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Abstract. We give a small generating set for the twist subgroup of the mapping class

group of a non-orientable surface by Dehn twists. The di¤erence between the number

of the generators and a lower bound of numbers of generators for the twist subgroup by

Dehn twists is one. The lower bounds is obtained from an argument of Hirose [5].

1. Introduction

Let Sg;n be a compact connected oriented surface of genus gb 0 with

nb 0 boundary components, and put Sg ¼ Sg;0. The mapping class group

MðSg;nÞ of Sg;n is the group of isotopy classes of orientation preserving self-

di¤eomorphisms on Sg;n fixing the boundary pointwise. Dehn [2] proved that

MðSgÞ is generated by 2gðg� 1Þ Dehn twists. The generating set includes

Dehn twists along separating simple closed curves. Mumford [12] showed

that MðSgÞ is generated by Dehn twists along non-separating simple closed

curves, and Lickorish [10] gave a finite generating set for MðSgÞ by 3g� 1

Dehn twists along non-separating simple closed curves. For n ¼ 1, MðSg;1Þ is

also generated by 3g� 1 Dehn twists along non-separating simple closed curves

(see the proof of Theorem 4.13 in [4]). After that, Humphries [6] proved that

MðSg;nÞ is generated by a subset of Lickorish’s generating set whose cardinality

is 2gþ 1 for gb 2 and n A f0; 1g, and he also proved that the generating set

is minimal among the generating sets for MðSg;nÞ consisting of Dehn twists.

A small generating set for MðSg;nÞ by Dehn twists is very useful for the study

of group structures of MðSg;nÞ. For example, Humphries’ generating set for

MðSg;nÞ is used for the studies of torsion generators for MðSgÞ [8] and

generators for the Torelli group of Sg;1 [7].

Let Ng;n be a compact connected non-orientable surface of genus gb 1

with nb 0 boundary components. The surface Ng ¼ Ng;0 is a connected sum

of g real projective planes. The mapping class group MðNg;nÞ of Ng;n is the
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group of isotopy classes of self-di¤eomorphisms on Ng;n fixing the boundary

pointwise. For n A f0; 1g, MðN1;nÞ is the trivial group (see [3, Theorem 3.4]).

For gb 2, Lickorish proved that MðNgÞ is not generated by Dehn twists in [9],

and MðNg;nÞ is generated by Dehn twists and a ‘‘Y-homeomorphism’’ in [9, 11].

The Y-homeomorphism is introduced by Lickorish in [9]. Lickorish [9] also

showed thatMðN2Þ is generated by a single Dehn twist and a Y-homeomorphism.

In general, Chillingworth [1] gave a finite generating set for MðNgÞ which

consists of 3g�5
2 (resp. 3g�6

2 ) Dehn twists and a Y-homeomorphism for odd (resp.

even) g. After that, Szepietowski [16] proved that MðNgÞ is generated by

a subset of Chillingworth’s generating set which consists of g Dehn twists

and a Y-homeomorphism, and Hirose [5] showed that the generating set is

minimal among the generating sets for MðNgÞ consisting of Dehn twists and

Y-homeomorphisms. Theorem 4.1 shows that the generating sets in Stukow’s

finite presentation for MðNg;1Þ in [14] is also minimal among the generating

sets consisting of Dehn twists and Y-homeomorphisms. Szepietowski’s gen-

erating set for MðNgÞ is used for the studies of torsion generators for MðNgÞ
[16] and generators for the level 2 mapping class group of Ng [17].

The twist subgroup TðNg;nÞ of MðNg;nÞ is the subgroup of MðNg;nÞ
generated by all Dehn twists. Note that TðNg;nÞ is an index 2 subgroup of

MðNg;nÞ (see [11] and [13, Corollary 6.4]). In particular, TðNg;nÞ is finitely

generated. Chillingworth [1] showed that TðNgÞ is generated by a single Dehn

twist for g ¼ 2, two Dehn twists for g ¼ 3, 3g�1
2 Dehn twists for the other odd g

and 3g
2 Dehn twists for the other even g. By an argument as in [6], we can

reduce the number of Chillingworth’s generators to gþ 2 for odd g > 3 and

gþ 3 for even g > 3. For n A f0; 1g, Stukow [15] gave a finite presentation

for TðNg;nÞ whose generators are gþ 2 Dehn twists essentially by relations of

the presentation (see the proof of Theorem 3.1). A small generating set for

TðNg;nÞ by Dehn twists is also useful for the study of generators for TðNg;nÞ
and its subgroups.

