Stable extendibility and extendibility of vector bundles over lens spaces

Mitsunori Imaoka and Teiichi Kobayashi
(Received September 14, 2016)
(Revised June 16, 2017)

Abstract

Firstly, we obtain conditions for stable extendibility and extendibility of complex vector bundles over the $(2 n+1)$-dimensional standard lens space $L^{n}(p) \bmod p$, where p is a prime. Secondly, we prove that the complexification $c\left(\tau_{n}(p)\right)$ of the tangent bundle $\tau_{n}(p)\left(=\tau\left(L^{n}(p)\right)\right)$ of $L^{n}(p)$ is extendible to $L^{2 n+1}(p)$ if p is a prime, and is not stably extendible to $L^{2 n+2}(p)$ if p is an odd prime and $n \geq 2 p-2$. Thirdly, we show, for some odd prime p and positive integers n and m with $m>n$, that $\tau\left(L^{n}(p)\right)$ is stably extendible to $L^{m}(p)$ but is not extendible to $L^{m}(p)$.

1. Introduction

Let \mathbb{F} denote either the real number field \mathbb{R} or the complex number field \mathbb{C}. Let A be a subspace of a space X. A t-dimensional \mathbb{F}-vector bundle α over A is said to be stably extendible (respectively extendible) to X if and only if there is a t-dimensional \mathbb{F}-vector bundle over X whose restriction to A is stably equivalent (respectively equivalent) to α (cf. [3] and [9]). For simplicity, we use the same letter for an \mathbb{F}-vector bundle and its equivalence class and k for the k-dimensional trivial \mathbb{F}-bundle.

For an integer p with $p>1$, let $L^{n}(p)\left(=S^{2 n+1} /(\mathbb{Z} / p)\right)$ be the $(2 n+1)$ dimensional standard lens space $\bmod p$. Then, we obtain conditions for stable extendibility and extendibility of a \mathbb{C}-vector bundle over $L^{n}(p)$ in the following theorem.

Theorem 1. Let p be a prime and α a t-dimensional \mathbb{C}-vector bundle over $L^{n}(p)$ which is stably equivalent to a sum of s non-trivial \mathbb{C}-line bundles. Then the following hold.
(1) α is stably extendible to $L^{m}(p)$ for every $m>n$ if $s \leq t$.
(2) α is extendible to $L^{t}(p)$ if $n \leq t \leq s$.

[^0]If $t<s$, the conclusion of Theorem 1(1) does not hold in general. In fact, for $t=2 n+1$ and $s=2 n+2$, there exists a t-dimensional \mathbb{C}-vector bundle over $L^{n}(p)$ which is stably equivalent to a sum of s non-trivial \mathbb{C}-line bundles and is not stably extendible to $L^{2 n+2}(p)$. Such \mathbb{C}-vector bundle is given in the latter part of the following theorem.

Let $c(\alpha)$ be the complexification of an \mathbb{R}-vector bundle α, and $\tau_{n}(p)$ $\left(=\tau\left(L^{n}(p)\right)\right)$ denote the tangent bundle of $L^{n}(p)$.

Theorem 2. The complexification $c\left(\tau_{n}(p)\right)$ of the tangent bundle $\tau_{n}(p)$ is extendible to $L^{2 n+1}(p)$ if p is a prime, and is not stably extendible to $L^{2 n+2}(p)$ if p is an odd prime and $n \geq 2 p-2$.

Furthermore, we show, for some odd prime p and positive integers n and m with $m>n$, that $\tau_{n}(p)$ is stably extendible to $L^{m}(p)$ but is not extendible to $L^{m}(p)$.

For $n>p$, we have the following.
Theorem 3. Let p be an odd prime and n an integer with $n>p$. Then $\tau_{n}(p)$ is stably extendible to $L^{2 n+1}(p)$ but is not extendible to $L^{2 n+1}(p)$.

The next theorem for $n \leq p$ is an explicit statement of the fact that remarked in Section 1 of [4].

