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Abstract. The once-punctured torus and the once-punctured Klein bottle are topo-

logically commensurable, in the sense that both of them are doubly covered by the

twice-punctured torus. In this paper, we give a condition for a faithful type-preserving

PSLð2;CÞ-representation of the fundamental group of the once-punctured Klein bottle

to be ‘‘commensurable’’ with that of the once-punctured torus. We also show that such

a pair of PSLð2;CÞ-representations extend to a representation of the fundamental group

of a common quotient orbifold. Finally, we give an application to the study of the

Ford domains.

1. Introduction

The combinatorial structures of the Ford domains of quasi-fuchsian once-

punctured torus groups are characterized by Jorgensen [6] (cf. [1]). It is

natural to expect that there is an analogue of Jorgensen’s theory for quasi-

fuchsian once-punctured Klein bottle groups, because its deformation space also

has complex dimension 2. In fact, for fuchsian once-punctured Klein bottle

groups, we can completely describe the structures of their Ford domains (see

[3, Theorem 5.7]). However, as shown in [3, Section 6], the Ford domains of

general quasi-fuchsian once-punctured Klein bottle groups seem to have much

more complicated structures than those of quasi-fuchsian once-punctured torus

groups.

On the other hand, the once-punctured torus, S1;1, and the once-punctured

Klein bottle, N2;1, are topologically commensurable, in the sense that they are

doubly covered by the twice-punctured torus, S1;2. Thus we can introduce a

notion of commensurability between type-preserving PSLð2;CÞ-representations
of p1ðS1;1Þ and p1ðN2;1Þ (see Definitions 2.1 and 2.2). Moreover, we can

easily observe that mutually commensurable discrete PSLð2;CÞ-representations
of p1ðS1;1Þ and p1ðN2;1Þ have the same Ford domain (see Proposition 6.3).
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Hence a natural problem now arises: which type-preserving PSLð2;CÞ-
representation of p1ðN2;1Þ is commensurable with a type-preserving PSLð2;CÞ-
representation of p1ðS1;1Þ (see Problem 2.3)?

The main purpose of this paper is to give a partial answer to this problem

(see Theorem 5.1). This enable us to understand the Ford domains of the

Kleinian groups obtained as the images of discrete faithful type-preserving

representations of p1ðN2;1Þ which are commensurable with those of p1ðS1;1Þ
(see Example 6.4).

The rest of this paper is organized as follows. In Section 2, we recall

relation among the once-punctured torus, the once-punctured Klein bottle, the

twice-punctured torus and their quotient orbifolds OS1; 1
, ON2; 1

, OS1; 2
. We also

recall type-preserving representations of their fundamental groups (see Defini-

tion 2.1). Then we introduce the concept of commensurability between type-

preserving representations of their fundamental groups (see Definition 2.2).

In Section 3, we recall the definition and basic properties of ‘‘geometric’’

generator systems of p1ðOS1; 1
Þ which are called elliptic generator triples. We

also introduce geometric generator systems of p1ðON2; 1
Þ, which are also called

elliptic generator triples, and describe their basic properties. In Section 4, we

study type-preserving representations. In particular, we recall the definition of

the complex probabilities of type-preserving representations of p1ðOS1; 1
Þ and

describe a conceptual geometric construction of a type-preserving representa-

tion from a given complex probability (see Proposition 4.8). We also intro-

duce the concept of complex probabilities of type-preserving representations

of p1ðON2; 1
Þ and establish a similar geometric construction of a type-preserving

representation from a given complex probability (see Proposition 4.11). At the

end of Section 4, we study type-preserving PSLð2;CÞ-representations of p1ðS1;2Þ
extending to those of p1ðS1;1Þ or p1ðN2;1Þ (see Lemma 4.15). In Section 5, we

give a partial answer to the commensurability problem for representations of

p1ðOS1; 1
Þ and p1ðON2; 1

Þ in terms of complex probabilities (see Theorem 5.1).

We also study what happens if we drop the assumption in Theorem 5.1. In

Section 6, we give an application to the study of Ford domains.

2. Once-punctured torus, once-punctured Klein bottle and their friends

Let S1;1, N2;1 and S1;2, respectively, be the once-punctured torus, the

once-punctured Klein bottle and the twice-punctured torus. Their fundamental

groups have the following presentations:

p1ðS1;1Þ ¼ hX1;X2 j �i;

p1ðN2;1Þ ¼ hY1;Y2 j �i;

p1ðS1;2Þ ¼ hZ1;Z2;Z3 j �i:
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Here the generators are represented by the based simple loops in Figure 1.

It should be noted that Y2 is represented by the unique non-separating

simple orientable loop in N2;1. Set KS1; 1
¼ ½X1;X2� ¼ X1X2X

�1
1 X �1

2 , KN2; 1
¼

ðY1Y2Y
�1
1 Y2Þ�1, KS1; 2

¼ Z1Z2Z3 and K 0
S1; 2

¼ Z2Z1Z3. Then they are repre-

sented by the punctures of the surfaces.

The once-punctured torus and the once-punctured Klein bottle are topo-

logically commensurable, in the sense that both of them are doubly covered by

the twice-punctured torus. To be precise, the following hold.

(1) There are three double coverings p1 : S1;2 ! S1;1 up to equivalence.

In fact, there are three epimorphisms from p1ðS1;1Þ to Z=2Z, and

the double covering corresponding to each of them is homeomorphic

to S1;2.

(2) There is a unique orientation double covering p2 : S1;2 ! N2;1 up

to equivalence. This corresponds to the epimorphism to Z=2Z

which maps the generator Y1 of p1ðN2;1Þ to the generator 1 of

Z=2Z and maps the generator Y2 of p1ðN2;1Þ to the identity element 0

of Z=2Z.

For each F ¼ S1;1, N2;1 or S1;2, let iF : F ! F be the involution

illustrated in Figure 2. We denote the quotient orbifold F=iF by the symbol

OF and denote the covering projection from F to OF by the symbol pF . Then

we have the following under the notation of [8] (see Figure 2).

(1) OS1; 1
¼ ð2; 2; 2;yÞ is the orbifold with underlying space a punctured

sphere and with three cone points of cone angle p, and p1ðOS1; 1
Þ has

the following presentation:

p1ðOS1; 1
Þ ¼ hP0;P1;P2 jP2

0 ¼ P2
1 ¼ P2

2 ¼ 1i:

(2) ON2; 1
¼ ð2; 2;y� is the orbifold with underlying space a disk and with

two cone points of cone angle p and a corner reflector of order y,

and p1ðON2; 1
Þ has the following presentation:

p1ðON2; 1
Þ ¼ hQ0;Q1;Q2 jQ2

0 ¼ Q2
1 ¼ Q2

2 ¼ 1i:

Fig. 1. S1; 1, N2; 1 and S1; 2.
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(3) OS1; 2
¼ ð2; 2; 2; 2;yÞ is the orbifold with underlying space a punctured

sphere and with four cone points of cone angle p, and p1ðOS1; 2
Þ has

the following presentation:

p1ðOS1; 2
Þ ¼ hR0;R1;R2;R3 jR2

0 ¼ R2
1 ¼ R2

2 ¼ R2
3 ¼ 1i:

For each F ¼ S1;1, N2;1 or S1;2, the orbifold OF admits a complete

hyperbolic structure and hence p1ðOF Þ is identified with a discrete subgroup

of IsomðH2Þ (if we fix a hyperbolic structure). Then the generator Q1 is

a reflection and the other generators are order 2 elliptic transformations.

Set K ¼ ðP0P1P2Þ�1, K0 ¼ Q
Q0

1 , K2 ¼ Q
Q2

1 and KOS1; 2
¼ R0R1R2R3, where

AB ¼ BAB�1. Then K and KOS1; 2
, respectively, are represented by the punc-

tures of OS1; 1
and OS1; 2

, and K0 and K2 are represented by the reflector lines

which generate the corner reflector of order y. We identify p1ðF Þ with the

image of the inclusion p1ðFÞ ! p1ðOF Þ induced by the projection pF . Then we

have the following relations among the generators of the fundamental groups:

X1 ¼ P2P1; X2 ¼ P0P1; KS1; 1
¼ K 2;

Y1 ¼ Q0Q1; Y2 ¼ Q0Q2; KN2; 1
¼ K2K0;

Z1 ¼ R0R1; Z2 ¼ R2R1; Z3 ¼ R1R3;

KS1; 2
¼ KOS1; 2

; K 0
S1; 2

¼ ðK�1
OS1; 2

ÞR3 :

Note that OS1; 1
and ON2; 1

are also topologically commensurable, namely,

both of them are doubly covered by OS1; 2
. To be precise, the following hold.

Fig. 2. The commutative diagram of the fundamental groups and coverings.

220 Mikio Furokawa



(1) There are three double coverings p1 : OS1; 2
! OS1; 1

up to equiva-

lence. Each of such covering corresponds to an epimorphism from

p1ðOS1; 1
Þ to Z=2Z which maps one of the generators P0, P1, P2 to 1

and maps the remaining generators to 0. Each double covering

p1 : OS1; 2
! OS1; 1

uniquely determines a double covering p1 : S1;2 !
S1;1 such that the diagram in the left hand side of Figure 2 is

commutative.

(2) There is a unique orientation double covering p2 : OS1; 2
! ON2; 1

up to

equivalence. This corresponds to the epimorphism from p1ðON2; 1
Þ to

Z=2Z which maps the generators Q0, Q1 and Q2 to 0, 1 and 0,

respectively. For the orientation double coverings p2 : S1;2 ! N2;1

and p2 : OS1; 2
! ON2; 1

, the diagram in the right hand side of Figure 2

is commutative.

The assertion (2) is obvious and the assertion (1) is proved as follows. For a

given double covering p1 : OS1; 2
! OS1; 1

, we can check, by the relations among

the generators of the fundamental groups, that ðp1 � pS1; 2
Þ�ðp1ðS1;2ÞÞH

ðpS1; 1
Þ�ðp1ðS1;1ÞÞ. Hence, by the unique lifting property, there is a unique

double covering ~pp1 : S1;2 ! S1;1 such that pS1; 1
� ~pp1 ¼ p1 � pS1; 2

, modulo post

composition of iS1; 1
. Since iS1; 1

� ~pp1 ¼ ~pp1 � iS1; 2
, the coverings ~pp1 and iS1; 1

� ~pp1
are equivalent. Thus the double covering p1 uniquely determines the double

covering ~pp1.

Conversely, for the double covering p1 : S1;2 ! S1;1 associated with an

epimorphism f : p1ðS1;1Þ ! Z=2Z, we can see, by the relations among the

generators of the fundamental groups, that there is a unique epimorphism
�ff : p1ðOS1; 1

Þ ! Z=2Z such that it maps only one of generators P0, P1 and P2 of

p1ðOS1; 1
Þ to the generator 1 of Z=2Z and satisfies f ¼ �ff � ðpS1; 1

Þ�. Hence there

is a unique double covering �pp1 : OS1; 2
! OS1; 1

such that pS1; 1
� p1 ¼ �pp1 � pS1; 2

.

Thus we obtain the assertion (1).

