P ~SS is isomorphic to the absolute Galois

group GalðK ~SS=KÞ of K.

Proof. These assertions follow, in light of Lemma 1.4, (ii), from ele-

mentary field theory. r

Lemma 1.7. Let S, T be objects of BK; f : S ! T a morphism in BK.

Then it holds that f is Galois if and only if, for each two morphisms g1; g2 : U !
S in BK such that f � g1 ¼ f � g2, there exists an automorphism h of S over T

such that g2 ¼ h � g1.

Proof. This follows, in light of Lemma 1.4, (ii), from elementary field

theory. r

Definition 1.8. Let S be an object of BK and ~SS ¼ ðSlÞl AL a basepoint of

BK . Then we shall write

Sð ~SSÞ ¼def lim�!
l AL

HomðSl;SÞ:
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Lemma 1.9. Let ~SS ¼ ðSlÞl AL be a basepoint of BK. Then the assignment

‘‘S 7! Sð ~SSÞ’’ determines an equivalence of categories of BK with the category

defined as follows:
� An object of the category is a nonempty finite set equipped with a

continuous transitive action of P ~SS.
� Let A, B be objects of the category. Then a morphism A! B in the

category is defined as a P ~SS-equivariant map from A to B.

Proof. This follows from Lemma 1.4, (ii), and Lemma 1.6, (iii), together

with elementary Galois theory. r

Theorem 1.10. Let K�, K� be local fields. Then it holds that the category

BK� [cf. Definition 1.2] is equivalent to the category BK� if and only if the

absolute Galois group of the field K� is isomorphic, as a profinite group, to the

absolute Galois group of the field K�.

Proof. The necessity follows, in light of Lemma 1.6, (i), from Lemma 1.6,

(iii), and Lemma 1.7. The su‰ciency follows, in light of Lemma 1.6, (i), (iii),

from Lemma 1.9. r

Lemma 1.11. Let G be a profinite group which is isomorphic to the absolute

Galois group of K. Then the following hold:

(i) It holds that K is of characteristic zero if and only if, for each prime

number l, there exists an open subgroup of G such that l divides the cardinality of

the [necessarily finite] module consisting of torsion elements of the abelianization

of the open subgroup.

(ii) Suppose that K is of positive characteristic. Then it holds that ]K � 1

coincides with the cardinality of the [necessarily finite] module consisting of

torsion elements of the abelianization of G.

Proof. Let us first recall from local class field theory [cf., e.g., [3], § 2],

together with the well-known structure of the multiplicative group K�, that the

abelianization of G [as a profinite group] is isomorphic to the profinite module

O�K � ẐZ. Next, let us also recall that if K is of positive characteristic, then,

again by the well-known structure of the multiplicative group K�, the com-

posite mðKÞ ,! O�K !! K�—where we write mðKÞ � O�K for the group of roots

of unity of K—is an isomorphism. Thus, assertions (i), (ii) follow immediately

from the [easily verified] fact that ẐZ is torsion-free. This completes the proof

of Lemma 1.11. r

Corollary 1.12. The following hold:

(i) There exist local fields K� and K� such that the category BK� is

equivalent to the category BK� , but the field K� is not isomorphic to the field K�.
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(ii) Let K�, K� be local fields. Suppose that the category BK� is equivalent

to the category BK� , and that either K� or K� is of positive characteristic. Then

the field K� is isomorphic to the field K�.

Proof. Assertion (i) follows from Theorem 1.10, together with [4], § 2,

Theorem. Finally, we verify assertion (ii). Suppose that BK� is equivalent to

BK� , and that K� is of positive characteristic. Then it follows from Theorem

1.10 that the absolute Galois group of K� is isomorphic to the absolute Galois

group of K�. Thus, it follows immediately from Lemma 1.11, (i), that K� is

of positive characteristic. Moreover, it follows from Lemma 1.11, (ii), that

]K� ¼ ]K�. Thus, since [one verifies easily that] the fields K�, K� are isomor-

phic to the local fields ‘‘F]K� ððtÞÞ’’, ‘‘F]K� ððtÞÞ’’, respectively, we conclude that

K� is isomorphic to K�, as desired. This completes the proof of assertion (ii).

r

2. Category of finite flat coverings with coherent modules

In the present § 2, let us discuss a certain full subcategory of the category

of finite flat coverings of the spectrum of the ring of integers of a local field

equipped with coherent modules [cf. Definition 2.1; Definition 2.3]. In the

present § 2, let K be a local field, i.e., a field which is isomorphic to a finite

extension of either Qp or FpððtÞÞ for some prime number p.

Definition 2.1. We shall write CK for the category defined as follows:
� An object of CK is a pair X ¼ ðSX ;FX Þ consisting of an object SX of

BK [cf. Definition 1.2] and a coherent OSX
-module FX .

� Let X ¼ ðSX ;FX Þ, Y ¼ ðSY ;FY Þ be objects of CK . Then a morphism

X ! Y in CK is defined as a pair f ¼ ð fS; fFÞ consisting of a morphism

fS : SX ! SY in BK and a homomorphism fF : FX ! f �S FY of OSX
-modules.

Definition 2.2. Let X , Y be objects of CK ; f : X ! Y a morphism in

CK .

(i) We shall say that X is scheme-like if FX ðSX Þ ¼ f0g.
(ii) We shall say that f is a scheme-isomorphism if fS is an isomorphism

of schemes. [Thus, a scheme-isomorphism is not necessarily an isomorphism

in CK .]

(iii) Suppose that X ¼ Y , and that f is an automorphism. Then we

shall say that f is a scheme-identity if fS is the identity automorphism of SX .

We shall write

AutidðXÞ

for the group of scheme-identities of X .
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(iv) We shall say that f is a rigidification [of Y ] if X is scheme-like, and

f is a scheme-isomorphism.

(v) We shall write KX for the function field of SX .

Definition 2.3. Let CK be a full subcategory of CK . Then we shall say

that CK satisfies the condition ðCÞ if

(a) the full subcategory CK is closed under the operation of taking sub-

modules, i.e., if X is an object of CK , and G �FX is an OSX
-submodule of FX ,

then the object ðSX ;GÞ of CK is an object of CK , and

(b) the full subcategory CK contains every object of CK whose module

is torsion and generated by a single element, i.e., if an object X of CK satisfies

the condition that the OKX
-module [cf. Definition 1.1; Definition 2.2, (v)]

FX ðSX Þ is torsion and generated by a single element, then X is an object of

CK .

In the remainder of the present § 2, let CK be a full subcategory of CK

which satisfies the condition ðCÞ.

Lemma 2.4. The following hold:

(i) Every scheme-like object of CK is an object of CK.