Theorem 4. Let p be an odd prime.
(1) Let n be an integer with $p-3 \leq n \leq p$ and $n \neq 0,1$ and 3 , and m an integer with $m>n$. Then $\tau_{n}(p)$ is stably extendible to $L^{m}(p)$ but is not extendible to $L^{m}(p)$.
(2) Let $p \equiv \pm 1(\bmod 12)$ and m an integer with $m>2$. Then $\tau_{2}(p)$ is stably extendible to $L^{m}(p)$ but is not extendible to $L^{m}(p)$.

Corollary 1. Let p be a prime with $p \geq 5$ and m an integer with $m>p$. Then $\tau_{p}(p)$ is stably extendible to $L^{m}(p)$ but is not extendible to $L^{m}(p)$.

Corollary 2. Let p be an odd prime and m an integer with $m>p-1$. Then $\tau_{p-1}(p)$ is stably extendible to $L^{m}(p)$ but is not extendible to $L^{m}(p)$.

Corollary 3. Let p be a prime with $p \geq 7$ and m an integer with $m>p-2$. Then $\tau_{p-2}(p)$ is stably extendible to $L^{m}(p)$ but is not extendible to $L^{m}(p)$.

Corollary 4. Let p be a prime with $p \geq 5$ and m an integer with $m>p-3$. Then $\tau_{p-3}(p)$ is stably extendible to $L^{m}(p)$ but is not extendible to $L^{m}(p)$.

This paper is organized as follows. After preparing some known results, we prove Theorem 1 in Section 2. Using some known facts, we study stable
extendibility of $c\left(\tau_{4}(3)\right)$ and $c\left(\tau_{5}(3)\right)$ in Section 2, and prove Theorem 2 in Section 3. Using several conditions for stable extendibility and extendibility, we give proofs of Theorems 3-4 and Corollaries 1-4 in Section 5.

2. Proof of Theorem 1

Let $\mathbb{C} P^{n}\left(=S^{2 n+1} / S^{1}\right)$ denote the complex projective space of complex dimension n and μ_{n} stand for the canonical \mathbb{C}-line bundle over $\mathbb{C} P^{n}$. Then we define $\eta_{n}=\pi^{*}\left(\mu_{n}\right)$, the bundle induced by the natural projection $\pi: L^{n}(p) \rightarrow$ $\mathbb{C} P^{n}$ from μ_{n}, and $\sigma_{n}=\eta_{n}-1\left(\in \tilde{K}\left(L^{n}(p)\right)\right)$. We call η_{n} the canonical \mathbb{C}-line bundle over $L^{n}(p)$. The structure of the ring $\tilde{K}\left(L^{n}(p)\right)$ is determined in [5] as follows.

Theorem 2.1 ([5, Theorem 1]). Let p be a prime and n a positive integer. Let $n=s(p-1)+r$, where s and r are integers with $0 \leq r<p-1$. Then

$$
\tilde{K}\left(L^{n}(p)\right) \cong\left(\mathbb{Z} / p^{s+1}\right)^{r}+\left(\mathbb{Z} / p^{s}\right)^{p-r-1}
$$

(Here, $(\mathbb{Z} / q)^{k}$ denotes the direct sum of k-copies of \mathbb{Z} / q.) The first r summands are generated by $\sigma_{n}^{1}, \sigma_{n}^{2}, \ldots, \sigma_{n}^{r}$, and the last $p-r-1$ summands by $\sigma_{n}^{r+1}, \sigma_{n}^{r+2}, \ldots, \sigma_{n}^{p-1}$. Moreover, the ring structure of $\tilde{K}\left(L^{n}(p)\right)$ is given by the relations:

$$
\left(\sigma_{n}+1\right)^{p}\left(=\eta_{n}^{p}\right)=1 \quad \text { and } \quad \sigma_{n}^{n+1}=0
$$

For a real number x, let $\langle x\rangle$ denote the smallest integer q with $x \leq q$.
Theorem 2.2 ([2, Theorem 1.2, p. 99]). Let X be a finite dimensional CW-complex and ζ an s-dimensional \mathbb{C}-vector bundle over X. If $t=$ $\langle\{(\operatorname{dim} X)-1\} / 2\rangle \leq s$, then there exists a t-dimensional \mathbb{C}-vector bundle γ over X such that $\zeta=\gamma \oplus(s-t)$. (Here, \oplus denotes the Whitney sum.)