In this paper we proved that TðNg;nÞ is generated by gþ 1 Dehn twists for

gb 4 (Theorem 3.1). The generating set is a proper subset of the generating

set of Stukow’s finite presentation in [15]. By applying Hirose’s argument

in [5], we show that if a family of Dehn twists generates TðNg;nÞ then its

cardinality is at least g (Theorem 3.3). The author does not know whether the

generating set for TðNg;nÞ in Theorem 3.1 is minimal among the generating

sets for TðNg;nÞ consisting of Dehn twists or not.

2. Preliminaries

For a two-sided simple closed curve g on Ng;n, we take an orientation of

the regular neighborhood of g in Ng;n. Then we denote by tg the right-handed
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Dehn twist along g with respect to the orientation. In particular, for a given

explicit two-sided simple closed curve, an arrow on a side of the simple closed

curve indicates the direction of the Dehn twist (see Figure 1).

Let ei : D ,! S0 for i ¼ 1; 2; . . . ; gþ 1 be smooth embeddings of the unit

disk D into a 2-sphere S0 such that Di ¼ eiðDÞ and Dj are disjoint for distinct

1a i; ja gþ 1. Then we take a model of Ng (resp. Ng;1) as the surface

obtained from S0 � intðD1 t � � � tDgÞ (resp. S0 � intðD1 t � � � tDgþ1Þ) by iden-

tifying antipodal points of the boundary components of D1; . . . ;Dg and we

indicate the identification of qDi by the x-mark as in Figure 2.

For n A f0; 1g, we denote by a1; . . . ; ag�1 and b two-sided simple closed

curves on Ng;n as in Figure 2, and denote by b 0, e, z and c two-sided simple

closed curves on Ng;n as in Figure 3. Then we set ai ¼ tai ði ¼ 1; . . . ; g� 1Þ,
b ¼ tb, e ¼ te, f ¼ tz, h ¼ tc and c ¼ tb 0 .

3. Main result

The main theorem in this paper is as follows.

Fig. 1. The right-handed Dehn twist tg along a two-sided simple closed curve g on Ng; n.

Fig. 2. Simple closed curves a1; . . . ; ag�1 and b on Ng; n.

Fig. 3. Simple closed curves e, z, c and b 0 on Ng; n.
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Theorem 3.1. For gb 4 and n A f0; 1g, TðNg;nÞ is generated by a1; . . . ;

ag�1, b and e. In particular, TðNg;nÞ is generated by gþ 1 Dehn twists along

non-separating simple closed curves.

Proof. Assume gb 4 and n A f0; 1g. Stukow’s presentation for TðNg;nÞ
in [15] has the following generating set:

� X ¼ fa1; . . . ; ag�1; b; e; f ; h; cg for odd g and n ¼ 1, or g ¼ 4 and n ¼ 1,
� X 0 ¼ X [ fb0; b1; . . . ; bðg�2Þ=2; bðg�6Þ=2; bðg�4Þ=2; bðg�2Þ=2g for even gb 6

and n ¼ 1,
� X [ frg for odd g and n ¼ 0,
� X [ frg for g ¼ 4 and n ¼ 0,
� X 0 [ frg for even gb 6 and n ¼ 0.

In the above generating sets, b0; b1; . . . ; bðg�2Þ=2; bðg�6Þ=2; bðg�4Þ=2; bðg�2Þ=2, r and r

are products of elements in X by the relations

(A7) b0 ¼ a1, b1 ¼ b for even gb 6,

(A8) biþ1 ¼ ðbi�1a2ia2iþ1a2iþ2a2iþ3biÞ5ðbi�1a2ia2iþ1a2iþ2a2iþ3Þ�6 for 1a ia
g�4
2 and even gb 6,