(ii) A terminal object of CK is given by the pair ðSpecðOKÞ; f0gÞ. More-

over, every terminal object of CK is scheme-like.

(iii) There exists a—tautological—equivalence of categories of BK with the

full subcategory of CK consisting of scheme-like objects of CK.

Proof. These assertions follow immediately from the definition of the

category CK [cf. Definition 2.3, (a), (b)]. r

Lemma 2.5. Let X, Y be objects of CK; f : X ! Y a morphism in CK.

Then the following hold:

(i) It holds that f is a monomorphism [i.e., in CK ] if and only if f is

a scheme-isomorphism, and, moreover, the homomorphism fFðSX Þ : FX ðSX Þ !
f �S FY ðSX Þ of OKX

-modules is injective.

(ii) It holds that f is a rigidification if and only if f is a monomorphism,

and, moreover, f is an initial object among monomorphisms whose codomains

are Y.

(iii) It holds that X is scheme-like if and only if there exists a rigidification

in CK whose domain is X.

(iv) It holds that f is a scheme-isomorphism if and only if there exist

rigidifications g : Z ! X, h : Z ! Y in CK such that f � g ¼ h.

(v) Suppose that X ¼ Y, and that f is an automorphism. Then it holds

that f is a scheme-identity if and only if there exists a rigidification g : Z ! X in

CK such that g ¼ f � g.
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Proof. First, we verify assertion (i). The su‰ciency follows immediately

from the [easily verified] flatness of a morphism in BK . In the remainder of

the proof of assertion (i), we verify the necessity.

First, suppose that fS is not an isomorphism. Then since the finite exten-

sion KX=KY determined by f is nontrivial and separable [cf. Lemma 1.4, (ii);

Lemma 2.4, (iii)], it follows from elementary field theory that there exist a finite

separable extension L of K and two inclusions i1; i2 : KX ,! L such that i1 0 i2
but i1jKY

¼ i2jKY
. Thus, by considering the two morphisms from the object

ðSpecðOLÞ; f0gÞ of CK [cf. Lemma 2.4, (i)] to X determined by i1, i2, respec-

tively, we conclude that f is not a monomorphism.

Next, suppose that fS is an isomorphism, but that the homomorphism

fFðSX Þ of OKX
-modules is not injective, i.e., that f0g0Kerð fFðSX ÞÞ �

FX ðSX Þ. Then we have the natural inclusion j1 : Kerð fFðSX ÞÞ ,!FX ðSX Þ
and the zero homomorphism j2 : Kerð fFðSX ÞÞ ! ðf0g ,!ÞFX ðSX Þ. Write Z

for the object of CK determined by the pair ðSX ;Kerð fFðSX ÞÞÞ [cf. Defini-

tion 2.3, (a)]. Then, by considering the natural two scheme-isomorphisms from

Z to X determined by j1, j2, respectively, we conclude that f is not a mono-

morphism. This completes the proof of the necessity, hence also of assertion

(i).

Assertion (ii) follows immediately, in light of Lemma 2.4, (i), from asser-

tion (i). Assertions (iii), (iv), and (v) follow immediately, in light of Lemma

2.4, (i), from the various definitions involved. r

Definition 2.6.

(i) Let X , Y be scheme-like objects of CK . Then we shall say that a

morphism f : X ! Y in CK is Galois if the finite separable extension KX=KY

determined by f [cf. Lemma 1.4, (ii); Lemma 2.4, (iii)] is Galois.

(ii) Let X be a scheme-like object of CK . Then we shall say that X is

Galois if there exists a Galois morphism from X to a terminal object of CK

[cf. Lemma 2.4, (ii)].

(iii) We shall say that a projective system ðXlÞl AL consisting of objects

and morphisms of CK is basepoint of CK if Xl is Galois [hence also scheme-like]

for each l A L, and, moreover, for each scheme-like object Y of CK , there exist

an element lY A L and a morphism XlY ! Y in CK .

(iv) Let ~XX ¼ ðXlÞl AL be a basepoint of CK . Then we shall write

K ~XX ¼
def

lim�!
l AL

KXl

for the field obtained by forming the injective limit of the KXl
’s and

P ~XX ¼
def

lim �
l AL

AutðXlÞ
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for the profinite [cf. Lemma 1.4, (ii); Lemma 2.4, (iii)] group obtained by

forming the projective limit of the AutðXlÞ’s.

Lemma 2.7. The following hold:

(i) There exists a basepoint of CK.

(ii) Let X be a Galois object of CK. Then AutðX Þ is isomorphic to

GalðKX=KÞ.
(iii) Let ~XX be a basepoint of CK. Then the field K ~XX is a separable closure

of K. Moreover, the profinite group P ~XX is isomorphic to the absolute Galois

group GalðK ~XX=KÞ of K.

Proof. These assertions follow, in light of Lemma 2.4, (iii), from Lemma

1.6. r

Lemma 2.8. Let X, Y be scheme-like objects of CK; f : X ! Y a mor-

phism in CK. Then it holds that f is Galois if and only if, for each scheme-

like object Z in CK and each two morphisms g1, g2 : Z ! X in CK such that

f � g1 ¼ f � g2, there exists an automorphism h of X over Y such that g2 ¼
h � g1.

Proof. This follows, in light of Lemma 2.4, (iii), from Lemma 1.7.

r

Lemma 2.9. Let X, Y be objects of CK; f : X ! Y a rigidification in CK.

Then the following hold:

(i) For each automorphism g of Y, there exists a unique automorphism ~gg

of X such that f � ~gg ¼ g � f .
(ii) The assignment ‘‘g 7! ~gg’’ of (i) determines an exact sequence of groups

1! AutidðYÞ ! AutðYÞ ! AutðXÞ ! 1:

Proof. First, we verify assertion (i). Since X is scheme-like, the auto-

morphism of SX given by f �1S � gS � fS determines an automorphism ~gg of X

such that f � ~gg ¼ g � f . Moreover, the uniqueness of such a ‘‘~gg’’ follows from

the fact that a rigidification is a monomorphism [cf. Lemma 2.5, (ii)]. This

completes the proof of assertion (i).

Finally, we verify assertion (ii). One verifies easily that, to verify assertion

(ii), it su‰ces to verify the following two assertions:

(1) For each g A AutðY Þ, it holds that ~gg is the identity automorphism of

X if and only if g is a scheme-identity.

(2) For each h A AutðX Þ, there exists g A AutðY Þ such that h ¼ ~gg.

On the other hand, assertion (1) follows from the description of ‘‘~gg’’ given in

the proof of assertion (i); assertion (2) is immediate. This completes the proof

of Lemma 2.9. r
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Definition 2.10.