Theorem 2.3 ([8, Theorem 2.3]). Let Y be a subcomplex of a finite dimensional $C W$-complex X and α a \mathbb{C}-vector bundle over Y such that $\operatorname{dim} \alpha \geq$ $\langle(\operatorname{dim} Y) / 2\rangle$. Then α is extendible to X if and only if α is stably extendible to X.

Using Theorems 2.1, 2.2 and 2.3, we prove Theorem 1.
Proof of Theorem 1. By Theorem 2.1, there exist non-negative integers $a_{1}, a_{2}, \ldots, a_{p-1}$ such that

$$
\alpha-t=\sum_{1 \leq j \leq p-1} a_{j} \eta_{n}^{j}-s\left(\in \tilde{K}\left(L^{n}(p)\right)\right),
$$

where $\sum_{1 \leq j \leq p-1} a_{j}=s$.
(1) Let m be any integer with $m>n$ and $i: L^{n}(p) \rightarrow L^{m}(p)$ be the standard inclusion. Then, if $s \leq t$, for the non-negative integers $a_{1}, a_{2}, \ldots, a_{p-1}$ with $\sum_{1 \leq j \leq p-1} a_{j}=s$, a \mathbb{C}-vector bundle

$$
\beta=\sum_{1 \leq j \leq p-1} a_{j} \eta_{m}^{j} \oplus(t-s)
$$

over $L^{m}(p)$ is t-dimensional and, for the induced homomorphism $i^{*}: K\left(L^{m}(p)\right)$ $\rightarrow K\left(L^{n}(p)\right)$,

$$
i^{*}(\beta)=\sum_{1 \leq j \leq p-1} a_{j} \eta_{n}^{j} \oplus(t-s)=\alpha
$$

since $i^{*}\left(\eta_{m}\right)=\eta_{n}$ and $i^{*}(t-s)=t-s$. Hence α is stably extendible to $L^{m}(p)$.
(2) Let $n \leq t \leq s$. If $n=t$, the conclusion is trivial. So we may assume $n<t \leq s$. Setting $X=L^{t}(p)$ and $\zeta=\sum_{1 \leq j \leq p-1} a_{j} \eta_{t}^{j}$, where $\sum_{1 \leq j \leq p-1} a_{j}=s$, in Theorem 2.2, we see that there exists a t-dimensional \mathbb{C}-vector bundle γ over $L^{t}(p)$ such that

$$
\sum_{1 \leq j \leq p-1} a_{j} \eta_{t}^{j}=\gamma \oplus(s-t)
$$

Let $i: L^{n}(p) \rightarrow L^{t}(p)$ be the standard inclusion. Then, applying the induced homomorphism $i^{*}: K\left(L^{t}(p)\right) \rightarrow K\left(L^{n}(p)\right)$ to the both sides of the above equality, we have

$$
\sum_{1 \leq j \leq p-1} a_{j} \eta_{n}^{j}=i^{*}(\gamma) \oplus(s-t) .
$$

So $\alpha-t=\sum_{1 \leq j \leq p-1} a_{j} \eta_{n}^{j}-s=i^{*}(\gamma)-t$ in $\tilde{K}\left(L^{n}(p)\right)$. Thus α is stably extendible to $L^{t}(p)$. Setting $X=L^{t}(p)$ and $Y=L^{n}(p)$ in Theorem 2.3, we have $\operatorname{dim} \alpha=t \geq n+1=\left\langle\left(\operatorname{dim} L^{n}(p)\right) / 2\right\rangle$. Hence α is extendible to $L^{t}(p)$.