(A7a) b0 ¼ a�1
1 , b1 ¼ c for g ¼ 6,

(A7b) b1 ¼ c for g ¼ 8,

(A7c) bi ¼ zg�1biz
�1
g�1 for i ¼ g�6

2 ; g�4
2 , ib 2 and even gb 6, where zg�1 ¼

ðag�2ag�1ag�3ag�2 . . .a3a4e
�1a3a

�1
1 e�1Þða�1

2 a�1
1 . . .a�1

g�2a
�1
g�3a

�1
g�1a

�1
g�2Þ,

(A8a) b2 ¼ ðb0e�1a3a4a5b1Þ5ðb0e�1a3a4a5Þ�6 for g ¼ 6,

(A8b) bðg�2Þ=2 ¼ ðbðg�6Þ=2ag�4ag�3ag�2ag�1bðg�4Þ=2Þ5ðbðg�6Þ=2ag�4ag�3ag�2 �
ag�1Þ�6 for even gb 8,

(C1a) ða1a2 . . . ag�1Þg ¼ r for odd g and n ¼ 0,

(C4) ðra2a3 . . . ag�1Þg�1 ¼ 1 for even gb 4 and n ¼ 0

by Theorems 2.1, 2.2, 3.1 and 3.2 of [15]. Thus TðNg;nÞ is generated by X .

By the relation (B21) in Theorem 3.1 of [15], h is a product of elements in

X � fhg, and by the relation (B61) in Theorem 3.1 of [15], c is a product of

a1; . . . ; ag�1, b, e and f .

Finally, we can check that a�1
3 a�1

2 ba�1
1 a�1

2 a�1
3 ðeÞ ¼ z and the orientation of

a regular neighborhood of a�1
3 a�1

2 ba�1
1 a�1

2 a�1
3 ðeÞ is di¤erent from one of z as in

Figure 4. Hence, we have f ¼ ða�1
3 a�1

2 ba�1
1 a�1

2 a�1
3 Þe�1ða�1

3 a�1
2 ba�1

1 a�1
2 a�1

3 Þ�1.

Therefore, TðNg;nÞ is generated by a1; . . . ; ag�1, b and e.

Remark 3.2. The regular neighborhood N of the union of a1; . . . ; ag�1 is

an orientable subsurface of Ng;n and fa1; . . . ; ag�1; bg is the minimal generating

set for MðNÞ by Dehn twists which is given by Humphries [6]. Remark that

Ng;n � int N is not a disjoint union of disks, and an element of the subgroup of

TðNg;nÞ which is generated by a1; . . . ; ag�1 and b is represented by a di¤eomor-

phism of Ng;n whose restriction to Ng;n � int N is the identity map. However, e

does not fix Ng;n � int N up to ambient isotopies of Ng;n. Hence TðNg;nÞ is
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not generated by a1; . . . ; ag�1 and b. Define X0 ¼ fa1; . . . ; ag�1; b; eg. For x0 A
fa4; . . . ; ag�1; eg, the complement Ng;n �

S

x AX0nfx0g
x has a non-disk component.

Thus TðNg;nÞ is not generated by X0 � fx0g for x0 A fa4; . . . ; ag�1; eg.

By applying Hirose’s argument in [5] to TðNg;nÞ for gb 4 and n A f0; 1g,
we have the following proposition.

Theorem 3.3. Let gb 4 and n A f0; 1g. Then the minimum number of

generators for TðNg;nÞ by Dehn twists is at least g.

We prove Theorem 3.3 in Section 4. By Theorem 3.3, the minimum

number of generators for TðNg;nÞ by Dehn twists is at least g for gb 4 and

n A f0; 1g, and the di¤erence between the number of the generators for TðNg;nÞ
in Theorem 3.1 and the lower bound of numbers of generators for TðNg;nÞ by

Dehn twists given by Theorem 3.3 is one.

Finally we raise the following problem.

Problem 3.4. Determine which of g and gþ 1 is the minimum number of

generators for TðNg;nÞ by Dehn twists when gb 4 and n A f0; 1g.

4. Proof of Theorem 3.3

In this section, we give a proof of Theorem 3.3. Assume that gb 4 and

n A f0; 1g throughout this section. First, we have the following theorem.

Theorem 4.1. If Dehn twists tg1 ; . . . ; tgk and Y-homeomorphisms Y1; . . . ;Yl

generate MðNg;nÞ, then kb g and lb 1.

Fig. 4. Proving that a�1
3 a�1

2 ba�1
1 a�1

2 a�1
3 ðeÞ ¼ z.
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Hirose proved Theorem 4.1 for n ¼ 0 in Theorem 2 of [5], and we can

prove Theorem 4.1 for n ¼ 1 by a parallel argument of his.