(i) Let X , Y be objects of CK ; f : X ! Y a rigidification in CK . Then it

follows from Lemma 2.9, (ii), that we have an exact sequence of groups

1! AutidðYÞ ! AutðYÞ ! AutðXÞ ! 1;

which thus determines an outer action of AutðXÞ on AutidðY Þ:

AutðX Þ ! OutðAutidðYÞÞ:

We shall write

AutðX Þf ¼
def

KerðAutðXÞ ! OutðAutidðY ÞÞÞ � AutðX Þ

for the kernel of this action.

(ii) Let X be an object of CK and n a nonnegative integer. Then we

shall say that X is n-simple if the OKX
-module FX ðSX Þ is isomorphic to

OKX
=mn

KX
[cf. Definition 1.1; Definition 2.2, (v)].

Lemma 2.11. Let X be a scheme-like object of CK and n a nonnegative

integer. Then there exists a rigidification of an n-simple object whose domain

is X.

Proof. This is immediate [cf. Definition 2.3, (b)]. r

Lemma 2.12. Let X be an object of CK. Then the following hold:

(i) It holds that X is 0-simple if and only if X is scheme-like.

(ii) Let n be a positive integer. Then it holds that X is n-simple if and

only if there exists a morphism f : Y ! X in CK which satisfies the following

conditions:

(1) The object Y is ðn� 1Þ-simple.

(2) The morphism f is a monomorphism but not an isomorphism.

(3) Let g : Y ! Z, h : Z ! X be morphisms in CK such that f ¼
h � g. If both g and h are monomorphisms, then either g or h is an isomorphism.

(4) The group AutidðXÞ is abelian.

Proof. Assertion (i) is immediate. In the remainder of the proof, we

verify assertion (ii). The necessity follows immediately from Lemma 2.5, (i)

[cf. Definition 2.3, (a)]. To verify the su‰ciency, suppose that there exists a

morphism f : Y ! X in CK which satisfies conditions (1), (2), (3), and (4).

Then it follows immediately, in light of Lemma 2.5, (i), from conditions (1),

(2), and (3) that the OKX
-module FX ðSX Þ is isomorphic to either OKX

=mn
KX

or

ðOKX
=mn�1

KX
Þl ðOKX

=mKX
Þ. Thus, it follows from condition (4) that the OKX

-

module FX ðSX Þ is isomorphic to OKX
=mn

KX
, as desired. This completes the

proof of the su‰ciency. r
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Lemma 2.13. Let X, Y be objects of CK; f : X ! Y a morphism in CK;

n a nonnegative integer. Suppose that X is Galois, that Y is n-simple, and that

f is a rigidification. Then the subgroup AutðXÞf � AutðXÞ corresponds, with

respect to the natural isomorphism of AutðX Þ with GalðKX=KÞ [cf. Lemma 2.7,

(ii)], to the kernel

KerðGalðKX=KÞ ! AutðOKX
=mn

KX
ÞÞ

of the natural action of GalðKX=KÞ on OKX
=mn

KX
.

Proof. It follows immediately from the definition of an n-simple object

that AutidðYÞ is naturally isomorphic to ðOKY
=mn

KY
Þ�. Thus, the subgroup

AutðX Þf � AutðX Þ corresponds, with respect to the natural isomorphism of

AutðX Þ with GalðKX=KÞ, to the kernel

KerðGalðKX=KÞ ! AutððOKX
=mn

KX
Þ�ÞÞ:

In particular, Lemma 2.13 follows immediately from the [easily verified] fact

that

OKX
=mn

KX
¼ mKX

=mn
KX
[ ðOKX

=mn
KX
Þ�;

1þ ðmKX
=mn

KX
Þ � ðOKX

=mn
KX
Þ�:

This completes the proof of Lemma 2.13. r

Theorem 2.14. Let K�, K� be local fields; CK� , CK� full subcategories of

CK� , CK� [cf. Definition 2.1] which satisfy the condition ðCÞ [cf. Definition 2.3],

respectively. Suppose that the category CK� is equivalent to the category CK� .

Then the field K� is isomorphic to the field K�.

Proof. Suppose that there exists an equivalence of categories f : CK� !
@

CK� . Let X�, Y� be objects of CK� ; f� : X� ! Y� a morphism in CK� . Write

X�, Y� for the objects of CK� corresponding, via f, to X�, Y�, respectively;

f� : X� ! Y� for the morphism in CK� corresponding, via f, to f�. Then it

follows from Lemma 2.5, (ii), that

(a) it holds that f� is a rigidification if and only if f� is a rigidification.

Thus, it follows from Lemma 2.5, (iii), that

(b) it holds that X� is scheme-like if and only if X� is scheme-like;

moreover, it follows from Lemma 2.5, (iv) (respectively, (v)), that

(c) it holds that f� is a scheme-isomorphism (respectively, scheme-identity)

if and only if f� is a scheme-isomorphism (respectively, scheme-identity).

In particular, it follows from Lemma 2.12 that, for each nonnegative integer n,

(d) it holds that X� is n-simple if and only if X� is n-simple.

Next, let ~XX� ¼ ððX�ÞlÞl AL be a basepoint of CK� [cf. Lemma 2.7, (i)].

Then it follows from Lemma 2.8, together with (b), that the projective system
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~XX� ¼ ððX�ÞlÞl AL consisting of objects and morphisms of CK� corresponding,

via f, to ~XX� is a basepoint of CK� . Thus, the equivalence f determines an

isomorphism of profinite groups

Pf : P ~XX�
¼ lim �

l AL

AutððX�ÞlÞ !
@

P ~XX�
¼ lim �

l AL

AutððX�ÞlÞ:

In particular, if either K� or K� is of positive characteristic, then it follows, in

light of Lemma 2.7, (iii), from Theorem 1.10 and Corollary 1.12, (ii), that K� is

isomorphic to K�, as desired. In the remainder of the proof,

suppose that both K� and K� are of characteristic zero.