3. Stable extendibility of $c\left(\tau_{4}(3)\right)$ and $c\left(\tau_{5}(3)\right)$

We recall some known facts for the proofs.
Fact 3.1. Let $c: K O(X) \rightarrow K(X), r: K(X) \rightarrow K O(X)$ and $t: K(X) \rightarrow$ $K(X)$ be the complexfication, the real restriction and the complex conjugation, respectively. Then they are natural with respect to maps and satisfy: rc=2 and $\mathrm{cr}=1+t$. In particular, for the canonical \mathbb{C}-line bundle η_{n} over $L^{n}(p)$, $\operatorname{cr}\left(\eta_{n}\right)=\eta_{n}+\eta_{n}^{-1}=\eta_{n}+\eta_{n}^{p-1}$.

Fact 3.2. For the tangent bundle $\tau_{n}(p)$ of $L^{n}(p), \tau_{n}(p) \oplus 1=(n+1) r\left(\eta_{n}\right)$.

Fact 3.3. The total Chern class $C\left(\eta_{n}^{i}\right)$ of η_{n}^{i} is given by $C\left(\eta_{n}^{i}\right)=1+i z_{n}$, where $z_{n}=C_{1}\left(\eta_{n}\right)$, the first Chern class of η_{n}, is the generator of $H^{2}\left(L^{n}(p) ; \mathbb{Z}\right)$ $(\cong \mathbb{Z} / p)$.

FACT 3.4. Let p be a prime and let $a=\sum_{0 \leq i \leq m} a(i) p^{i}$ and $b=$ $\sum_{0 \leq i \leq m} b(i) p^{i}(0 \leq a(i)<p, 0 \leq b(i)<p)$. Then

$$
\binom{b}{a} \equiv \prod_{0 \leq i \leq m}\binom{b(i)}{a(i)}(\bmod p)
$$

We prove results on stable extendibility of $c\left(\tau_{4}(3)\right)$ and $c\left(\tau_{5}(3)\right)$. The method is similar to that of Theorem 8 in [1].

Theorem 3.1. $c\left(\tau_{4}(3)\right)$ is not stably extendible to $L^{10}(3)$.
Proof. Suppose that there exists a 9 -dimensional \mathbb{C}-vector bundle β over $L^{10}(3)$ satisfying $i^{*}(\beta)=c\left(\tau_{4}(3)\right)$, where $i: L^{4}(3) \rightarrow L^{10}(3)$ is the standard inclusion. According to Theorem 2.1, there exist integers a and b such that

$$
\beta-9=a \sigma_{10}+b \sigma_{10}^{2} \in \tilde{K}\left(L^{10}(3)\right)\left(\cong \mathbb{Z} / 3^{5}+\mathbb{Z} / 3^{5}\right)
$$

Applying the induced homomorphism $i^{*}: \tilde{K}\left(L^{10}(3)\right) \rightarrow \tilde{K}\left(L^{4}(3)\right)$ to the both sides of the above equality, we obtain

$$
i^{*}(\beta-9)=a \sigma_{4}+b \sigma_{4}^{2} \in \tilde{K}\left(L^{4}(3)\right)(\cong \mathbb{Z} / 9+\mathbb{Z} / 9)
$$

Using Facts 3.2 and 3.1, we have

$$
\begin{aligned}
i^{*}(\beta-9) & =c\left(\tau_{4}(3)\right)-9=c\left(\tau_{4}(3) \oplus 1\right)-10 \\
& =c\left(5 r\left(\eta_{4}\right)\right)-10=5 c r\left(\eta_{4}\right)-10=5\left(\eta_{4}+\eta_{4}^{2}\right)-10 \\
& =15\left(\eta_{4}-1\right)+5\left(\eta_{4}-1\right)^{2}=15 \sigma_{4}+5 \sigma_{4}^{2} .
\end{aligned}
$$

Since σ_{4} and σ_{4}^{2} are of order 9 by Theorem 2.1, $a=9 x+6$ and $b=9 y+5$ for some integers x and y. So

$$
\begin{aligned}
\beta-9 & =(9 x+6)\left(\eta_{10}-1\right)+(9 y+5)\left(\eta_{10}-1\right)^{2} \\
& =(9 x-18 y-4) \eta_{10}+(9 y+5) \eta_{10}^{2}+9 y-9 x-1 .
\end{aligned}
$$