The orbifolds OS1; 1
and ON2; 1

have two distinct common quotient orbifolds,

Oa and Ob, as described in the following (see Figure 3).

(1) Oa ¼ ð2; 2;y� is the orbifold with underlying space a disk and with

a cone point of cone angle p and with a corner reflector of order 2

and a corner reflector of order y, and p1ðOaÞ has the following

presentation:

p1ðOaÞ ¼ hS0;S1;S2 jS2
0 ¼ S2

1 ¼ S2
2 ¼ 1; ðS1S2Þ2 ¼ 1i:

Here S0 is an order 2 elliptic transformation, and S1 and S2 are

reflections.

(1-1) There is a unique double covering p
ðaÞ
S1; 1

: OS1; 1
! Oa. This

corresponds to the epimorphism from p1ðOaÞ to Z=2Z which
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maps the generators S1, S2 to 1 and maps S0 to 0. Then we

have the following identities:

P0 ¼ SS2

0 ; P1 ¼ S1S2; P2 ¼ S0:

(1-2) There is a unique double covering p
ðaÞ
N2; 1

: ON2; 1
! Oa. This

corresponds to the epimorphism from p1ðOaÞ to Z=2Z which

maps the generator S2 to 1 and maps S0, S1 to 0. Then we

have the following identities:

Q0 ¼ SS2

0 ; Q1 ¼ S1; Q2 ¼ S0:

(2) Ob ¼ ½2; 2; 2;y� is the orbifold with underlying space a disk and with

three corner reflectors of order 2 and a corner reflector of order y,

and p1ðObÞ has the following presentation:

p1ðObÞ ¼ T0;T1;T2;T3

����� T 2
0 ¼ T 2

1 ¼ T 2
2 ¼ T 2

3 ¼ 1;

ðT0T1Þ2 ¼ ðT1T2Þ2 ¼ ðT2T3Þ2 ¼ 1

* +
:

Here the generators T0, T1, T2, T3 are reflections.

(2-1) There is a unique double covering p
ðbÞ
S1; 1

: OS1; 1
! Ob. This cor-

responds to the epimorphism from p1ðObÞ to Z=2Z which maps

Fig. 3. Involutions of OS1; 1
and ON2; 1

.
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the generators T0;T1;T2;T3 to 1. Then we have the following

identities:

P0 ¼ T0T1; P1 ¼ T1T2; P2 ¼ T2T3:

(2-2) There is a unique double covering p
ðbÞ
N2; 1

: ON2; 1
! Ob. This corre-

sponds to the epimorphism from p1ðObÞ to Z=2Z which maps the

generators T0, T1, T2 to 1 and maps T3 to 0. Then we have the

following identities:

Q0 ¼ T1T2; Q1 ¼ T T1

3 ; Q2 ¼ T0T1:

In summary, we have the commutative diagram of double coverings as

shown in Figure 4. Every arrow represents a double covering. There are

three types of coverings p1 from S1;2 (resp. OS1; 2
) to S1;1 (resp. OS1; 1

) up to

equivalence, and the other coverings are unique up to equivalence.

Definition 2.1. (1) For F ¼ S1;1, N2;1 S1;2, OS1; 1
, ON2; 1

, OS1; 2
, Oa or Ob,

a representation r : p1ðFÞ ! PSLð2;CÞ is type-preserving if it is irreducible

(equivalently, it does not have a common fixed point in qH3) and sends

peripheral elements to parabolic transformations.

Fig. 4
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(2) Type-preserving PSLð2;CÞ-representations r and r 0 are equivalent if

ig � r ¼ r 0, where ig is the inner automorphism, igðhÞ ¼ ghg�1, of PSLð2;CÞ
determined by g.

In the above definition, if F is an orbifold with reflector lines, an element

of p1ðF Þ is said to be peripheral if it is (the image of ) a peripheral element of

p1ð ~FF Þ, where ~FF is the orientation double covering of F .

Definition 2.2. Let r1 be a type-preserving PSLð2;CÞ-representation of

p1ðS1;1Þ (resp. p1ðOS1; 1
Þ). Let r2 be a type-preserving PSLð2;CÞ-representation

of p1ðN2;1Þ (resp. p1ðON2; 1
Þ). The representations r1 and r2 are commensurable

if there exist a double covering p1 from S1;2 (resp. OS1; 2
) to S1;1 (resp. OS1; 1

)

and a double covering p2 from S1;2 (resp. OS1; 2
) to N2;1 (resp. ON2; 1

) such that

r1 � ðp1Þ� and r2 � ðp2Þ� are equivalent, namely ig � r1 � ðp1Þ� ¼ r2 � ðp2Þ� for

some g A PSLð2;CÞ. After replacing r1 with ig � r1, without changing the

equivalence class, the last identity can be replaced with the identity r1 � ðp1Þ� ¼
r2 � ðp2Þ�.

In this paper, we study the following problem:

Problem 2.3. For a given type-preserving PSLð2;CÞ-representation r2 of

p1ðN2;1Þ (resp. p1ðON2; 1
Þ), when does there exist a type-preserving PSLð2;CÞ-

representation r1 of p1ðS1;1Þ (resp. p1ðOS1; 1
Þ) which is commensurable with r2?

We will give a partial answer to this problem for a certain family of type-

preserving PSLð2;CÞ-representations of p1ðN2;1Þ in terms of ‘‘complex prob-

abilities’’ introduced in Section 4 (see Theorem 5.1).

Remark 2.4. Recall that there are three equivalence classes of double

coverings S1;2 ! S1;1 and there is a unique equivalence class of double

coverings S1;2 ! N2;1. The three classes of double coverings S1;2 ! S1;1

become equivalent after a post composition of a self-homeomorphism of

S1;1. Hence, by considering compositions of r1 with the automorphism of

p1ðS1;1Þ induced by a self-homeomorphism of S1;1, we may arbitrarily fix the

equivalence classes of the coverings S1;2 ! S1;1. However, we must be careful

in the choices of a representative p1 : S1;2 ! S1;1 and a representative

p2 : S1;2 ! N2;1 of the equivalence classes of the coverings, by the following

reason. Assume that r1 : p1ðS1;1Þ ! PSLð2;CÞ and r2 : p1ðN2;1Þ ! PSLð2;CÞ
are commensurable via coverings p1 : S1;2 ! S1;1 and p2 : S1;2 ! N2;1, i.e.,

r1 � ðp1Þ� and r2 � ðp2Þ� are equivalent. Pick a self-homeomorphism f of S1;2

and replace p1 with another covering p 0
1 :¼ p1 � f : S1;2 ! S1;1. Then the

representation r1 � ðp 0
1Þ� is not necessarily equivalent to the representation

r1 � ðp1Þ�, and hence it is not necessarily equivalent to the representation
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r2 � ðp2Þ�. In fact, we also need to replace p2 with another covering p 0
2 :¼

p2 � f : S1;2 ! N2;1, which is equivalent to p2.

3. Elliptic generators

In this section, we first recall the definition and basic properties of elliptic

generators of p1ðOS1; 1
Þ (see [1, Section 2] for details). We also introduce the

concept of elliptic generators of p1ðON2; 1
Þ, and then we establish similar basic

properties.

Recall that the (orbifold) fundamental group of OS1; 1
has the following

presentation:

p1ðOS1; 1
Þ ¼ hP0;P1;P2 jP2

0 ¼ P2
1 ¼ P2

2 ¼ 1i;

and that K ¼ ðP0P1P2Þ�1 is represented by the puncture of OS1; 1
.

Definition 3.1. An ordered triple ðP0;P1;P2Þ of elements of p1ðOS1; 1
Þ is

called an elliptic generator triple of p1ðOS1; 1
Þ if its members generate p1ðOS1; 1

Þ
and satisfy P2

0 ¼ P2
1 ¼ P2

2 ¼ 1 and ðP0P1P2Þ�1 ¼ K . A member of an elliptic

generator triple of p1ðOS1; 1
Þ is called an elliptic generator of p1ðOS1; 1

Þ.

Remark 3.2. In the above definition, the condition that the members of

the triple generate p1ðOS1; 1
Þ is actually a consequence of the other conditions.

This can be seen from the proof of [1, Lemma 2.1.7].

Proposition 3.3 ([1, Proposition 2.1.6]). The elliptic generator triples of

p1ðOS1; 1
Þ are characterized as follows.

(1) For any elliptic generator triple ðP0;P1;P2Þ of p1ðOS1; 1
Þ, the following

hold:

(1.1) The triple of any three consecutive elements in the following bi-infinite

sequence is also an elliptic generator triple of p1ðOS1; 1
Þ.

. . . ;PK�2

2 ;PK�1

0 ;PK�1

1 ;PK�1

2 ;P0;P1;P2;P
K
0 ;P

K
1 ;P

K
2 ;P

K 2

0 ; . . .

(1.2) ðP0;P2;P
P2

1 Þ and ðPP0

1 ;P0;P2Þ are also elliptic generator triples of

p1ðOS1; 1
Þ.

(2) Conversely, any elliptic generator triple of p1ðOS1; 1
Þ is obtained from a

given elliptic generator triple of p1ðOS1; 1
Þ by successively applying the operations

in (1).

Definition 3.4. For an elliptic generator triple ðP0;P1;P2Þ of p1ðOS1; 1
Þ,

the bi-infinite sequence fPjg in Proposition 3.3(1.1) is called the sequence of

elliptic generators of p1ðOS1; 1
Þ (associated with ðP0;P1;P2Þ).
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Recall that the (orbifold) fundamental group of ON2; 1
has the following

presentation:

p1ðON2; 1
Þ ¼ hQ0;Q1;Q2 jQ2

0 ¼ Q2
1 ¼ Q2

2 ¼ 1i;

and that K0 ¼ Q
Q0

1 and K2 ¼ Q
Q2

1 are represented by the reflections in the lines

which generate the corner reflector of order y. It should be noted that Q0

and Q2 act on the universal cover of ON2; 1
orientation preservingly, and Q1 acts

on the universal cover of ON2; 1
orientation reversingly.

Definition 3.5. An ordered triple ðQ0;Q1;Q2Þ of elements of p1ðON2; 1
Þ is

called an elliptic generator triple of p1ðON2; 1
Þ if its members generate p1ðON2; 1

Þ
and satisfy Q2

0 ¼ Q2
1 ¼ Q2

2 ¼ 1 and Q
Q2

1 Q
Q0

1 ¼ K2K0. A member of an elliptic

generator triple of p1ðON2; 1
Þ is called an elliptic generator of p1ðON2; 1

Þ.

Remark 3.6. In the above definition, the condition that the members of

the triple generate p1ðON2; 1
Þ is actually a consequence of the other conditions.

This can be seen from the proof of Proposition 3.7 (see [4]).

Proposition 3.7. The elliptic generator triples of p1ðON2; 1
Þ are charac-

terized as follows.

(1) For any elliptic generator triple ðQ0;Q1;Q2Þ of p1ðON2; 1
Þ, the following

hold:

(1.1) The triples in the following bi-infinite sequence are also elliptic

generator triples of p1ðON2; 1
Þ.