Next, let l be an element of L, n a nonnegative integer, and

ð f�Þl : ðX�Þl ! ðY�Þl a rigidification of an n-simple object ðY�Þl whose domain

is the member ðX�Þl of ~XX� [cf. Lemma 2.11]. Write

Pf;l : AutððX�ÞlÞ !
@

AutððX�ÞlÞ

for the isomorphism induced by Pf and ð f�Þl : ðX�Þl ! ðY�Þl for the rigid-

ification [cf. (a)] of the n-simple object ðY�Þl [cf. (d)] corresponding, via f, to

ð f�Þl : ðX�Þl ! ðY�Þl. Then it follows from (c) that the isomorphism Pf;l

restricts to an isomorphism of subgroups

AutððX�ÞlÞð f�Þl !
@

AutððX�ÞlÞð f�Þl :

Thus, it follows from Lemma 2.13 that the isomorphism Pf;l is compatible—

with respect to the natural identifications [cf. Lemma 2.7, (ii)] of AutððX�ÞlÞ,
AutððX�ÞlÞ with GalðKðX�Þl=K�Þ, GalðKðX�Þl=K�Þ, respectively—with the respec-

tive filtrations of higher ramification subgroups in the lower numbering, hence

also [cf., e.g., [3], § 4.1] in the upper numbering. In particular, the isomorphism

Pf is compatible—with respect to the natural identifications [cf. Lemma 2.7,

(iii)] of P ~XX�
, P ~XX�

with GalðK ~XX�
=K�Þ, GalðK ~XX�

=K�Þ, respectively—with the re-

spective filtrations of higher ramification subgroups in the upper numbering.

Thus, it follows from [2], Theorem, that K� is isomorphic to K�, as desired.

This completes the proof of Theorem 2.14. r

3. Category of finite schemes

In the present § 3, let us discuss a certain full subcategory of the category

of irreducible schemes which are finite over the spectrum of the ring of integers

of a local field [cf. Definition 3.1; Definition 3.4]. In the present § 3, let K be a

local field, i.e., a field which is isomorphic to a finite extension of either Qp or

FpððtÞÞ for some prime number p.
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Definition 3.1. We shall write FK for the category defined as follows:
� An object of FK is a pair ðS; fÞ consisting of a nonempty irreducible

scheme S and a finite morphism f : S ! SpecðOKÞ of schemes. To simplify the

exposition, we shall often refer to S [i.e., just the domain of the morphism f] as

an ‘‘object of FK ’’.
� Let S, T be objects of FK . Then a morphism S ! T in FK is defined

as a morphism of schemes from S to T lying over OK .

Lemma 3.2. The following hold:

(i) Every object of FK is isomorphic to the spectrum of a noetherian

complete local ring of dimension zero or one.

(ii) Every object of FK is of cardinality one or two.

(iii) Every morphism in FK is injective. In particular, if the domain

(respectively, codomain) of a morphism in FK is of cardinality two (respectively,

one), then the morphism is bijective.

Proof. First, we verify assertion (i). Let S be an object of FK . Let us

first observe that since S is finite over OK , the scheme S is isomorphic to the

spectrum of a finite, hence also noetherian, OK -algebra A. Thus, since A is

finite over the complete [hence also henselian] local ring OK , and S is irreducible,

it holds that A is a complete local ring. Finally, since A is finite over the local

ring OK of dimension one, it holds that A is of dimension zero or one. This

completes the proof of assertion (i).

Next, we verify assertion (ii). Let S be an object of FK . Then since the

scheme S is irreducible and finite over the complete [hence also henselian] local

ring OK , the fiber of the structure morphism S ! SpecðOKÞ at the [uniquely

determined] closed (respectively, generic) point of SpecðOKÞ is of cardinality one

(respectively, of cardinality zero or one). In particular, the scheme S is of

cardinality one or two. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). Let us first observe that it is imme-

diate that, to verify assertion (iii), it su‰ces to verify that the structure mor-

phism ‘‘f’’ of each object ‘‘ðS; fÞ’’ of FK is injective. On the other hand, this

injectivity follows from the proof of assertion (ii). This completes the proof of

assertion (iii). r

Definition 3.3. Let S be an object of FK .

(i) We shall say that S is point-like if S is of cardinality one, or, alterna-

tively, is of dimension zero; we shall say that S is non-point-like if S is not of

cardinality one [i.e., is of cardinality two, or, alternatively, is of dimension

one—cf. Lemma 3.2, (i), (ii)].

(ii) We shall say that S is a trait (respectively, quasi-trait) if S is normal

(respectively, integral) and non-point-like.
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(iii) Suppose that S is a quasi-trait. Then we shall write KS for the

function field of S.

Remark 3.3.1. One verifies easily from Lemma 3.2, (i), that it holds that

an object of FK is a trait if and only if the object is isomorphic to the spectrum

of a complete discrete valuation ring.

Definition 3.4. Let FK be a full subcategory of FK . Then we shall say

that FK satisfies the condition ðFÞ if

(a) the full subcategory FK contains the object ðSpecðOKÞ; idSpecðOK ÞÞ,
(b) the full subcategory FK is closed under the operation of taking

normalizations of quasi-traits, i.e., if S is a quasi-trait of FK , then the trait of

FK obtained by forming the normalization of S is an object of FK ,

(c) the full subcategory FK is closed under the operation of taking

finite separable extensions and subfields of the function fields of quasi-traits,

i.e., if S is a quasi-trait of FK , and L is a finite separable extension of KS

(respectively, an intermediate extension of KS=K), then there exist a quasi-trait

T of FK and a morphism T ! S (respectively, S ! T) in FK such that KT is

isomorphic, over KS (respectively, as an intermediate extension of KS=K), to L,

and

(d) the full subcategory FK is closed under the operation of taking closed

subschemes, i.e., if S is an object of FK , then every closed immersion in FK

whose codomain is S is a morphism in FK .

In the remainder of the present § 3, let FK be a full subcategory of FK

which satisfies the condition ðFÞ.

Lemma 3.5. The following hold:

(i) A terminal object of FK is given by the pair ðSpecðOKÞ; idSpecðOK ÞÞ.
Moreover, every terminal object of FK is a trait.

(ii) The assignment ‘‘S 7! KS’’ determines a faithful functor from the full

subcategory of FK consisting of quasi-traits of FK to the category defined as

follows:
� An object of the category is a finite extension of K.
� A morphism in the category is a homomorphism of fields over K.

(iii) Let S be a trait of FK, T a quasi-trait of FK, and i : KT ,! KS a

homomorphism of fields over K. Then there exists a unique morphism S ! T in

FK which induces, via the functor of (ii), the homomorphism i.

(iv) The restriction of the functor of (ii) to the full subcategory of FK

consisting of traits of FK is full.

(v) There exists a—tautological—equivalence of categories of BK [cf.

Definition 1.2] with the full subcategory of FK consisting of traits of FK which

are generically étale over OK.

266 Yuichiro Hoshi



Proof. Assertions (i), (ii), and (iii) follow immediately from the defini-

tion of the category FK [cf. Definition 3.4, (a)]. Assertion (iv) follows from

assertion (iii). Assertion (v) follows from the definition of the category FK

[cf. Definition 3.4, (a), (b), (c)]. r

Definition 3.6. We shall say that FK is separable if the essential image

of the functor of Lemma 3.5, (ii), consists of finite separable extensions of K .