Define $A=9 x-18 y-4(=9(x-2 y-1)+5)$ and $B=9 y+5$. Since we may take integers a and b with $a \geq 2 b \geq 0$, we may consider that x and y satisfy inequalities: $A \geq 0$ and $B \geq 0$. Now, by Fact 3.3, the total Chern class of β is given by

$$
C(\beta)=C\left(\eta_{10}\right)^{A} C\left(\eta_{10}^{2}\right)^{B}=\left(1+z_{10}\right)^{A}\left(1+2 z_{10}\right)^{B}=\left(1+z_{10}\right)^{A}\left(1-z_{10}\right)^{B} .
$$

Hence, the 10 -th Chern class of β is given as follows.

$$
C_{10}(\beta)=\sum_{i+j=10}\binom{A}{i}\binom{B}{j}(-1)^{j} z_{10}^{10} .
$$

Here, by Fact 3.4, we have

$$
\begin{array}{rlrl}
\binom{A}{i} \equiv\binom{B}{i} & \equiv 0(\bmod 3) & \text { for } i=6,7,8, \\
& \equiv 1(\bmod 3) & \text { for } i=0,2,3,5, \\
& \equiv 2(\bmod 3) & \text { for } i=1,4, \\
\binom{A}{9} \equiv x-2 y-1(\bmod 3), & \binom{B}{9} \equiv y(\bmod 3), \\
\binom{A}{10} \equiv 2(x-2 y-1)(\bmod 3), & \binom{B}{10} \equiv 2 y(\bmod 3) .
\end{array}
$$

Therefore

$$
\begin{aligned}
C_{10}(\beta) & =\left\{\binom{A}{0}\binom{B}{10}-\binom{A}{1}\binom{B}{9}-\binom{A}{5}\binom{B}{5}-\binom{A}{9}\binom{B}{1}+\binom{A}{10}\binom{B}{0}\right\} z_{10}^{10} \\
& =\{2 y-2 y-1-2(x-2 y-1)+2(x-2 y-1)\} z_{10}^{10}=-z_{10}^{10} \neq 0 .
\end{aligned}
$$

On the other hand, $C_{10}(\beta)=0$ since β is 9 -dimensional. This is a contradiction.

Theorem 3.2. $c\left(\tau_{5}(3)\right)$ is not stably extendible to $L^{12}(3)$.
Proof. Suppose that there exists an 11 -dimensional \mathbb{C}-vector bundle β over $L^{12}(3)$ satisfying $i^{*}(\beta)=c\left(\tau_{5}(3)\right)$, where $i: L^{5}(3) \rightarrow L^{12}(3)$ is the standard inclusion. According to Theorem 2.1, there exist integers a and b such that

$$
\beta-11=a \sigma_{12}+b \sigma_{12}^{2} \in \tilde{K}\left(L^{12}(3)\right)\left(\cong \mathbb{Z} / 3^{6}+\mathbb{Z} / 3^{6}\right)
$$

Applying the induced homomorphism $i^{*}: \tilde{K}\left(L^{12}(3)\right) \rightarrow \tilde{K}\left(L^{5}(3)\right)$ to the both sides of the above equality, we obtain

$$
i^{*}(\beta-11)=a \sigma_{5}+b \sigma_{5}^{2} \in \tilde{K}\left(L^{5}(3)\right)(\cong \mathbb{Z} / 27+\mathbb{Z} / 9)
$$

Using Facts 3.2 and 3.1, we have

$$
\begin{aligned}
i^{*}(\beta-11) & =c\left(\tau_{5}(3)\right)-11=c\left(\tau_{5}(3) \oplus 1\right)-12 \\
& =c\left(6 r\left(\eta_{5}\right)\right)-12=6 c r\left(\eta_{5}\right)-12=6\left(\eta_{5}+\eta_{5}^{2}\right)-12 \\
& =18\left(\eta_{5}-1\right)+6\left(\eta_{5}-1\right)^{2}=18 \sigma_{5}+6 \sigma_{5}^{2}
\end{aligned}
$$