To prove Theorem 3.3, we apply the proof of Theorem 2 in [5] and

Theorem 4.1 to TðNg;nÞ for gb 4 and n A f0; 1g. Put Zm ¼ Z=mZ for an

integer mb 2. Let w1 : H1ðNg;n;Z2Þ ! Z2 be the first Stiefel-Whitney class

and Hþ
1 ðNg;n;Z2Þ the kernel of w1. Hence Hþ

1 ðNg;n;Z2Þ is a g� 1 dimen-

sional Z2-vector space and Hþ
1 ðNg;n;Z2Þ is generated by the homology classes

of two-sided simple closed curves on Ng;n. We take a basis fx1; x2; . . . ; xgg for

H1ðNg;n;Z2Þ as in Figure 5. We denote ½g� the homology class in H1ðNg;n;Z2Þ
represented by a simple closed curve g on Ng;n. For y A H1ðNg;n;Z2Þ, we

define an isomorphism ty on H1ðNg;n;Z2Þ by tyðxÞ ¼ xþ ðx; yÞy, where ðx; yÞ
is the mod-2 intersection number of x and y. Note that ðtgÞ� ¼ t½g� for a two-

sided simple closed curve g on Ng;n. A two-sided simple closed curve g on

Ng;n is admissible if g is non-separating and Ng;n � g is non-orientable.

Lemma 4.2. If tg1 ; . . . ; tgk generate TðNg;nÞ, then ½g1�; . . . ; ½gk� generate

Hþ
1 ðNg;n;Z2Þ. In particular, kb g� 1.

Proof. This can be proved by the following argument similar to that in

the proof of Lemma 6 in [5]. Since tg1 ; . . . ; tgk generate TðNg;nÞ, there exists

i A f1; . . . ; kg such that gi is admissible. In fact, by Lemma 4 in [5], if Dehn

twists along non-admissible simple closed curves generate TðNg;nÞ, then any

isomorphism on H1ðNg;n;Z2Þ induced by an element of TðNg;nÞ is a power of

tx1þ���þxg . Without loss of generality we can assume that g1 is admissible. For

any x A Hþ
1 ðNg;n;Z2Þ, we can write x ¼ xi1 þ xi2 þ � � � þ xi2l . Then there exist

admissible simple closed curves d1; d2; . . . ; dl on Ng;n such that x ¼ ½d1� þ � � � þ
½dl �. By Lemma 7.2 in [13], there exist fj A TðNg;nÞ ð j ¼ 1; . . . ; lÞ such that

fjðg1Þ ¼ dj. Thus we have x ¼ ðf1Þ�ð½g1�Þ þ � � � þ ðflÞ�ð½g1�Þ. By the assump-

tion, each fj is a product of tg1 ; . . . ; tgk . Since t½gi �ð½gi 0 �Þ ¼ ½gi 0 � þ ð½gi 0 �; ½gi�Þ½gi�,
x is a sum of ½g1�; . . . ; ½gk�.

Let 2� : Z2 ,! Z4 be the injective homomorphism defined by 2� ½m� ¼
½2m� A Z4. A map q : H1ðNg;n;Z2Þ ! Z4 is a Z4-quadratic form if qðxþ yÞ ¼
qðxÞ þ qðyÞ þ 2� ðx; yÞ for any x; y A H1ðNg;n;Z2Þ. The next lemma follows

directly from the proof of Lemma 7 in [5].

Fig. 5. A basis fx1; x2; . . . ; xgg for H1ðNg; n;Z2Þ.
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Lemma 4.3. For any Z4-quadratic form q : H1ðNg;n;Z2Þ ! Z4, there exists

an element f of TðNg;nÞ such that q � f0 f.

Proof (Proof of Theorem 3.3). Suppose that tg1 ; . . . ; tgk generate TðNg;1Þ.
By Lemma 4.2, we have kb g� 1. We assume that k ¼ g� 1. Then, by

Lemma 8 in [5], there exists a Z4-quadratic form q : H1ðNg;n;Z2Þ ! Z4 such

that q � tgi ¼ q for any i ¼ 1; . . . ; g� 1. This is a contradiction to Lemma 4.3.

Therefore, we have kb g.
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