Definition 3.7.

(i) Let S, T be traits of FK . Then we shall say that a morphism

f : S ! T in FK is Galois if the finite extension KS=KT determined by f

[cf. Lemma 3.5, (ii)] is Galois.

(ii) Let S be a trait of FK . Then we shall say that S is Galois if there

exists a Galois morphism from S to a terminal object of FK [cf. Lemma 3.5,

(i)].

(iii) We shall say that a projective system ðSlÞl AL consisting of objects

and morphisms of FK is basepoint of FK if Sl is Galois [hence also a trait

which is generically étale over OK ] for each l A L, and, moreover, for each trait

T of FK which is generically étale over OK , there exist an element lT A L and

a morphism SlT ! T in FK .

(iv) Let ~SS ¼ ðSlÞl AL be a basepoint of FK . Then we shall write

K ~SS ¼
def

lim�!
l AL

KSl

for the field obtained by forming the injective limit of the KSl
’s and

P ~SS ¼
def

lim �
l AL

AutðSlÞ

for the profinite [cf. Lemma 1.4, (ii); Lemma 3.5, (v)] group obtained by

forming the projective limit of the AutðSlÞ’s.

Lemma 3.8. The following hold:

(i) There exists a basepoint of FK.

(ii) Let S be a Galois object of FK. Then AutðSÞ is isomorphic to

GalðKS=KÞ.
(iii) Let ~SS be a basepoint of FK. Then the field K ~SS is a separable closure

of K. Moreover, the profinite group P ~SS is isomorphic to the absolute Galois

group GalðK ~SS=KÞ of K.

Proof. These assertions follow, in light of Lemma 3.5, (v), from Lemma

1.6. r

Lemma 3.9. Let S, T be objects of FK; f : S ! T a morphism in FK.

Then the following hold:
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(i) It holds that f is a monomorphism [i.e., in FK ] if and only if f is a

closed immersion.

(ii) It holds that S is point-like if and only if there exists a morphism

S ! O, where O is a terminal object of FK [cf. Lemma 3.5, (i)], which satisfies

the following condition: The morphism S ! O factors through a closed immer-

sion U ! O in FK which is not an isomorphism.

(iii) It holds that S is non-point-like if and only if S is not point-

like.

(iv) It holds that S is integral and point-like if and only if there exists a

closed immersion S ! U in FK which is an initial object among closed immer-

sions whose codomains are U.

(v) Suppose that S is non-point-like. Then it holds that S is a quasi-trait

if and only if there exists a closed immersion S ! U in FK which is an initial

object among closed immersions whose codomains are U and whose domains are

non-point-like.

(vi) Suppose that S is a quasi-trait. Then it holds that S is a trait if and

only if there exists a birational morphism S ! U in FK which is an initial object

among birational morphisms whose codomains are U and whose domains are

quasi-traits of FK.

Proof. First, we verify assertion (i). The su‰ciency is immediate. To

verify the necessity, suppose that f is a monomorphism. Write AS ¼def OSðSÞ
and AT ¼

def
OT ðTÞ. Then since [one verifies easily that] the homomorphism

AT ! AS determined by f is finite, to verify that f is a closed immersion, we

may assume without loss of generalities, by replacing AT by the residue field

[cf. Lemma 3.2, (i)], that AT is a [necessarily finite, hence also perfect ] field

[cf. Definition 3.4, (d)].

Write AS for the residue field of AS. Now assume that the composite

AT ! AS !! AS is not an isomorphism. Then it follows from elementary

field theory that there exist a finite extension M of AS and two inclusions

i1; i2 : AS ,!M such that i1 0 i2 but i1jAT
¼ i2jAT

. In particular, since f is a

monomorphism [which thus implies that the morphism in FK from the spectrum

of AS to T determined by the composite AT ! AS !! AS is a monomorphism],

we obtain a contradiction [cf. Definition 3.4, (c), (d)]. Thus, the composite

AT ! AS !! AS is an isomorphism. In particular, we conclude that the

morphism f : S ! T has a splitting, i.e., a morphism s : T ! S such that

f � s ¼ idT .

Now we have the identity automorphism idS of S and the composite

S !f T !s S. Since f is a monomorphism, we conclude that idS ¼ s � f , i.e.,

that f is a closed immersion. This completes the proof of the necessity, hence

also of assertion (i).
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Assertion (ii) follows immediately from Lemma 3.2, (iii); Lemma 3.5, (i)

[cf. Definition 3.4, (d)]. Assertion (iii) is immediate.

Next, we verify assertion (iv). The necessity follows from the observation

that if S is integral and point-like, then the identity automorphism of S satisfies

the condition in the statement of assertion (iv). Next, to verify the su‰ciency,

suppose that there exists a closed immersion S ! U in FK that satisfies the

condition in the statement of assertion (iv). Write T ! U for the closed

immersion determined by the residue field [cf. Lemma 3.2, (i)] of OUðUÞ [cf.
Definition 3.4, (d)]. Then it follows from our assumption that the closed

immersion S ! U factors through the closed immersion T ! U , which thus

implies that we obtain a closed immersion S ! T . Now observe that since T

is the spectrum of a field, the closed immersion S ! T is an isomorphism,

which thus implies that S is integral and point-like, as desired. This completes

the proof of the su‰ciency, hence also of assertion (iv).

Next, we verify assertion (v). The necessity follows from the observation

that if S is a quasi-trait, then the identity automorphism of S satisfies the

condition in the statement of assertion (v). Next, to verify the su‰ciency,

suppose that there exists a closed immersion S ! U in FK that satisfies the

condition in the statement of assertion (v). Write T ! U for the closed

immersion defined by the ideal of OUðUÞ of nilpotent elements [cf. Definition

3.4, (d)]. Note that since U is non-point-like [cf. Lemma 3.2, (iii)], and the

closed immersion T ! U is bijective [cf. Lemma 3.2, (iii)], it follows that T is

non-point-like, hence also a quasi-trait. Thus, it follows from our assumption

that the closed immersion S ! U factors through the closed immersion T ! U ,

which thus implies that we obtain a closed immersion S ! T . Now observe

that since T is a quasi-trait, the [necessarily bijective—cf. Lemma 3.2, (iii)]

closed immersion S ! T is an isomorphism, which thus implies that S is a

quasi-trait, as desired. This completes the proof of the su‰ciency, hence also

of assertion (v).