. . . ; ðQK0K2

0 ;QK0K2

1 ;QK0K2

2 Þ; ðQK0

2 ;QK0

1 ;QK0

0 Þ; ðQ0;Q1;Q2Þ;

ðQK2

2 ;QK2

1 ;QK2

0 Þ; ðQK2K0

0 ;QK2K0

1 ;QK2K0

2 Þ; . . .

To be precise, the following holds. Let fQjg be the sequence of

elements of p1ðON2; 1
Þ obtained from ðQ0;Q1;Q2Þ by applying the

following rule:

QK0

j ¼ Q�j�1; QK2

j ¼ Q�jþ5:

Then the triple ðQ3k;Q3kþ1;Q3kþ2Þ is also an elliptic generator triple

of p1ðON2; 1
Þ for any k A Z.

(1.2) ðQ2;Q
Q2Q0

1 ;QQ2

0 Þ is also an elliptic generator triple of p1ðON2; 1
Þ.

(2) Conversely, any elliptic generator triple of p1ðON2; 1
Þ is obtained from a

given elliptic generator triple of p1ðON2; 1
Þ by successively applying the operations

in (1).

The proof of (1) is obvious, and the proof of (2) is given in [4]. In this

paper, we need only (1).
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Definition 3.8. For an elliptic generator triple ðQ0;Q1;Q2Þ of p1ðON2; 1
Þ,

the bi-infinite sequence fQjg in Proposition 3.7(1.1) is called the sequence of

elliptic generators of p1ðON2; 1
Þ (associated with ðQ0;Q1;Q2Þ).

It should be noted that Qj is conjugate to the following element (cf.

Proposition 4.11(1.1)):

Q0 if j1 0 or 5 ðmod 6Þ;

Q1 if j1 1 ðmod 3Þ;

Q2 if j1 2 or 4 ðmod 6Þ:

In particular, Qj acts on the universal cover of ON2; 1
orientation reversingly or

orientation preservingly according to whether j1 1 ðmod 3Þ or not.

4. Type-preserving representations

Let r1 be a type-preserving PSLð2;CÞ-representation of p1ðOS1; 1
Þ. Fix a

sequence of elliptic generators fPjg of p1ðOS1; 1
Þ. Set

ðx1; x12; x2Þ ¼ ðtrðr1ðX1ÞÞ; trðr1ðX1X2ÞÞ; trðr1ðX2ÞÞÞ;

where X1 ¼ P2P1 and X2 ¼ P0P1. As the trace of an element in PSLð2;CÞ
is only defined up to sign, we are free to choose the signs of x1 and x2
independently. Once we have done this though, the sign of x12 is determined.

It is well-known that the triple ðx1; x12; x2Þ is a Marko¤ triple, namely, it

satisfies the Marko¤ identity (see [2], [1]):

x2
1 þ x2

12 þ x2
2 ¼ x1x12x2

and that the triple ðx1; x12; x2Þ is non-trivial, namely, it is di¤erent from

(0,0,0). Moreover, the equivalence class of the triple ðx1; x12; x2Þ is uniquely

determined by the equivalence class of the type-preserving representation r1,

and vice versa (see [1, Proposition 2.3.6 and 2.4.2] for details). Here, two

triples ðx1; x12; x2Þ and ðx 0
1; x

0
12; x

0
2Þ are said to be equivalent if the latter is equal

to ðx1; x12; x2Þ, ðx1;�x12;�x2Þ, ð�x1; x12;�x2Þ or ð�x1;�x12; x2Þ. We call the

triple ðx1; x12; x2Þ ¼ ðtrðr1ðX1ÞÞ; trðr1ðX1X2ÞÞ; trðr1ðX2ÞÞÞ the Marko¤ triple

associated with fr1ðPjÞg.
Let r2 be a type-preserving PSLð2;CÞ-representation of p1ðON2; 1

Þ. Fix a

sequence of elliptic generators fQjg of p1ðON2; 1
Þ. Set

ðy1; y12; y2Þ ¼ ðtrðr2ðY1ÞÞ=i; trðr2ðY1Y2ÞÞ=i; trðr2ðY2ÞÞÞ;

where Y1 ¼ Q0Q1 and Y2 ¼ Q0Q2 and i ¼
ffiffiffiffiffiffiffi
�1

p
. Note that r2ðKN2; 1

Þ ¼
r2ððY1Y2Y

�1
1 Y2Þ�1Þ is a parabolic element of PSLð2;CÞ with a trace that
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has a well defined sign (independent of the signs chosen for the traces of rðY1Þ
and rðY2Þ), which is equal to y21 þ y212 � y1 y12 y2 þ 2. Hence ðy1; y12; y2Þ
satisfies one of the following identities:

y21 þ y212 þ 4 ¼ y1 y12 y2 if trðr2ðKN2; 1
ÞÞ ¼ �2;

y21 þ y212 ¼ y1 y12 y2 if trðr2ðKN2; 1
ÞÞ ¼ þ2: ðEq1Þ

In addition, the triple ðy1; y12; y2Þ is non-trivial, namely, it is di¤erent from

(0,0,0) (see [3, Remark 4.3]). It is well-known that any two generator

subgroup hA;Bi of PSLð2;CÞ is irreducible if and only if trð½A;B�Þ0 2

(see, for example [5, Proposition 2.3.1]). Since r2 is irreducible, it satisfies

one of the following identities:

y2 0 0 if trðr2ðKN2; 1
ÞÞ ¼ �2;

y2 0G2 if trðr2ðKN2; 1
ÞÞ ¼ þ2: ðEq2Þ

Moreover, the equivalence class of the triple ðy1; y12; y2Þ is uniquely determined

by the equivalence class of the type-preserving representation r2, and vice versa

(see [3, Propositions 4.4 and 4.6] for details). Here, two triples ðy1; y12; y2Þ
and ðy 0

1; y
0
12; y

0
2Þ are said to be equivalent if the latter is equal to ðy1; y12; y2Þ,

ðy1;�y12;�y2Þ, ð�y1; y12;�y2Þ or ð�y1;�y12; y2Þ. We call the triple

ðy1; y12; y2Þ ¼ ðtrðr2ðY1ÞÞ=i; trðr2ðY1Y2ÞÞ=i; trðr2ðY2ÞÞÞ the pseudo-Marko¤

triple associated with fr2ðQjÞg.

Proposition 4.1. (1) The restriction of any type-preserving PSLð2;CÞ-
representation of p1ðOS1; 1

Þ (resp. p1ðON2; 1
Þ) to p1ðS1;1Þ (resp. p1ðN2;1Þ) is type-

preserving.

(2) Conversely, every type-preserving PSLð2;CÞ-representation r1 (resp.

r2) of p1ðS1;1Þ (resp. p1ðN2;1Þ) extends to a unique type-preserving PSLð2;CÞ-
representation ~rr1 (resp. ~rr2 of p1ðOS1; 1

Þ (resp. p1ðON2; 1
Þ). Moreover, if r1 (resp.

r2) is faithful, then ~rr1 (resp. ~rr2) is also faithful.

Proof. The assertion (1) is obvious from the definition. The first as-

sertion in (2) is well-known (cf. [10, Section 5.4] and [1, Proposition 2.2.2]).

The second assertion in (2) is proved as follows. Suppose to the contrary that

r1 is faithful but that ~rr1 is not faithful. Pick a nontrivial element g of Ker ~rr1.

Since p1ðOS1; 1
Þ is the free product of three cyclic groups and since p1ðS1;1Þ is

an index 2 subgroup of p1ðOS1; 1
Þ, we can see that the normal closure of g in

p1ðOS1; 1
Þ has a nontrivial intersection with p1ðS1;1Þ. This means that r1 is not

faithful, a contradiction. The same argument works for the pair of represen-

tations r2 and ~rr2. r
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By this proposition, the following are well-defined.

Definition 4.2. (1) For F ¼ S1;1 or OS1; 1
, the symbol WðS1;1Þ denotes the

space of all type-preserving PSLð2;CÞ-representations r1 of p1ðF Þ.
(2) For F ¼ N2;1 or ON2; 1

, the symbol WðN2;1Þ (resp. W 0ðN2;1Þ) denotes

the space of all type-preserving PSLð2;CÞ-representations r2 of p1ðF Þ such that

trðr2ðKN2; 1
ÞÞ ¼ �2 (resp. trðr2ðKN2; 1

ÞÞ ¼ þ2).

Remark 4.3. For any r2 A W 0ðN2;1Þ, the isometries r2ðQ0Q2Þ ¼ r2ðY2Þ
and r2ðKN2; 1

Þ have a common fixed point (see [3, Lemma 4.5(ii)]), and hence r2
is indiscrete or non-faithful (see [3, Lemma 4.7]).

The following lemma gives a (local) section of the projection from WðS1;1Þ
(resp. WðN2;1Þ) to the space of the equivalence classes of the non-trivial Marko¤

triples (resp. pseudo-Marko¤ triple) (cf. [6, Section 2], [9, Section 3], [1, Lemma

2.3.7] and [3, Lemma 4.5]).

Lemma 4.4. (1) Let ðx1; x12; x2Þ A C3 be a triple satisfying x2
1 þ x2

12 þ x2
2 ¼

x1x12x2 and x12 0 0, and let fPjg be a sequence of elliptic generators of

p1ðOS1; 1
Þ.

(1.1) Let r1 : p1ðS1;1Þ ! PSLð2;CÞ be a representation defined by

r1ðX1Þ ¼
x1 � x2=x12 x1=x

2
12

x1 x2=x12

� �
; r1ðX1X2Þ ¼

x12 �1=x12

x12 0

� �
;

r1ðX2Þ ¼
x2 � x1=x12 �x2=x

2
12

�x2 x1=x12

� �
; r1ðKS1; 1

Þ ¼ �1 �2

0 �1

� �
;

where X1 ¼ P2P1 and X2 ¼ P0P1. Then r1 A WðS1;1Þ such that the Marko¤

triple associated with fr1ðPjÞg is equal to ðx1; x12; x2Þ up to equivalence.

(1.2) The above representation r1 extends to a type-preserving represen-

tation of p1ðOS1; 1
Þ satisfying the following identities:

r1ðP0Þ ¼
x2=x12 ðx12x2 � x1Þ=x2

12

�x1 �x2=x12

� �
; r1ðP1Þ ¼

0 �1=x12

x12 0

� �
;

r1ðP2Þ ¼
�x1=x12 ðx1x12 � x2Þ=x2

12

�x2 x1=x12

� �
; r1ðKÞ ¼ 1 1

0 1

� �
:

(2) Let ðy1; y12; y2Þ A C3 be a triple satisfying y21 þ y212 þ 4 ¼ y1 y12 y2 and

y2 0 0, and let fQjg be a sequence of elliptic generators of p1ðON2; 1
Þ.