Since σ_{5} is of order 27 and σ_{5}^{2} are of order 9 by Theorem 2.1, $a=27 x+18$ and $b=9 y+6$ for some integers x and y. So

$$
\begin{aligned}
\beta-11 & =(27 x+18)\left(\eta_{12}-1\right)+(9 y+6)\left(\eta_{12}-1\right)^{2} \\
& =(27 x-18 y+6) \eta_{12}+(9 y+6) \eta_{12}^{2}+9 y-27 x-12 .
\end{aligned}
$$

Define $A=27 x-18 y+6(=9(3 x-2 y)+6)$ and $B=9 y+6$. Since we may take integers a and b with $a \geq 2 b \geq 0$, we may consider that x and y satisfy inequalities: $A \geq 0$ and $B \geq 0$. Now, by Fact 3.3, the total Chern class of β is given by

$$
C(\beta)=C\left(\eta_{12}\right)^{A} C\left(\eta_{12}^{2}\right)^{B}=\left(1+z_{12}\right)^{A}\left(1+2 z_{12}\right)^{B}=\left(1+z_{12}\right)^{A}\left(1-z_{12}\right)^{B} .
$$

Hence, the 12 -th Chern class of β is given as follows.

$$
C_{12}(\beta)=\sum_{i+j=12}\binom{A}{i}\binom{B}{j}(-1)^{j} z_{12}^{12} .
$$

Here, by Fact 3.4, we have

$$
\begin{array}{rlrl}
\binom{A}{i} \equiv\binom{B}{i} & \equiv 0(\bmod 3) & & \text { for } i=1,2,4,5,7,8,10,11, \\
& \equiv 1(\bmod 3) & & \text { for } i=0,6, \\
& \equiv 2(\bmod 3) & & \text { for } i=3, \\
\binom{A}{9} \equiv\binom{B}{9} \equiv y(\bmod 3), & & \binom{A}{12} \equiv\binom{B}{12} \equiv 2 y(\bmod 3) .
\end{array}
$$

Therefore

$$
\begin{aligned}
C_{12}(\beta) & =\left\{\binom{A}{0}\binom{B}{12}-\binom{A}{3}\binom{B}{9}+\binom{A}{6}\binom{B}{6}-\binom{A}{9}\binom{B}{3}+\binom{A}{12}\binom{B}{0}\right\} z_{12}^{12} \\
& =(2 y-2 y+1-2 y+2 y) z_{12}^{12}=z_{12}^{12} \neq 0 .
\end{aligned}
$$

On the other hand, $C_{12}(\beta)=0$ since β is 11 -dimensional. This is a contradiction.

4. Proof of Theorem 2

For a real number x, let $[x]$ denote the largest integer q with $q \leq x$. Then, for the proof of the latter part of Theorem 2, we use the following.

Theorem 4.1 ([7, Theorem 4.5]). Let p be a prime and α a t-dimensional \mathbb{C}-vector bundle over $L^{n}(p)$ which is stably equivalent to a sum of s non-trivial
\mathbb{C}-line bundles where $t<s<p^{[n /(p-1)]}$. Then $n<s$ and α is not stably extendible to $L^{s}(p)$.

To apply Theorem 4.1, the next lemma is useful.
Lemma 4.2. (1) $2 n+2<3^{[n / 2]}$ if and only if $n \geq 6$.
(2) For $p \geq 5,2 n+2<p^{[n /(p-1)]}$ if and only if $n \geq 2 p-2$.