Finally, we verify assertion (vi). The necessity follows from the observa-

tion that if S is a trait, then, by the Zariski main theorem, the identity automor-

phism of S satisfies the condition in the statement of assertion (vi). Next, to

verify the su‰ciency, suppose that there exists a birational morphism S ! U in

FK that satisfies the condition in the statement of assertion (vi). Write T ! U

for the normalization of U [cf. Definition 3.4, (b)]. Then it follows from our

assumption that the birational morphism S ! U factors through the birational

morphism T ! U , which thus implies that we obtain a birational morphism

S ! T . Now observe that since T is a trait, it follows from the Zariski main

theorem that the birational morphism S ! T is an isomorphism, which thus

implies that S is a trait, as desired. This completes the proof of the su‰ciency,

hence also of assertion (vi). r
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Definition 3.10. Let S, T be quasi-traits of FK ; f : S ! T a morphism

in FK .

(i) We shall say that f is purely inseparable (respectively, quasi-Galois)

if the finite extension KS=KT determined by f [cf. Lemma 3.5, (ii)] is purely

inseparable (respectively, quasi-Galois, or, alternatively, normal, i.e., KS is

Galois over the purely inseparable closure of KT in KS).

(ii) Suppose that f is quasi-Galois. Then we shall write qGalð f Þ ¼def

GalðKS=LÞ ð¼ AutKT
ðKSÞÞ, where we write L � KS for the purely inseparable

closure of KT in KS [which thus implies that the finite extension KS=L is

Galois].

Lemma 3.11. Let S, T be quasi-traits of FK; f : S ! T a morphism in

FK. Then the following hold:

(i) It holds that f is either birational or purely inseparable if and only if

the following condition is satisfied: For each quasi-trait U of FK and each two

morphisms g1; g2 : U ! S in FK, if f � g1 ¼ f � g2, then g1 ¼ g2.

(ii) Consider the following conditions:

(1) For each quasi-trait U of FK and each two morphisms g : S ! U,

h : U ! T such that f ¼ h � g, if every automorphism of S over T is an automor-

phism over U [i.e., relative to g], then h is either birational or purely inseparable.

(2) The morphism f is quasi-Galois.

Then (1) implies (2). If, moreover, S is a trait, then (1) is equivalent to

(2).

Proof. First, we verify assertion (i). The necessity follows, in light of

Lemma 3.5, (ii), from elementary field theory. Next, we verify the su‰ciency.

Suppose that f is neither birational nor purely inseparable. Then it follows

from elementary field theory that there exist a finite separable extension L of

KS and two inclusions i1; i2 : KS ,! L such that i1 0 i2 but i1jKT
¼ i2jKT

. Thus,

by considering suitable two morphisms from a trait whose generic point is

isomorphic to the spectrum of L [cf. Definition 3.4, (b), (c)] to S, we conclude

from Lemma 3.5, (ii), that f does not satisfy the condition in the statement of

assertion (i). This completes the proof of the su‰ciency, hence also of asser-

tion (i).

Finally, we verify assertion (ii). Let us first observe that if condition (1) is

satisfied, then it follows immediately from Lemma 3.5, (ii), that the interme-

diate extension of KS=KT consisting of AutT ðSÞ-invariants in KS is [either the

trivial extension or] a purely inseparable extension of KT . Thus, the impli-

cation (1)) (2) follows from Lemma 3.5, (ii), together with elementary field

theory. The implication (2)) (1) in the case where S is a trait follows

immediately, in light of Lemma 3.5, (ii), (iv), from elementary field theory.

This completes the proof of assertion (ii). r
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Lemma 3.12. Let S, T be quasi-traits of FK; f : S ! T a quasi-Galois

morphism in FK. Then the following hold:

(i) For each quasi-trait U of FK and each morphism g : U ! S in

FK which is either birational or purely inseparable, it holds that AutTðUÞ is

isomorphic to a subgroup of qGalð f Þ.
(ii) There exist a quasi-trait U of FK and a birational morphism g : U !

S in FK such that AutTðUÞ is isomorphic to qGalð f Þ.

Proof. Assertion (i) follows from Lemma 3.5, (ii), together with elemen-

tary field theory. Assertion (ii) follows from Lemma 3.5, (ii), (iv) [cf. Def-

inition 3.4, (b)]. r

Lemma 3.13. Let O be a terminal object of FK [cf. Lemma 3.5, (i)]. Then

the following hold:

(i) Consider the following conditions:

(i-1) The category FK is separable.

(i-2) For each quasi-trait S of FK, there exists a morphism in FK

whose codomain is S and whose domain is Galois.

(i-3) For each quasi-trait S of FK, there exist a morphism from a

quasi-trait T to S and a quasi-Galois morphism T ! O in FK.

(i-4) For each quasi-trait S of FK and each morphism f : S ! O in

FK, if f is either birational or purely inseparable, then f is an isomorphism.

Then the following equivalences hold:

ði-1Þ , ði-2Þ þ ði-4Þ , ði-3Þ þ ði-4Þ:

(ii) Let p be a prime number. Then the following conditions are equiv-

alent:

(ii-1) It holds that K is of characteristic p.

(ii-2) There exists a finite subquotient of the absolute Galois group of

K which is isomorphic to Z=pZ� Z=pZ� Z=pZ.
(ii-3) There exist traits S, T of FK and a Galois morphism S ! T in

FK such that AutTðSÞ is isomorphic to Z=pZ� Z=pZ� Z=pZ.
(ii-4) There exist quasi-traits S, T of FK and a quasi-Galois mor-

phism f : S ! T in FK such that qGalð f Þ is isomorphic to Z=pZ� Z=pZ�
Z=pZ.

(iii) Let q� be a positive integer. Then the following conditions are

equivalent:

(iii-1) It holds that ]K� ¼ q�, i.e., that ]K ¼ q� þ 1.

(iii-2) The positive integer q� is the maximum positive integer such

that q� is not divisible by the characteristic of K, and, moreover, there exists

a finite quotient of the absolute Galois group which is isomorphic to Z=q�Z�
Z=q�Z.
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(iii-3) The positive integer q� is the maximum positive integer such

that q� is not divisible by the characteristic of K, and, moreover, there exists

a Galois object of FK whose automorphism group is isomorphic to Z=q�Z�
Z=q�Z.

(iii-4) The positive integer q� is the maximum positive integer such

that q� is not divisible by the characteristic of K, and, moreover, there exist a

quasi-trait S of FK and a quasi-Galois morphism f : S ! O in FK such that

qGalð f Þ is isomorphic to Z=q�Z� Z=q�Z.