(2.1) Let r2 : p1ðN2;1Þ ! PSLð2;CÞ be a representation defined by
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r2ðY1Þ ¼
y1i=2 �y12i=2y2

�ðy1 y2 � y12Þy2i=2 y1i=2

� �
;

r2ðY1Y2Þ ¼
y12i=2 �ðy12y2 � y1Þi=2y2

�y1 y2i=2 y12i=2

� �
;

r2ðY2Þ ¼
0 1=y2

�y2 y2

� �
; r2ðKN2; 1

Þ ¼ �1 �2

0 �1

� �
;

where Y1 ¼ Q0Q1 and Y2 ¼ Q0Q2. Then r2 A WðN2;1Þ such that the pseudo-

Marko¤ triple associated with fr2ðQjÞg is equal to ðy1; y12; y2Þ up to equivalence.

(2.2) The above representation r2 extends to a type-preserving represen-

tation of p1ðON2; 1
Þ satisfying the following identities:

r2ðQ0Þ ¼
y1=2 �y12=2y2

ðy1 y2 � y12Þy2=2 �y1=2

� �
;

r2ðQ1Þ ¼
�ðy21 þ 2Þi=2 y1y12i=2y2

�y1 y2ðy1 y2 � y12Þi=2 ðy21 þ 2Þi=2

� �
;

r2ðQ2Þ ¼
�y12=2 ðy12y2 � y1Þ=2y2
�y1 y2=2 y12=2

� �
;

r2ðK0Þ ¼
i 0

0 �i

� �
; r2ðK2Þ ¼

i �2i

0 �i

� �
:

Convention 4.5. (1) For any element r1 A WðS1;1Þ, after taking conjugate

of r1 by some element of PSLð2;CÞ, we always assume that r1 is normalized so

that r1ðKÞ is given by the identity in Lemma 4.4(1.2) without changing the

equivalence class.

(2) For any element r2 A WðN2;1Þ, after taking conjugate of r2 by some

element of PSLð2;CÞ, we always assume that r2 is normalized so that r2ðK0Þ
and r2ðK2Þ are given by the identities in Lemma 4.4(2.2) without changing the

equivalence class.

Pick an element r1 A WðS1;1Þ and a sequence of elliptic generators fPjg of

p1ðOS1; 1
Þ. Let ðx1; x12; x2Þ A C3 be the Marko¤ triple associated with fr1ðPjÞg.

Suppose x1x12x2 0 0. Then the identity x2
1 þ x2

12 þ x2
2 ¼ x1x12x2 implies the

following identity:

a0 þ a1 þ a2 ¼ 1; where a0 ¼
x1

x12x2
; a1 ¼

x12

x2x1
; a2 ¼

x2

x1x12
:

We call the triple ða0; a1; a2Þ A ðC�Þ3 the complex probability associated with

fr1ðPjÞg, where C� ¼ C� f0g. We note that the Marko¤ triple ðx1; x12; x2Þ
with x1x12x2 0 0 up to sign (that is, up to equivalence) is recovered from the
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complex probability by the following identities:

x2
1 ¼ 1

a1a2
; x2

12 ¼
1

a2a0
; x2

2 ¼ 1

a0a1
:

Moreover, there is a nice geometric construction of a type-preserving repre-

sentation from the corresponding complex probability.

To introduce the geometric construction of the representations, we prepare

some notations. Throughout this paper, H3 ¼ C� Rþ denotes the upper half

space model of the 3-dimensional hyperbolic space.

Definition 4.6. Let A ¼ a b

c d

� �
be an element of PSLð2;CÞ such that

AðyÞ0y, namely c0 0. Then the isometric hemisphere IðAÞ of A is the

hyperplane of the upper half space H3 bounded by

fz A C j jA 0ðzÞj ¼ 1g ¼ fz A C j jczþ dj ¼ 1g:

Thus IðAÞ is a Euclidean hemisphere orthogonal to C ¼ qH3 with center

cðAÞ ¼ A�1ðyÞ ¼ �d=c and radius rðAÞ ¼ 1=jcj. We denote by EðAÞ the

closed half space of H3 with boundary IðAÞ which is of infinite diameter with

respect to the Euclidean metric.

Lemma 4.7 ([1, Lemma 4.1.1]). Let A be an element of PSLð2;CÞ which

does not fix y and let W be an element of PSLð2;CÞ which preserves y and

acts on C ¼ qH3 as a Euclidean isometry. Then

IðAWÞ ¼ W �1ðIðAÞÞ; IðWAÞ ¼ IðAÞ:

In particular, IðWAW �1Þ ¼ WIðAÞ.

Now we introduce a nice geometric construction of a type-preserving

representation from the corresponding complex probability (cf. [1, Proposition

2.4.4]).

Proposition 4.8. Under Convention 4.5, the following hold:

(1) For any triple ða0; a1; a2Þ A ðC�Þ3 such that a0 þ a1 þ a2 ¼ 1 and for any

sequence of elliptic generators fPjg of p1ðOS1; 1
Þ, there is an element r1 A WðS1;1Þ

such that the complex probability associated with fr1ðPjÞg is equal to ða0; a1; a2Þ.
Moreover, r1 satisfies the following conditions (see Figure 5).

(1.1) The centers of isometric hemispheres of r1ðPjÞ satisfy the following

conditions.
� cðr1ðP3kþ2ÞÞ � cðr1ðP3kþ1ÞÞ ¼ a0.
� cðr1ðP3kþ3ÞÞ � cðr1ðP3kþ2ÞÞ ¼ a1.
� cðr1ðP3kþ4ÞÞ � cðr1ðP3kþ3ÞÞ ¼ a2.

(1.2) The isometries r1ðPjÞ satisfy the following conditions.
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� The isometry r1ðP3kþ2Þ is the p-rotation about the geodesic with

endpoints cðr1ðP3kþ2ÞÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ð�a1Þ

p
.

� The isometry r1ðP3kÞ is the p-rotation about the geodesic with

endpoints cðr1ðP3kÞÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ð�a2Þ

p
.

� The isometry r1ðP3kþ1Þ is the p-rotation about the geodesic with

endpoints cðr1ðP3kþ1ÞÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð�a0Þ

p
.

(2) Conversely, under Convention 4.5, any element r1 A WðS1;1Þ with the

complex probability ða0; a1; a2Þ associated with fr1ðPjÞg for some sequence of

elliptic generators fPjg of p1ðOS1; 1
Þ satisfies the above conditions.

Notation 4.9. Under Convention 4.5, let r1 be an element of WðS1;1Þ
and let fPjg be a sequence of elliptic generators of p1ðOS1; 1

Þ. Let x be the

automorphism of p1ðOS1; 1
Þ given by the following (cf. Proposition 3.3):

ðxðP0Þ; xðP1Þ; xðP2ÞÞ ¼ ðPP1

2 ;P1;P
K
0 Þ:

If the complex probability associated with fr1ðxkðPjÞÞg is well-defined, then

we denote it by ðaðkÞ0 ; a
ðkÞ
1 ; a

ðkÞ
2 Þ.

The following lemma can be verified by simple calculation (cf. [1, Lemma

2.4.1]).

Lemma 4.10. Under Convention 4.5, let r1 be an element of WðS1;1Þ and

let fPjg be a sequence of elliptic generators of p1ðOS1; 1
Þ. Suppose that the

complex probability ðaðkÞ0 ; a
ðkÞ
1 ; a

ðkÞ
2 Þ associated with fr1ðxkðPjÞÞg is well-defined

for any k A Z. Then we have the following identities (cf. Figure 6):

a
ðkþ1Þ
0 ¼ 1� a

ðkÞ
2 ; a

ðkþ1Þ
1 ¼ a

ðkÞ
1 a

ðkÞ
2

1� a
ðkÞ
2

; a
ðkþ1Þ
2 ¼ a

ðkÞ
2 a

ðkÞ
0

1� a
ðkÞ
2

;

a
ðk�1Þ
0 ¼ a

ðkÞ
2 a

ðkÞ
0

1� a
ðkÞ
0

; a
ðk�1Þ
1 ¼ a

ðkÞ
0 a

ðkÞ
1

1� a
ðkÞ
0

; a
ðk�1Þ
2 ¼ 1� a

ðkÞ
0 :

Fig. 5. Isometric hemispheres of elliptic generators of p1ðS1; 1Þ.
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Next we give a geometric description of (normalized) type-preserving

representations of p1ðON2; 1
Þ. Pick an element r2 A WðN2;1Þ and a sequence

of elliptic generators fQjg of p1ðON2; 1
Þ. Let ðy1; y12; y2Þ A C3 be the pseudo-

Marko¤ triple associated with fr2ðQjÞg. Suppose y1 y2 y
0
12 0 0, where y 0

12 ¼
trðr2ðY1Y

�1
2 ÞÞ=i ¼ y1 y2 � y12. Then the identity y21 þ y212 þ 4 ¼ y1 y12 y2

implies the following identity:

b0 þ b1 þ b2 ¼ 1; where b0 ¼
y1

y2 y
0
12

; b1 ¼
4

y1 y2 y
0
12

; b2 ¼
y 0
12

y1 y2
:

We call the triple ðb0; b1; b2Þ A ðC�Þ3 the complex probability associated

with fr2ðQjÞg. We note that the pseudo-Marko¤ triple ðy1; y12; y2Þ with

y1 y2 y
0
12 0 0 up to sign (that is, up to equivalence) is recovered from the

complex probability by the following identities:

y21 ¼ 4b0
b1

; ðy 0
12Þ

2 ¼ 4b2
b1

; y22 ¼ 1

b2b0
:

Moreover, we have the following proposition.

Proposition 4.11. Under Convention 4.5, the following hold:

(1) For any triple ðb0; b1; b2Þ A ðC�Þ3 such that b0 þ b1 þ b2 ¼ 1 and for any

sequence of elliptic generators fQjg of p1ðON2; 1
Þ, there is an element r2 A WðN2;1Þ

such that the complex probability associated with fr2ðQjÞg is equal to ðb0; b1; b2Þ.
Moreover, r2 satisfies the following conditions (see Figure 7).

(1.1) The centers of isometric hemispheres of r2ðQjÞ satisfy the following

conditions.
� cðr2ðQ6kÞÞ � cðr2ðQ6k�3Q6k�1ÞÞ ¼ b0.
� cðr2ðQ6kþ2ÞÞ � cðr2ðQ6kÞÞ ¼ b1.
� cðr2ðQ6kQ6kþ2ÞÞ � cðr2ðQ6kþ2ÞÞ ¼ b2.
� cðr2ðQ6kþ3ÞÞ � cðr2ðQ6kQ6kþ2ÞÞ ¼ b2.
� cðr2ðQ6kþ5ÞÞ � cðr2ðQ6kþ3ÞÞ ¼ b1.
� cðr2ðQ6kþ3Q6kþ5ÞÞ � cðr2ðQ6kþ5ÞÞ ¼ b0.
� cðr2ðQ3kþ1ÞÞ ¼ 1

2 ðcðr2ðQ3kÞÞ þ cðr2ðQ3kþ2ÞÞÞ.
(1.2) The isometries r2ðQjÞ satisfy the following conditions.

Fig. 6. Adjacent complex probabilities of r1 A WðS1; 1Þ.
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� For any j with j1 0 or 5 ðmod 6Þ, the isometry r2ðQjÞ is the

p-rotation about the geodesic with endpoints cðr2ðQjÞÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0ð�b1Þ

p
.