Proof. Since (1) is clear, we prove (2).
If $n \geq 2 p-2$, we may set $n=a(p-1)+b$, where a and b are integers with $a \geq 2$ and $0 \leq b<p-1$. Then

$$
p^{[n /(p-1)]}-(2 n+2)=p^{a}-2 a(p-1)-2 b-2 \geq p^{a}-2(p-1) a-2(p-1)
$$

For each integer $a \geq 2$, define $f(a)=p^{a}-2(p-1) a-2(p-1)$. Then, for $p \geq 5, \quad f(2)=(p-3)^{2}-3>0$ and $f(a+1)-f(a)=\left(p^{a}-2\right)(p-1)>0$. We therefore have $f(a)>0$ for every integer $a \geq 2$. Since $f(a) \leq$ $p^{[n /(p-1)]}-(2 n+2)$, we have $2 n+2<p^{[n /(p-1)]}$. Thus the "if" part of (2) is proved. In case $n<2 p-2$,

$$
\begin{aligned}
2 n+2-p^{[n /(p-1)]} & =2 n+1>0 \quad \text { if } 1 \leq n<p-1 \\
& =p>0 \\
& \quad \text { if } n=p-1, \quad \text { and } \\
>p>0 & \text { if } p-1<n<2 p-2
\end{aligned}
$$

We therefore have $2 n+2>p^{[n /(p-1)]}$. Thus the "only if" part of (2) is proved.

Proof of Theorem 2. By Facts 3.2 and 3.1,

$$
c\left(\tau_{n}(p) \oplus 1\right)=c\left((n+1) r\left(\eta_{n}\right)\right)=(n+1)\left(\eta_{n}+\eta_{n}^{p-1}\right) .
$$

Put $\alpha=c\left(\tau_{n}(p)\right), t=2 n+1$ and $s=2 n+2$ in Theorem 1(2). Then the former part follows immediately from Theorem 1(2). The latter part is proved as follows. Using Theorem 4.1, we have the results for $p=3$ and $n \geq 6$ by Lemma 4.2(1), and for $p \geq 5$ and $n \geq 2 p-2$ by Lemma 4.2(2). For $p=3$ and $n=4,5$, we have the results by Theorems 3.1, 3.2, respectively.

5. Proofs of Theorems 3-4 and Corollaries 1-4

We recall some known results on stable extendibility and extendibility of $\tau_{n}(p)$ for the proofs of Theorems 3-4 and Corollaries 1-4.

Theorem 5.1 ([4, Theorem 1.2]). Let p be an odd prime and n an integer with $n>p$. Then $\tau_{n}(p)$ is stably extendible to $L^{2 n+1}(p)$ and is not stably extendible to $L^{2 n+2}(p)$.

Theorem 5.2 ([4, Theorem 1.3]). Let p be an odd prime.
(1) Let n be an integer with $p-3 \leq n \leq p$. Then $\tau_{n}(p)$ is stably extendible to $L^{m}(p)$ for every $m>n$.
(2) If $p \equiv \pm 1(\bmod 12), \tau_{2}(p)$ is stably extendible to $L^{m}(p)$ for every $m>2$.

Theorem 5.3 ([6, Theorems 5.1 and 5.3]). Let p be an integer with $p>1$. Then the following three conditions are equivalent to one another:
(i) $\tau_{n}(p)$ is extendible to $L^{m}(p)$ for every $m>n$.
(ii) $\tau_{n}(p)$ is extendible to $L^{n+1}(p)$.
(iii) $n=0,1$ or 3 .

Corollary 5.4. Let p be an integer with $p \geq 2$ and $p \neq 3$ and m an integer with $m>p$. Then $\tau_{p}(p)$ is not extendible to $L^{m}(p)$.

Proof. Suppose that $\tau_{p}(p)$ is extendible to $L^{m}(p)$. Then, by the implication (ii) \Rightarrow (iii) of Theorem 5.3, we have $p=0,1$ or 3 , since $L^{p+1}(p) \subset L^{m}(p)$. This contradicts to the assumption.

Corollary 5.5. Let p be an integer with $p \geq 3$ and $p \neq 4$ and m an integer with $m>p-1$. Then $\tau_{p-1}(p)$ is not extendible to $L^{m}(p)$.

Proof. Suppose that $\tau_{p-1}(p)$ is extendible to $L^{m}(p)$. Then, by the implication (ii) \Rightarrow (iii) of Theorem 5.3, we have $p-1=0,1$ or 3 , that is, $p=1,2$ or 4 , since $L^{p}(p) \subset L^{m}(p)$. This contradicts to the assumption.