Proof. First, we verify assertion (i). The implication (i-1)) (i-2) fol-

lows immediately from the definition of the category FK [cf. Definition 3.4, (b),

(c)]. The implication (i-2)) (i-3) is immediate. Next, we verify the implica-

tion (i-1)) (i-4). Let us first observe that it follows from Lemma 3.5, (i), that

O is a trait. Thus, it follows from Lemma 3.9, (vi), that the identity auto-

morphism of O is an initial object among birational morphisms whose co-

domains are O and whose domains are quasi-traits of FK . On the other hand,

it follows from (i-1) that f is birational. Thus, the morphism f is an isomor-

phism, as desired. This completes the proof of the implication (i-1)) (i-4).

Thus, to complete the verification of assertion (i), it su‰ces to verify that if

FK satisfies condition (i-3) but does not satisfy condition (i-1), then FK does

not satisfy condition (i-4). On the other hand, this follows immediately from

the definition of the category FK , together with elementary field theory [cf.

Definition 3.4, (c)]. This completes the proof of assertion (i).

Next, we verify assertions (ii), (iii). First, we verify the equivalences

(ii-1), (ii-2) and (iii-1), (iii-2). Write G for the absolute Galois group of K

and pK for the characteristic of K . Then it follows from local class field theory

[cf., e.g., [3], § 2], together with the well-known structure of the multiplicative

group K�, that there exist a cyclic pK -group Mcyc and a free ZpK -module Mfree

of rank ½K : QpK � (respectively, of infinite rank) if K is of characteristic zero

(respectively, of positive characteristic) such that the abelianization of G [i.e., as

a profinite group] is isomorphic to the profinite module K� �Mcyc �Mfree � ẐZ.
Thus, the equivalences (ii-1), (ii-2) and (iii-1), (iii-2) hold, as desired.

Moreover, the equivalences (ii-2), (ii-3), (ii-4) and (iii-2), (iii-3),
(iii-4) follow immediately from Lemma 3.5, (iv), together with elementary field

theory [cf. Definition 3.4, (b), (c)]. This completes the proofs of assertions (ii),

(iii). r

Definition 3.14. Let S, T be objects of FK ; f : S ! T a morphism in

FK ; n a positive integer. Then we shall say that f is n-simple if T is Galois

[hence also a trait which is generically étale over OK ], f is a closed immer-

sion, and, moreover, the object ðT ; f�OSÞ of CK [cf. Definition 2.1; Lemma 3.5,

(v)] is n-simple in the sense of Definition 2.10, (ii), i.e., and, moreover, the
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OKT
-module OSðSÞ is isomorphic to OKT

=mn
KT

[cf. Definition 1.1; Definition 3.3,

(iii)].

Lemma 3.15. Let S, T be objects of FK; f : S ! T a morphism in FK; n

a positive integer. Suppose that f is n-simple. Then, for each automorphism g

of T, there exists a unique automorphism ~gg of S such that f � ~gg ¼ g � f . More-

over, the assignment ‘‘g 7! ~gg’’ determines a homomorphism of groups

AutðTÞ ! AutðSÞ:

Proof. The existence of such a ‘‘~gg’’ is immediate from the definition of

an n-simple morphism. Moreover, the uniqueness of such a ‘‘~gg’’ follows from

the fact that an n-simple morphism is a monomorphism [cf. Lemma 3.9, (i)].

Finally, the final assertion is immediate. This completes the proof of Lemma

3.15. r

Definition 3.16. Let S, T be objects of FK ; f : S ! T a morphism in

FK ; n a positive integer. Suppose that f is n-simple. Then it follows from

Lemma 3.15 that we have a homomorphism of groups

AutðTÞ ! AutðSÞ:

We shall write

AutðTÞf ¼
def

KerðAutðTÞ ! AutðSÞÞ � AutðTÞ

for the kernel of this homomorphism.

Lemma 3.17. Let S be a Galois object of FK and n a positive integer.

Then there exists an n-simple morphism in FK whose codomain is S.

Proof. This is immediate [cf. Definition 3.4, (d)]. r

Lemma 3.18. Let S, T be objects of FK; f : S ! T a morphism in FK.

Suppose that T is Galois, and that f is a closed immersion. Then the following

hold:

(i) It holds that f is 1-simple if and only if S is integral and point-like.

(ii) Let nb 2 be an integer. Then it holds that f is n-simple if and only if

there exists a closed immersion g : U ! S in FK which satisfies the following

conditions:

(1) The composite f � g : U ! T is ðn� 1Þ-simple.

(2) The morphism g is not an isomorphism.

(3) Let h : U ! V, i : V ! S be morphisms in FK such that g ¼
i � h. If both h and i are closed immersions, then either h or i is an isomorphism.

Proof. This is immediate [cf. Definition 3.4, (d)]. r
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Lemma 3.19. Let S, T be objects of FK; f : S ! T a morphism in FK;

n a positive integer. Suppose that f is n-simple. Then the subgroup AutðTÞf �
AutðTÞ corresponds, with respect to the natural isomorphism of AutðTÞ with

GalðKT=KÞ [cf. Lemma 3.8, (ii)], to the kernel

KerðGalðKT=KÞ ! AutðOKT
=mn

KT
ÞÞ

of the natural action of GalðKT=KÞ on OKT
=mn

KT
.

Proof. This is immediate. r

Theorem 3.20. Let K�, K� be local fields; FK� , FK� full subcategories of

FK� , FK� [cf. Definition 3.1] which satisfy the condition ðFÞ [cf. Definition 3.4],

respectively. Suppose that the category FK� is equivalent to the category FK� .

Then the field K� is isomorphic to the field K�.

Proof. Suppose that there exists an equivalence of categories f : FK� !
@

FK� . Let S�, T� be objects of FK� ; f� : S� ! T� a morphism in FK� . Write

S�, T� for the objects of FK� corresponding, via f, to S�, T�, respectively;

f� : S� ! T� for the morphism in FK� corresponding, via f, to f�. Then it

follows from Lemma 3.9, (i), (ii), (iii), (v), that

(a) it holds that S� is a quasi-trait if and only if S� is a quasi-trait.

In particular, it follows from Lemma 3.11, (i), that

(b) if both S� and T� [hence also both S� and T�—cf. (a)] are quasi-trait,

then it holds that f� is either birational or purely inseparable if and only if f� is

either birational or purely inseparable.

Now I claim that

(c) if both S� and T� are traits [which thus implies that both S� and T�
are quasi-trait—cf. (a)], and f� is Galois, then f� is quasi-Galois.

To this end, let us first observe that since S� is a trait, it follows from Lemma

3.11, (ii), that f� satisfies condition (1) of Lemma 3.11, (ii). Thus, it follows

from (a), (b) that f� satisfies condition (1) of Lemma 3.11, (ii). In particular,

it follows from Lemma 3.11, (ii), that the morphism f� is quasi-Galois, as

desired. This completes the proof of (c).