� For any j with j1 2 or 3 ðmod 6Þ, the isometry r2ðQjÞ is the

p-rotation about the geodesic with endpoints cðr2ðQjÞÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1ð�b2Þ

p
.

� For any k, the isometry r2ðQ3kQ3kþ2Þ is the composition of the

p-rotation about the geodesic with endpoints cðr2ðQ3kQ3kþ2ÞÞGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ð�b0Þ

p
and the horizontal translation z 7! z� 1. In particu-

lar, the isometry r2ðQ3kþ2Q3kÞ is the composition of the p-rotation

about the geodesic with endpoints cðr2ðQ3kþ2Q3kÞÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ð�b0Þ

p
and the horizontal translation z 7! zþ 1.

� For any k, the isometry r2ðQ3kþ1Þ is the p-rotation about the

geodesic with endpoints cðr2ðQ3kÞÞ and cðr2ðQ3kþ2ÞÞ.
(2) Conversely, under Convention 4.5, any element r2 A WðN2;1Þ with the

complex probability ðb0; b1; b2Þ associated with fr2ðQjÞg for some sequence of

elliptic generators fQjg of p1ðON2; 1
Þ satisfies the above conditions.

Proof. (1) Pick a triple ðb0; b1; b2Þ A ðC�Þ3 satisfying b0 þ b1 þ b2 ¼ 1 and

fix a sequence of elliptic generators fQjg of p1ðOS1; 1
Þ. Let ðy1; z; y2Þ A ðC�Þ3

be a triple of a root of the following polynomial equation:

y21 ¼ 4b0
b1

; z2 ¼ 4b2
b1

; y22 ¼ 1

b2b0
:

Replacing y2 by �y2 if necessary, the triple ðy1; z; y2Þ A ðC�Þ3 satisfies

y21 þ z2 þ 4 ¼ y1zy2

and y2 is not equal to 0. Hence the triple ðy1; z; y2Þ A ðC�Þ3 is a pseudo-

Marko¤ triple. Set y12 ¼ y1 y2 � z. By direct calculation, we can see that

Fig. 7. Isometric hemispheres of elliptic generators of p1ðN2; 1Þ.
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the triple ðy1; y12; y2Þ A ðC�Þ3 is also a pseudo-Marko¤ triple, namely, the triple

satisfies (Eq1) and (Eq2). Hence, for the triple ðy1; y12; y2Þ, we have an

element r2 A WðN2;1Þ which is as in Lemma 4.4(2.2). By the formula in

Lemma 4.4(2.2), we have the following (cf. Figure 7):
� cðr2ðQ0ÞÞ � cðr2ðQ2Q0ÞÞ ¼ b0.
� cðr2ðQ2ÞÞ � cðr2ðQ0ÞÞ ¼ b1.
� cðr2ðQ0Q2ÞÞ � cðr2ðQ2ÞÞ ¼ b2.
� cðr2ðQ1ÞÞ ¼ 1

2 ðcðr2ðQ2ÞÞ þ cðr2ðQ0ÞÞÞ.
� r2ðQ0Þ is the p-rotation about the geodesic with endpoints cðr2ðQ0ÞÞGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b0ð�b1Þ
p

.
� r2ðQ2Þ is the p-rotation about the geodesic with endpoints cðr2ðQ2ÞÞGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1ð�b2Þ
p

.
� r2ðQ0Q2Þ is the composition of the p-rotation about the geodesic with

endpoints cðr2ðQ0Q2ÞÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ð�b0Þ

p
and the translation z 7! z� 1.

� r2ðQ1Þ is the p-rotation about the geodesic with endpoints cðr2ðQ0ÞÞ
and cðr2ðQ2ÞÞ.

Recall that the sequence of elliptic generators fQjg satisfies the following:

QK0

j ¼ Q�j�1; QK2

j ¼ Q�jþ5; where K0 ¼ Q
Q0

1 ; K2 ¼ Q
Q2

1 :

Note that the isometry r2ðK0Þ (resp. r2ðK2Þ) is the p-rotation about the vertical

geodesic above 0 (resp. 1). Here a vertical geodesic above a point z A C means

the geodesic fzg � Rþ in H3 ¼ C� Rþ. Hence, by Lemma 4.7, we have

Iðgr2ðK0ÞÞ ¼ r2ðK0ÞðIðgÞÞ and Iðgr2ðK2ÞÞ ¼ r2ðK2ÞðIðgÞÞ for any g A PSLð2;CÞ
such that gðyÞ0y. Thus we obtain the desired result.

(2) Let r2 be an element of WðN2;1Þ. Since r2 is normalized, the

representation r2 is conjugate to a representation as in Lemma 4.4(2.2) by

some Euclidean translation. Since the properties in Proposition 4.11(1) are

invariant by Euclidean translations, we have the desired result by the above

proof. r

Notation 4.12. Under Convention 4.5, let r2 be an element of WðN2;1Þ
and let fQjg be a sequence of elliptic generators of p1ðON2; 1

Þ. Let s be the

automorphism of p1ðON2; 1
Þ given by Proposition 3.7(1.2), namely,

ðsðQ0Þ; sðQ1Þ; sðQ2ÞÞ ¼ ðQ2;Q
Q2Q0

1 ;QQ2

0 Þ:

If the complex probability associated with fr2ðskðQjÞÞg is well-defined, then

we denote it by ðbðkÞ0 ; b
ðkÞ
1 ; b

ðkÞ
2 Þ.

The following lemma can be verified by simple calculation.

Lemma 4.13. Under Convention 4.5, let r2 be an element of WðN2;1Þ and

let fQjg be a sequence of elliptic generators of p1ðON2; 1
Þ. Suppose that the
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complex probability ðbðkÞ0 ; b
ðkÞ
1 ; b

ðkÞ
2 Þ associated with fr2ðskðQjÞÞg is well-defined

for any k A Z. Then we have the following identities (cf. Figure 8):

b
ðkþ1Þ
0 ¼ 1� b

ðkÞ
2 ; b

ðkþ1Þ
1 ¼ b

ðkÞ
1 b

ðkÞ
2

1� b
ðkÞ
2

; b
ðkþ1Þ
2 ¼ b

ðkÞ
2 b

ðkÞ
0

1� b
ðkÞ
2

;

b
ðk�1Þ
0 ¼ b

ðkÞ
2 b

ðkÞ
0

1� b
ðkÞ
0

; b
ðk�1Þ
1 ¼ b

ðkÞ
0 b

ðkÞ
1

1� b
ðkÞ
0

; b
ðk�1Þ
2 ¼ 1� b

ðkÞ
0 :

As a consequence of Propositions 4.8, 4.11 and Lemmas 4.10, 4.13, we

have the following corollary.

Corollary 4.14. Under Convention 4.5, let r1 and r2 be elements of

WðS1;1Þ and WðN2;1Þ, respectively. Let fPjg and fQjg be sequences of elliptic

generators of p1ðOS1; 1
Þ and p1ðON2; 1

Þ, respectively. Suppose that the complex

probabilities ða0; a1; a2Þ and ðb0; b1; b2Þ associated with fr1ðPjÞg and fr2ðQjÞg,
respectively, are well-defined. Then the following hold.

(1) ða0; a1; a2Þ ¼ ðb0; b1; b2Þ and cðr1ðP1ÞÞ ¼ cðr2ðQ2Q0ÞÞ if and only if

ðr1ðP6jþ2Þ; r1ðP6jþ3ÞÞ ¼ ðr2ðQ6jÞ; r2ðQ6jþ2ÞÞ for some j A Z. More-

over, if these conditions hold, then the following identities hold for any

j; k A Z:

ðaðkÞ0 ; a
ðkÞ
1 ; a

ðkÞ
2 Þ ¼ ðbðkÞ0 ; b

ðkÞ
1 ; b

ðkÞ
2 Þ;

ðr1ðxkðP6jþ2ÞÞ; r1ðxkðP6jþ3ÞÞÞ ¼ ðr2ðskðQ6jÞÞ; r2ðskðQ6jþ2ÞÞÞ:

(2) ða0; a1; a2Þ ¼ ðb2; b1; b0Þ and cðr1ðP1ÞÞ ¼ cðr2ðQ2Q0ÞÞ if and only if

ðr1ðP6jþ5Þ; r1ðP6jþ6ÞÞ ¼ ðr2ðQ6jþ3Þ; r2ðQ6jþ5ÞÞ for some j A Z. More-

over, if these conditions hold, then the following identities hold for any

j; k A Z:

ðaðkÞ0 ; a
ðkÞ
1 ; a

ðkÞ
2 Þ ¼ ðbð�kÞ

2 ; b
ð�kÞ
1 ; b

ð�kÞ
0 Þ;

ðr1ðxkðP6jþ5ÞÞ; r1ðxkðP6jþ6ÞÞÞ ¼ ðr2ðs�kðQ6jþ3ÞÞ; r2ðs�kðQ6jþ5ÞÞÞ:

Fig. 8. Adjacent complex probabilities of r2 A WðN2; 1Þ.
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At the end of this section, we prove the following lemma.

Lemma 4.15. Let r1 and r2 be type-preserving PSLð2;CÞ-representations of
p1ðS1;1Þ and p1ðN2;1Þ, respectively. Let ~rr1 and ~rr2, respectively, be the unique

extensions of r1 and r2 given by Proposition 4.1. Then r1 and r2 are commen-

surable if and only if ~rr1 and ~rr2 are commensurable.

Proof. We first show the if part. Suppose that ~rr1 and ~rr2 are com-

mensurable, i.e., there exist double coverings p1 : OS1; 2
! OS1; 1

and p2 : OS1; 2
!