Similarly, we have
Corollary 5.6. Let p be an integer with $p \geq 4$ and $p \neq 5$ and m an integer with $m>p-2$. Then $\tau_{p-2}(p)$ is not extendible to $L^{m}(p)$.

Corollary 5.7. Let p be an integer with $p \geq 5$ and $p \neq 6$ and m an integer with $m>p-3$. Then $\tau_{p-3}(p)$ is not extendible to $L^{m}(p)$.

Proof of Theorem 3. The former part is equal to that of Theorem 5.1. The latter part is proved as follows. By the assumption $n>p$, we see that $n \neq 0,1$ and 3 . Hence the implication (ii) \Rightarrow (iii) of Theorem 5.3 shows that $\tau_{n}(p)$ is not extendible to $L^{n+1}(p)$. Thus the latter part holds, since $L^{n+1}(p) \subset L^{2 n+1}(p)$.

Proof of Theorem 4. (1) The former part is a consequence of Theorem 5.2(1).

The latter part follows from the implication (ii) \Rightarrow (iii) of Theorem 5.3, since $L^{n+1}(p) \subset L^{m}(p)$.
(2) The former part is a consequence of Theorem 5.2(2).

The latter part follows from the implication (ii) \Rightarrow (iii) of Theorem 5.3, since $L^{3}(p) \subset L^{m}(p)$.

Proof of Corollaries 1-4. Using Theorem 5.2(1), we can prove these corollaries by Corollaries 5.4-5.7, respectively.

For $p=11,13$ and 17, additional results are obtained (cf. [4, Lemma 1.4]). Combining these results with Theorem 5.3, we have results similar to those in Theorem 4.

References

[1] Y. Hemmi and T. Kobayashi, Stable extendibility of some complex vector bundles over lens spaces and Schwarzenberger's theorem, Hiroshima Math. J., 46(2016), 333-341.
[2] D. Husemoller, Fibre Bundles, Second Edition, Grad. Texts in Math. 20, Springer-Verlag, New York, Heidelberg, Berlin, 1975.
[3] M. Imaoka and K. Kuwana, Stably extendible vector bundles over the quaternionic projective spaces, Hiroshima Math. J., 29(1999), 273-279.
[4] M. Imaoka and H. Yamasaki, Stably extendible tangent bundles over lens spaces, Topology Appl., 154(2007), 3145-3155.
[5] T. Kambe, The structure of K_{A}-rings of the lens space and their applications, J. Math. Soc. Japan, 18(1966), 135-146.
[6] T. Kobayashi, H. Maki and T. Yoshida, Remarks on extendible vector bundles over lens spaces and real projective spaces, Hiroshima Math. J., 5(1975), 487-497.
[7] T. Kobayashi, H. Maki and T. Yoshida, Stable extendibility of normal bundles associated to immersions of real projective spaces and lens spaces, Mem. Fac. Sci. Kochi Univ. Ser. A (Math.), 21(2000), 31-38.
[8] T. Kobayashi, H. Maki and T. Yoshida, Extendibility and stable extendibility of normal bundles associated to immersions of real projective spaces, Osaka J. Math., 39(2002), 315-324.
[9] R. L. E. Schwarzenberger, Extendible vector bundles over real projective space, Quart. J. Math. Oxford (2), 17(1966), 19-21.

Mitsunori Imaoka
Department of Information System and Management
Hiroshima Institute of Technology
2-1-1, Miyake, Saeki-ku
Hiroshima, 731-5193, Japan
E-mail: imaoka@hiroshima-u.ac.jp

Teiichi Kobayashi
292-21, Asakura-ki
Kochi, 780-8066, Japan
E-mail: teikoba@blue.plala.or.jp

[^0]: 2010 Mathematics Subject Classification. Primary 55R50; Secondary 57R25.
 Key words and phrases. Vector bundle, tangent bundle, lens space, extendible, stably extendible, K-theory.