Next, I claim that

(d) in the situation of (c), the four finite groups AutT� ðS�Þ, qGalð f�Þ,
AutT� ðS�Þ, and qGalð f�Þ are isomorphic.

To this end, let us first observe that since S� is a trait, it is immediate

[cf. Lemma 3.5, (iv)] that the three finite groups AutT� ðS�Þ, qGalð f�Þ, and

AutT� ðS�Þ are isomorphic. In particular, it follows from Lemma 3.12, (i), that,

for each quasi-trait U� of FK� and each morphism g� : U� ! S� in FK� which is

either birational or purely inseparable, it holds that AutT� ðU�Þ is isomorphic to a

subgroup of AutT� ðS�Þ. Thus, it follows from (a), (b) that, for each quasi-trait
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U� of FK� and each morphism g� : U� ! S� in FK� which is either birational

or purely inseparable, it holds that AutT� ðU�Þ is isomorphic to a subgroup of

AutT� ðS�Þ. In particular, it follows from Lemma 3.12, (ii), that qGalð f�Þ is

isomorphic to a subgroup of AutT� ðS�Þ, which thus implies [cf. Lemma 3.5, (ii)]

that qGalð f�Þ is isomorphic to AutT� ðS�Þ. This completes the proof of (d).

Next, I claim that

(e) it holds that ðcharðK�Þ; ]K�� Þ ¼ ðcharðK�Þ; ]K�� Þ.
To verify the equality charðK�Þ ¼ charðK�Þ, let us first observe that it follows

from the implication (ii-1)) (ii-3) of Lemma 3.13, (ii), that there exists a

Galois morphism between traits of FK� whose automorphism group is isomor-

phic to the direct product of three copies of Z=charðK�ÞZ. Thus, it follows

from the implication (ii-4)) (ii-1) of Lemma 3.13, (ii), together with (d),

that the equality charðK�Þ ¼ charðK�Þ holds. Next, to verify the equality

]K�� ¼ ]K�� , observe that it follows from the implication (iii-1)) (iii-3) of

Lemma 3.13, (iii), that there exists a Galois object of FK� whose automor-

phism group is isomorphic to the direct product of two copies of Z=]K�� Z.
Thus, it follows, in light of the equality charðK�Þ ¼ charðK�Þ, from the implica-

tion (iii-4)) (iii-1) of Lemma 3.13, (iii), together with (d), that the inequality

]K�� a ]K�� holds. Thus, by applying, to f�1, a similar argument to the

argument applied in the proof of the inequality ]K�� a ]K�� , we conclude that

]K�� ¼ ]K�� . This completes the proof of (e).

Next, I claim that

(f ) it holds that FK� is separable if and only if FK� is separable.

To this end, suppose that FK� is separable. Then it follows from the impli-

cation (i-1)) (i-4) of Lemma 3.13, (i), together with (a), (b), that FK� satisfies

condition (i-4) of Lemma 3.13, (i). Moreover, it follows from the implication

(i-1)) (i-2) of Lemma 3.13, (i), that FK� satisfies condition (i-2) of Lemma

3.13, (i). Thus, it follows from (a), (c) that FK� satisfies condition (i-3) of

Lemma 3.13, (i). In particular, it follows from Lemma 3.13, (i), that FK�

satisfies condition (i-1) of Lemma 3.13, (i), i.e., that FK� is separable, as

desired. This completes the proof of (f ).

Now suppose that either FK� or FK� is not separable. Then it follows

from (f ) that both K� and K� are of positive characteristic. Thus, it follows

immediately from (e) that K� is isomorphic to K�, as desired. In the remainder

of the proof,

suppose that both FK� and FK� are separable.

Then it follows from Lemma 3.9, (vi), together with (a), (b), that

(g) it holds that S� is a trait if and only if S� is a trait.

Thus, it follows, in light of (c), from Lemma 3.18, together with Lemma 3.9,

(i), (iv), that, for each positive integer n,
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(h) it holds that f� is n-simple if and only if f� is n-simple.

Next, let ~SS� ¼ ððS�ÞlÞl AL be a basepoint of FK� [cf. Lemma 3.8, (i)].

Then it follows from (c), (g), that the projective system ~SS� ¼ ððS�ÞlÞl AL
consisting of objects and morphisms of FK� corresponding, via f, to ~SS� is

a basepoint of FK� . Thus, the equivalence f determines an isomorphism of

profinite groups

Pf : P ~SS�
¼ lim �

l AL

AutððS�ÞlÞ �!
@

P ~SS�
¼ lim �

l AL

AutððS�ÞlÞ:

In particular, if either K� or K� is of positive characteristic, then it follows, in

light of Lemma 3.8, (iii), from Theorem 1.10 and Corollary 1.12, (ii), that K�
is isomorphic to K�, as desired. In the remainder of the proof,

suppose that both K� and K� are of characteristic zero.

Let l be an element of L, n a positive integer, and ð f�Þl : ðT�Þl ! ðS�Þl an

n-simple morphism whose codomain is the member ðS�Þl of ~SS� [cf. Lemma

3.17]. Write

Pf;l : AutððS�ÞlÞ !
@

AutððS�ÞlÞ

for the isomorphism induced by Pf and ð f�Þl : ðT�Þl ! ðS�Þl for the n-simple

[cf. (h)] morphism corresponding, via f, to ð f�Þl : ðT�Þl ! ðS�Þl. Then one

verifies easily that the isomorphism Pf;l restricts to an isomorphism of

subgroups

AutððS�ÞlÞð f�Þl !
@

AutððS�ÞlÞð f�Þl :

Thus, it follows from Lemma 3.19 that the isomorphism Pf;l is compatible—

with respect to the natural identifications [cf. Lemma 3.8, (ii)] of AutððS�ÞlÞ,
AutððS�ÞlÞ with GalðKðS�Þl=K�Þ, GalðKðS�Þl=K�Þ, respectively—with the respec-

tive filtrations of higher ramification subgroups in the lower numbering, hence

also [cf., e.g., [3], § 4.1] in the upper numbering. In particular, the isomorphism

Pf is compatible—with respect to the natural identifications [cf. Lemma 3.8,

(iii)] of P ~SS�
, P ~SS�

with GalðK ~SS�
=K�Þ, GalðK ~SS�

=K�Þ, respectively—with the respec-

tive filtrations of higher ramification subgroups in the upper numbering. Thus,

it follows from [2], Theorem, that K� is isomorphic to K�, as desired. This

completes the proof of Theorem 3.20. r
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