ON2; 1
such that ~rr1 � ðp1Þ� ¼ ~rr2 � ðp2Þ�. By the correspondence between double

coverings described in Section 2 (see Figure 2), there exist double coverings

~pp1 : S1;2 ! S1;1 and ~pp2 : S1;2 ! N2;1 such that pS1; 1
� ~pp1 ¼ p1 � pS1; 2

and

pN2; 1
� ~pp2 ¼ p2 � pS1; 2

. Hence we have the following identity:

r1 � ð~pp1Þ� ¼ ~rr1 � ðpS1; 1
Þ� � ð~pp1Þ�

¼ ~rr1 � ðp1Þ � ðpS1; 2
Þ�

¼ ~rr2 � ðp2Þ � ðpS1; 2
Þ�

¼ ~rr2 � ðpN2; 1
Þ� � ð~pp2Þ� ¼ r2 � ð~pp2Þ�:

Next we show the only if part. Suppose that r1 and r2 are commen-

surable, namely there exist double coverings p1 : S1;2 ! S1;1 and p2 : S1;2 !
N2;1 such that r1 � ðp1Þ� ¼ r2 � ðp2Þ�. By the correspondence between double

coverings described in Section 2 (see Figure 2), we have double coverings

�pp1 : OS1; 2
! OS1; 1

and �pp2 : OS1; 2
! ON2; 1

such that pS1; 1
� p1 ¼ �pp1 � pS1; 2

and

pN2; 1
� p2 ¼ �pp2 � pS1; 2

. Hence we have the following identity (see Figure 9):

~rr1 � ð �pp1Þ� � ðpS1; 2
Þ� ¼ r1 � ðp1Þ� ¼ r2 � ðp2Þ� ¼ ~rr2 � ð �pp2Þ� � ðpS1; 2

Þ�:

Fig. 9
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This means that both ~rr1 � ð �pp1Þ� and ~rr2 � ð �pp2Þ� are extensions of r :¼
r1 � ðp1Þ� ¼ r2 � ðp2Þ� of p1ðS1;2Þ to p1ðOS1; 2

Þ. Note that p1ðOS1; 2
Þ is generated

by p1ðS1;2Þ ¼ hZ1;Z2;Z3i and the element R1 and that the generators satisfy

the following identities (see Section 2):

R1ZjR
�1
1 ¼ Z�1

j for j ¼ 1; 2; 3:

Hence both ~rr1 � ð �pp1Þ�ðR1Þ and ~rr2 � ð �pp2Þ�ðR1Þ are solutions of the following

system of equation in PSLð2;CÞ.

grðZjÞg�1 ¼ rðZjÞ�1 for j ¼ 1; 2; 3:

On the other hand, since r is irreducible, the system of equations have at most

one solution. Hence we have ~rr1 � ð �pp1Þ�ðR1Þ ¼ ~rr2 � ð �pp2Þ�ðR1Þ, and therefore we

have ~rr1 � ð �pp1Þ� ¼ ~rr2 � ð �pp2Þ�. r

Remark 4.16. Let r1, r2, ~rr1 and ~rr2 be as in Lemma 4.15 and assume that

r1 and r2 (and so ~rr1 and ~rr2) are commensurable. Then we can easily see, as

in the proof of Proposition 4.1, that if one of the representations r1, r2, ~rr1 and

~rr2 is faithful, then all of them are faithful.

5. Main theorem

In this section, we give a partial answer to Problem 2.3. By Lemma 4.15,

we may only consider the problem for the quotient orbifolds. Our partial

answer to the commensurability problem for representations of the fundamental

groups of the orbifolds OS1; 1
and ON2; 1

is given as follows.

Theorem 5.1. Under Convention 4.5, the following hold:

(1) Let r2 be an element of WðN2;1Þ. Suppose that r2 is faithful. Then

the following conditions are equivalent.

( i ) There exists a faithful representation r1 A WðS1;1Þ which is commen-

surable with r2.

( ii ) There exist a sequence of elliptic generators fQjg of p1ðON2; 1
Þ and

an integer k0 such that the complex probability ðb0; b1; b2Þ associated

with fr2ðQjÞg satisfies the following identity under Notation 4.12 (cf.

Figure 10):

ðbðk0Þ0 ; b
ðk0Þ
1 ; b

ðk0Þ
2 Þ ¼ ðb2; b1; b0Þ:

(iii) There exists a sequence of elliptic generators fQjg of p1ðON2; 1
Þ such

that the complex probability ðb0; b1; b2Þ associated with fr2ðQjÞg
satisfies one of the following identities:

ðaÞ ðbð0Þ0 ; b
ð0Þ
1 ; b

ð0Þ
2 Þ ¼ ðb2; b1; b0Þ,

ðbÞ ðbð1Þ0 ; b
ð1Þ
1 ; b

ð1Þ
2 Þ ¼ ðb2; b1; b0Þ:
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(2) If the conditions in (1) hold, the representation r1 is unique up to

precomposition by an automorphism of p1ðOS1; 1
Þ preserving K.

(3) Moreover, the following hold:

ðaÞ r2 extends to a type-preserving PSLð2;CÞ-representation of

p1ðOaÞ if and only if r2 satisfies the condition (iii)-ðaÞ. More-

over, if these conditions are satisfied, the extension is unique.

ðbÞ r2 extends to a type-preserving PSLð2;CÞ-representation of

p1ðObÞ if and only if r2 satisfies the condition (iii)-ðbÞ. More-

over, if these conditions are satisfied, the extension is unique.

Remark 5.2. By using this theorem, we can prove the ‘‘converse’’

condition, namely, we can give a condition for a faithful type-preserving

PSLð2;CÞ-representation of p1ðS1;1Þ to be commensurable with that of p1ðN2;1Þ
(see [4]).

Proof. We prove (1) by proving the implications (iii) ) (ii), (ii) ) (iii),

(ii) ) (i) and (i) ) (ii).

(iii) ) (ii). This is obvious.

(ii) ) (iii). Suppose that there exist a sequence of elliptic generators fQjg
of p1ðON2; 1

Þ and an integer k0 such that the complex probability ðb0; b1; b2Þ
associated with fr2ðQjÞg satisfies the following identity:

ðbðk0Þ0 ; b
ðk0Þ
1 ; b

ðk0Þ
2 Þ ¼ ðb2; b1; b0Þ:

Recall that the triple ðbðk0Þ0 ; b
ðk0Þ
1 ; b

ðk0Þ
2 Þ is the complex probability associated

with fr2ðsk0ðQjÞÞg, where s is the automorphism of p1ðON2; 1
Þ given as in

Notation 4.12. Since r2 is faithful, we have trðr2ðgÞÞ0 0 for any g A p1ðN2;1Þ.
Hence the complex probability ðbðkÞ0 ; b

ðkÞ
1 ; b

ðkÞ
2 Þ associated with fr2ðskðQjÞÞg is

well-defined for any k A Z. By the assumption ðbðk0Þ0 ; b
ðk0Þ
1 ; b

ðk0Þ
2 Þ ¼ ðb2; b1; b0Þ

and Lemma 4.13, we have

ðbðk0GlÞ
0 ; b

ðk0GlÞ
1 ; b

ðk0GlÞ
2 Þ ¼ ðbðHlÞ

2 ; b
ðHlÞ
1 ; b

ðHlÞ
0 Þ

Fig. 10. ðbðk0Þ0 ; b
ðk0Þ
1 ; b

ðk0Þ
2 Þ ¼ ðb2; b1; b0Þ.
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for any l A Z. In particular we have

ðbðk0�k0=2Þ
0 ; b

ðk0�k0=2Þ
1 ; b

ðk0�k0=2Þ
2 Þ ¼ ðbðk0=2Þ2 ; b

ðk0=2Þ
1 ; b

ðk0=2Þ
0 Þ if k0 is even;

ðbðk0�ðk0�1Þ=2Þ
0 ; b

ðk0�ðk0�1Þ=2Þ
1 ; b

ðk0�ðk0�1Þ=2Þ
2 Þ

¼ ðbððk0�1Þ=2Þ
2 ; b

ððk0�1Þ=2Þ
1 ; b

ððk0�1Þ=2Þ
0 Þ if k0 is odd:

Hence, by replacing fQjg with fsk0=2ðQjÞg or fsðk0�1Þ=2ðQjÞg according to

whether k0 is even or odd, we obtain the desired result.

(ii) ) (i). Suppose that there exist a sequence of elliptic generators fQjg
of p1ðON2; 1

Þ and an integer k0 such that the complex probability ðb0; b1; b2Þ
associated with fr2ðQjÞg satisfies the following identity:

ðbðk0Þ0 ; b
ðk0Þ
1 ; b

ðk0Þ
2 Þ ¼ ðb2; b1; b0Þ:

Pick a sequence of elliptic generators fPjg of p1ðOS1; 1
Þ. Then by Proposition

(1), there exists a (normalized) type-preserving representation r1 of p1ðOS1; 1
Þ

such that the complex probability associated with fr1ðPjÞg is equal to

ðb0; b1; b2Þ. After taking conjugate of r1 by a parallel translation, we may

assume that cðr1ðP1ÞÞ ¼ cðr2ðQ2Q0ÞÞ. Then, by Corollary 4.14(1), we see

that

ðr1ðP2Þ; r1ðP3ÞÞ ¼ ðr2ðQ0Þ; r2ðQ2ÞÞ:

By Lemmas 4.10 and 4.13, we see that the complex probability associated

with fr1ðxk0ðPjÞÞg is equal to the complex probability ðbðk0Þ0 ; b
ðk0Þ
1 ; b

ðk0Þ
2 Þ

associated with fr2ðsk0ðQjÞÞg, where x and s are, respectively, the auto-

morphisms of p1ðOS1; 1
Þ and p1ðON2; 1

Þ given by Notations 4.9 and 4.12. Hence,

by the assumption ðbðk0Þ0 ; b
ðk0Þ
1 ; b

ðk0Þ
2 Þ ¼ ðb2; b1; b0Þ and Corollary 4.14(2), we

have

ðr1ðxk0ðP5ÞÞ; r1ðxk0ðP6ÞÞÞ ¼ ðr2ðQK2

2 Þ; r2ðQK2

0 ÞÞ:

Hence we have

ðr1ðP2Þ; r1ðP3Þ; r1ðxk0ðP5ÞÞ; r1ðxk0ðP6ÞÞÞ ¼ ðr2ðQ0Þ; r2ðQ2Þ; r2ðQK2

2 Þ; r2ðQK2

0 ÞÞ:

Claim 5.3. Let ðR0;R1;R2;R3Þ be the generator system of p1ðOS1; 2
Þ given

in Section 2.

(1) There is a double covering p1 : OS1; 2
! OS1; 1

such that

ððp1Þ�ðR0Þ; ðp1Þ�ðR1Þ; ðp1Þ�ðR2Þ; ðp1Þ�ðR3ÞÞ ¼ ðP2;P3; x
k0ðP5Þ; xk0ðP6ÞÞ:

(2) There is a double covering p2 : OS1; 2
! ON2; 1

such that

ððp2Þ�ðR0Þ; ðp2Þ�ðR1Þ; ðp2Þ�ðR2Þ; ðp2Þ�ðR3ÞÞ ¼ ðQ0;Q2;Q
K2

2 ;QK2

0 Þ:
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Proof. (2) can be seen by choosing p2 to be the covering corresponding

to the epimorphism f2 : p1ðON2; 1
Þ ! Z=2Z defined by the following formula

(see Figure 2):

f2ðQjÞ ¼
0 if j ¼ 0 or 2;

1 if j ¼ 1:

�

To prove (1), let q1 : OS1; 2
! OS1; 1

be the double covering such that the

following holds (see Figure 2):

ððq1Þ�ðR0Þ; ðq1Þ�ðR1Þ; ðq1Þ�ðR2Þ; ðq1Þ�ðR3ÞÞ ¼ ðP0;P1;P
K
0 ;P

K
1 Þ:

Let f be a self-homeomorphism of OS1; 1
such that f� maps ðP0;P1;P2Þ to

ðP2;P3;P
K
1 Þ, and consider the double covering p

ð0Þ
1 :¼ f � q1 : OS1; 2

! OS1; 1
.

Then we have

ððpð0Þ1 Þ�ðR0Þ; ðpð0Þ1 Þ�ðR1Þ; ðpð0Þ1 Þ�ðR2Þ; ðpð0Þ1 Þ�ðR3ÞÞ ¼ ðP2;P3;P5;P6Þ:

Let ~xx be the self-homeomorphism of OS1; 2
such that

ðð~xxÞ�ðR0Þ; ð~xxÞ�ðR1Þ; ð~xxÞ�ðR2Þ; ð~xxÞ�ðR3ÞÞ ¼ ðR0;R1;R3;R
R3

2 Þ:

Then the double covering p1 :¼ p
ð0Þ
1 � ~xx : OS1; 2

! OS1; 1
satisfies the desired

condition.

By Claim 5.3, there are double coverings p1 : OS1; 2
! OS1; 1

and p2 : OS1; 2
!

ON2; 1
satisfying the following identity:

ðr1 � ðp1Þ�ðR0Þ; r1 � ðp1Þ�ðR1Þ; r1 � ðp1Þ�ðR2Þ; r1 � ðp1Þ�ðR3ÞÞ

¼ ðr1ðP2Þ; r1ðP3Þ; r1ðxk0ðP5ÞÞ; r1ðxk0ðP6ÞÞÞ

¼ ðr2ðQ0Þ; r2ðQ2Þ; r2ðQK2

2 Þ; r2ðQK2

0 ÞÞ

¼ ðr2 � ðp2Þ�ðR0Þ; r2 � ðp2Þ�ðR1Þ; r2 � ðp2Þ�ðR2Þ; r2 � ðp2Þ�ðR3ÞÞ:

Hence r1 � ðp1Þ� ¼ r2 � ðp2Þ�, namely, the representation r2 is commensurable

with r1. By Remark 4.16, r1 is faithful. Thus we obtain the desired rep-

resentation r1.

(i) ) (ii). Suppose that there exists a faithful (normalized) type-preserving

PSLð2;CÞ-representation r1 of p1ðOS1; 1
Þ which is commensurable with r2, i.e.,

there exist double coverings p1 : OS1; 2
! OS1; 1

and p2 : OS1; 2
! ON2; 1

such that

r1 � ðp1Þ� ¼ r2 � ðp2Þ�. Recall that ðp2Þ�ðp1ðOS1; 2
ÞÞ is equal to the kernel of

the epimorphism f2 : p1ðOS1; 1
Þ ! Z=2Z and that the kernel of f2 is equal to the

subgroup of p1ðON2; 1
Þ generated by the quadruple ðQ0;Q2;Q

K2

2 ;QK2

0 Þ. Hence

we have Q0;Q2 A ðp2Þ�ðp1ðOS1; 2
ÞÞ. Set Pð0Þ ¼ ðp1 � p�1

2 Þ�ðQ0Þ and Pð1Þ ¼
ðp1 � p�1

2 Þ�ðQ2Þ.
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Claim 5.4. The ordered triple ðK�1Pð1ÞPð0Þ;Pð0Þ;Pð1ÞÞ is an elliptic gen-

erator triple of p1ðOS1; 1
Þ.

Proof. Note that Pð0Þ and Pð1Þ have order 2, because

(1) ðp1 � p�1
2 Þ� : ðp2Þ�ðp1ðOS1; 2

ÞÞ ! ðp1Þ�ðp1ðOS1; 2
ÞÞ is an isomorphism

and

(2) Q0 and Q2 have order 2.

By using the third assertion of Proposition 4.11(1.2) and the fact that r1ðKÞ is

the horizontal translation z 7! zþ 1, we see that r1ðK�1Þr2ðQ2Q0Þ has order 2.

By the definition of Pð0Þ and Pð1Þ and by the identity r1 � ðp1Þ� ¼ r2 � ðp2Þ�, we
have r1ðPð1ÞPð0ÞÞ ¼ r2ðQ2Q0Þ. Hence r1ðK�1Pð1ÞPð0ÞÞ has order 2. Since r1
is faithful, this implies that K�1Pð1ÞPð0Þ has order 2. Hence, by Remark 3.2,

the triple ðK�1Pð1ÞPð0Þ;Pð0Þ;Pð1ÞÞ is an elliptic generator triple of p1ðOS1; 1
Þ.
r

By Claim 5.4 and Proposition 3.3(1.1), ððPð1ÞÞK
�1

;K�1Pð1ÞPð0Þ;Pð0ÞÞ is also
an elliptic generator triple of p1ðOS1; 1

Þ. Let fPjg be the sequence of elliptic

generators of p1ðOS1; 1
Þ associated with this triple. Then r1ðP2Þ ¼ r1ðPð0ÞÞ ¼

r2ðQ0Þ and r1ðP3Þ ¼ r1ðPð1ÞÞ ¼ r2ðQ2Þ. This implies, together with Corollary

4.14(1), that the complex probability associated with fr1ðPjÞg is equal to

ðb0; b1; b2Þ. Set ðPð2Þ;Pð3ÞÞ ¼ ððp1 � p�1
2 Þ�ðQ

K2

2 Þ; ðp1 � p�1
2 Þ�ðQ

K2

0 ÞÞ. Then, by

a parallel argument, the triple ððPð3ÞÞK
�2

; ðK�1Pð3ÞPð2ÞÞK
�1

; ðPð2ÞÞK
�1

Þ is an

elliptic generator triple of p1ðOS1; 1
Þ. Let fP 0

jg be a sequence of elliptic

generators of p1ðOS1; 1
Þ associated with this triple. Then r1ðP 0

5Þ ¼ r1ðPð2ÞÞ ¼
r2ðQK2

2 Þ and r1ðP 0
6Þ ¼ r1ðPð3ÞÞ ¼ r2ðQK2

0 Þ. This implies, together with Corol-

lary 4.14(2), that the complex probability associated with fr1ðP 0
j Þg is equal

to ðb2; b1; b0Þ. Since r1ðKÞr2ðQ0Q2Þ ¼ r1ðK�1Þr2ðQK2

0 QK2

2 Þ by Proposition

4.11(1.2), we have

r1ðP4Þ ¼ r1ðKP2P3Þ ¼ r1ðKÞr2ðQ0Q2Þ

¼ r1ðK�1Þr2ðQK2

0 QK2

2 Þ ¼ r1ðK�1P 0
6P

0
5Þ ¼ r1ðP 0

4Þ:

Since r1 is faithful, this implies P4 ¼ P 0
4. Hence, by Proposition 3.3, there is

an integer k0 such that P 0
j ¼ xk0ðPjÞ. By Lemmas 4.10 and 4.13, the complex

probability associated with fr1ðxkðPjÞÞg is equal to the complex probability

ðbðkÞ0 ; b
ðkÞ
1 ; b

ðkÞ
2 Þ associated with fr2ðskðQjÞÞg for any k A Z. Hence we have

ðbðk0Þ0 ; b
ðk0Þ
1 ; b

ðk0Þ
2 Þ ¼ ðb2; b1; b0Þ:

Thus the proof of the assertion (1) is complete.

Next we prove the assertion (2). Let r1 and r 0
1 be type-preserving

PSLð2;CÞ-representations of p1ðOS1; 1
Þ such that they are commensurable

with r2. Then there exist coverings p1; p
0
1 : OS1; 2

! OS1; 1
and p2 : OS1; 2

!

242 Mikio Furokawa



ON2; 1
such that r1 � ðp1Þ� ¼ r2 � ðp2Þ� and r 0

1 � ðp 0
1Þ� ¼ r2 � ðp2Þ�. By Claim

5.4, the following triples are elliptic generator triples of p1ðOS1; 1
Þ:

ðP0;P1;P2Þ :¼ ðK�1ðp1 � p�1
2 Þ�ðQ2Q0Þ; ðp1 � p�1

2 Þ�ðQ0Þ; ðp1 � p�1
2 Þ�ðQ2ÞÞ;

ðP 0
0;P

0
1;P

0
2Þ :¼ ðK�1ðp 0

1 � p�1
2 Þ�ðQ2Q0Þ; ðp 0

1 � p�1
2 Þ�ðQ0Þ; ðp 0

1 � p�1
2 Þ�ðQ2ÞÞ:

Since r1 and r 0
1 are commensurable with r2, we have the following identity

ðr1ðP0Þ; r1ðP1Þ; r1ðP2ÞÞ ¼ ðr1ðK�1Þr2ðQ2Q0Þ; r2ðQ0Þ; r2ðQ2ÞÞ

¼ ðr 0
1ðK�1Þr2ðQ2Q0Þ; r2ðQ0Þ; r2ðQ2ÞÞ

¼ ðr 0
1ðP 0

0Þ; r 0
1ðP 0

1Þ; r 0
1ðP 0

2ÞÞ:

By Proposition 3.3(2), there is an automorphism f of p1ðOS1; 1
Þ preserving K

which maps ðP0;P1;P2Þ to ðP 0
0;P

0
1;P

0
2Þ. Hence we have r1 ¼ r 0

1 � f .

Finally we prove the assertion (3).

The if part of ðaÞ. Suppose that there exists a sequence of elliptic

generators fQjg of p1ðON2; 1
Þ such that the complex probability ðb0; b1; b2Þ

associated with fr2ðQjÞg satisfies the following identity:

ðbð0Þ0 ; b
ð0Þ
1 ; b

ð0Þ
2 Þ ¼ ðb2; b1; b0Þ; namely; b0 ¼ b2:

Let ~KK be the horizontal translation z 7! zþ 1. For simplicity of notation,

we write ðg0; g1; g2Þ instead of ðr2ðQ2Þ; r2ðQ1Þ; ~KKr2ðK0ÞÞ. We first show that

there is a representation r�
2 from p1ðOaÞ ¼ hS0;S1;S2 jS2

0 ¼ S2
1 ¼ S2

2 ¼ 1;

ðS1S2Þ2 ¼ 1i to PSLð2;CÞ sending ðS0;S1;S2Þ to ðg0; g1; g2Þ. Since g0 ¼
r2ðQ2Þ and g1 ¼ r2ðQ1Þ, we have g20 ¼ g21 ¼ 1. Thus the existence of the

representation r�
2 is guaranteed by the following claim.

Claim 5.5. (1) g2 is the p-rotation about the axis which is the image of the

vertical geodesic Axisðr2ðK0ÞÞ by the translation z 7! zþ 1
2 , where AxisðAÞ

denotes the axis of A A PSLð2;CÞ. In particular, g22 ¼ 1.

(2) The axes of the p-rotations g1 and g2 intersect orthogonally and hence

g1g2 is also a p-rotation. In particular, ðg1g2Þ2 ¼ 1.

Proof. (1) Since ~KKðzÞ ¼ zþ 1 and since r2ðK0Þ is the p-rotation about

the vertical geodesic Axisðr2ðK0ÞÞ, the isometry g2 ¼ ~KKr2ðK0Þ is also the

p-rotation about the vertical geodesic, which is the image of Axisðr2ðK0ÞÞ
by the translation z 7! zþ 1

2 .

(2) Note that r2ðK0Þ is the p-rotation about the vertical geodesic above

cðr2ðQ2Q0ÞÞ, because we have the following identity by Lemma 4.7:

r2ðK0ÞIðr2ðQ2Q0ÞÞ ¼ Iðr2ðQ2Q0K0ÞÞ ¼ Iðr2ðK2Q2Q0ÞÞ ¼ Iðr2ðQ2Q0ÞÞ:
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Thus the axis of g2 is the vertical geodesic above cðr2ðQ2Q0ÞÞ þ 1
2 by Claim

5.5(1). Moreover, we have the following identity:

cðr2ðQ2Q0ÞÞ þ
1

2

¼ cðr2ðQ2Q0ÞÞ þ
1

2
ðcðr2ðQ0Q2ÞÞ � cðr2ðQ2Q0ÞÞÞ by Proposition 4:11ð1:1Þ

¼ 1

2
ðcðr2ðQ2Q0ÞÞ þ cðr2ðQ0Q2ÞÞÞ

¼ 1

2
ðcðr2ðQ2Q0ÞÞ þ b0 � b2 þ cðr2ðQ0Q2ÞÞÞ by the assumption b0 ¼ b2

¼ 1

2
ðcðr2ðQ0ÞÞ þ cðr2ðQ2ÞÞÞ by Proposition ð1:1Þ

¼ cðr2ðQ1ÞÞ by Proposition ð1:1Þ:

Hence g2 is the p-rotation about the vertical geodesic above cðr2ðQ1ÞÞ ¼ cðg1Þ
and hence the axes of g1 and g2 intersect orthogonally. r

Recall that p1ðON2; 1
Þ is identified with a subgroup of p1ðOaÞ and their

generators satisfy the following identities:

Q0 ¼ SS2

0 ; Q1 ¼ S1; Q2 ¼ S0:

Since g2 is the p-rotation about the vertical geodesic above cðr2ðQ1ÞÞ, we

have cðr2ðQ0ÞÞ ¼ cðr2ðQ2Þg2Þ ¼ cðr�
2 ðS

S2

0 ÞÞ. This together with the assumption

b0 ¼ b2 implies that r2ðQ0Þ ¼ r2ðQ2Þg2 ¼ r�
2 ðS

S2

0 Þ by Proposition 4.11. Hence

the restriction of r�
2 to p1ðON2; 1

Þ is equal to the original representation r2.

The only if part of ðaÞ. Suppose that r2 extends to a type-preserving

representation ~rr2 of p1ðOaÞ. Pick a sequence of elliptic generators fQjg of

p1ðON2; 1
Þ. Since r2 is faithful, we have trðr2ðY1ÞÞ trðr2ðY2ÞÞ trðr2ðY1Y

�1
2 ÞÞ

0 0, where Y1 ¼ Q0Q1 and Y2 ¼ Q0Q2. Thus the complex probability

ðb0; b1; b2Þ associated with fr2ðQjÞg is well-defined. Since p1ðON2; 1
Þ is identified

with a subgroup of p1ðOaÞ, the isometry ~rr2ðS2Þ satisfies the following identities:

ð~rr2ðS2ÞÞ2 ¼ 1; ~rr2ðQS2

0 Þ ¼ r2ðQ2Þ; ð~rr2ðQ1S2ÞÞ2 ¼ 1:

Claim 5.6. The isometry ~rr2ðS2Þ is the p-rotation about the vertical

geodesic above 1
2 ðcðr2ðQ2Q0ÞÞ þ cðr2ðQ0Q2ÞÞÞ ¼ cðr2ðQ1ÞÞ.

Proof. Since ð~rr2ðS2ÞÞ2 ¼ 1, ~rr2ðS2Þ is either the identity or a p-rotation.

If ~rr2ðS2Þ ¼ 1, then r2ðKN2; 1
Þ ¼ ~rr2ððSS0

1 S2Þ2Þ ¼ ~rr2ððSS0

1 Þ2Þ ¼ 1, a contradiction.

Hence ~rr2ðS2Þ is a p-rotation. By ~rr2ðQS2

0 Þ ¼ r2ðQ2Þ and ð ~rr2ðQ1S2ÞÞ2 ¼ 1, we

have ~rr2ðKS2

0 Þ ¼ r2ðK2Þ. Hence ~rr2ðS2Þ maps Fixðr2ðK0ÞÞ ¼ fcðr2ðQ2Q0ÞÞ;yg
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to Fixðr2ðK2ÞÞ ¼ fcðr2ðQ0Q2ÞÞ;yg. Since ~rr2ðS2Þ has order 2, the isometry

~rr2ðS2Þ must fix y. (Otherwise cðr2ðY �1
2 ÞÞ ¼ cðr2ðQ2Q0ÞÞ ¼ cðr2ðQ0Q2ÞÞ ¼

cðr2ðY2ÞÞ and hence trðr2ðY �1
2 ÞÞ ¼ 0, a contradiction to (Eq2).) Hence we

have Fixð~rr2ðS2ÞÞ ¼ 1
2 ðcðr2ðQ2Q0ÞÞ þ cðr2ðQ0Q2ÞÞÞ;y

� �
. By the faithfulness

of r2, the isometry r2ðQ1Þ does not fix y. In fact, if r2ðQ1Þ fixes y,

then trðr2ðY1ÞÞ trðr2ðY2ÞÞ trðr2ðY1Y
�1
2 ÞÞ ¼ 0 by Lemma 4.4(2.2). Since ~rr2ðS2Þ

fixes y, the axes of r2ðQ1Þ and ~rr2ðS2Þ intersect orthogonally by ð ~rr2ðQ1S2ÞÞ2
¼ 1. Hence the isometry ~rr2ðS2Þ is the p-rotation about the vertical geodesic

above 1
2 ðcðr2ðQ2Q0ÞÞ þ cðr2ðQ0Q2ÞÞÞ ¼ cðr2ðQ1ÞÞ. r

Hence we have

b0 ¼ cðr2ðQ0ÞÞ � cðr2ðQ2Q0ÞÞ by Proposition 4:11ð1:1Þ

¼ �cðr2ðQ2ÞÞ þ 2cðr2ðQ1ÞÞ � cðr2ðQ2Q0ÞÞ by Proposition 4:11ð1:1Þ

¼ �cðr2ðQ2ÞÞ þ cðr2ðQ0Q2ÞÞ by Claim 5:6

¼ b2 by Proposition 4:11ð1:1Þ:

To show the uniqueness of the extensions of r2, let ~rr2 and ~rr 0
2 be extensions

of r2 to p1ðOaÞ. Then we have the following identity:

ð~rr2ðSS2

0 Þ; ~rr2ðS1Þ; ~rr2ðS0ÞÞ ¼ ð~rr2ðQ0Þ; ~rr2ðQ1Þ; ~rr2ðQ2ÞÞ

¼ ðr2ðQ0Þ; r2ðQ1Þ; r2ðQ2ÞÞ

¼ ð~rr 0
2ðQ0Þ; ~rr 0

2ðQ1Þ; ~rr 0
2ðQ2ÞÞ

¼ ð~rr 0
2ðS

S2

0 Þ; ~rr 0
2ðS1Þ; ~rr 0

2ðS0ÞÞ:

By Claim 5.6, we have ~rr2ðS2Þ ¼ ~rr 0
2ðS2Þ. Hence we have ~rr2 ¼ ~rr 0

2.

The if part of ðbÞ. Suppose that there exists a sequence of elliptic

generators fQjg of p1ðON2; 1
Þ such that the complex probability ðb0; b1; b2Þ

associated with fr2ðQjÞg satisfies the following identity:

ðbð1Þ0 ; b
ð1Þ
1 ; b

ð1Þ
2 Þ ¼ ðb2; b1; b0Þ:

Let ~KK be the horizontal translation z 7! zþ 1. For simplicity of notation,

we write ðg0; g1; g2; g3Þ instead of ð ~KKr2ðK0Þ; g�1
0 r2ðQ2Þ; g�1

1 r2ðQ0Þ; r2ðK0ÞÞ. We

first show that there is a representation r�
2 from p1ðObÞ ¼ hT0;T1;T2;T3 j

T 2
0 ¼ T 2

1 ¼ T 2
2 ¼ T 2

3 ¼ 1; ðT0T1Þ2 ¼ ðT1T2Þ2 ¼ ðT2T3Þ2 ¼ 1i to PSLð2;CÞ
sending ðT0;T1;T2;T3Þ to ðg0; g1; g2; g3Þ. Since g3 ¼ r2ðK0Þ, g0g1 ¼ r2ðQ2Þ
and g1g2 ¼ r2ðQ0Þ, we have g23 ¼ ðg0g1Þ2 ¼ ðg1g2Þ2 ¼ 1. By Convention 4.5,

g0 ¼ ~KKr2ðK0Þ are p-rotations and hence g20 ¼ 1. Thus the existence of the

representation r�
2 is guaranteed by the following claim.
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Claim 5.7. (1) g0 is a p-rotation satisfying r2ðQ2Q0Þg0 ¼ r2ðQ0Q2Þ. In

particular, g2 ¼ g0r2ðQ2Q0Þ has order 2, and hence g22 ¼ 1.

(2) The axes of g0 and r2ðQ2Þ intersect orthogonally and hence g�1
0 r2ðQ2Þ

¼ g1 is also a p-rotation. In particular, g21 ¼ 1.

(3) g2g3 is a p-rotation and hence ðg2g3Þ2 ¼ 1.

Proof. (1) By the proof of Claim 5.5(1), the isometry g0 ¼ r2ðK2Þ ~KK is

the p-rotation about the vertical geodesic above 1
2 ðcðr2ðQ0Q2ÞÞ þ cðr2ðQ2Q0ÞÞÞ.

This together with Proposition 4.11 implies that r2ðQ2Q0Þg0 ¼ r2ðQ0Q2Þ.
(2) By Lemma 4.13, we have

b
ð1Þ
0 ¼ 1� b2; b

ð1Þ
1 ¼ b1b2

1� b2
; b

ð1Þ
2 ¼ b2b0

1� b2
:

This together with the assumption ðbð1Þ0 ; b
ð1Þ
1 ; b

ð1Þ
2 Þ ¼ ðb2; b1; b0Þ implies that

b2 ¼ b
ð1Þ
0 ¼ 1=2. In particular, 1

2 ðcðr2ðQ0Q2ÞÞ þ cðr2ðQ2Q0ÞÞÞ ¼ cðr2ðQ2ÞÞ by

Proposition 4.11(1.1). Hence g0 is the p-rotation about the vertical geodesic

above cðr2ðQ2ÞÞ and hence g0 and r2ðQ2Þ intersect orthogonally.

(3) Since g0g3 ¼ ~KK , we have g0g3ðzÞ ¼ zþ 1. By Proposition 4.11(1.2),

the isometry g3g2 ¼ g3g0r2ðQ2Q0Þ is a p-rotation. r

Recall that p1ðON2; 1
Þ is identified with a subgroup of p1ðObÞ and their

generators satisfy the following identities:

Q0 ¼ T1T2; Q1 ¼ TT1

3 ; Q2 ¼ T0T1:

Since

ðr�
2 ðT0Þ; r�

2 ðT1Þ; r�
2 ðT2Þ; r�

2 ðT3ÞÞ ¼ ðg0; g1; g2; g3Þ

¼ ð ~KKr2ðK0Þ; g�1
0 r2ðQ2Þ; g�1

1 r2ðQ0Þ; r2ðK0ÞÞ;

we have

ðr2ðQ0Þ; r2ðQ1Þ; r2ðQ2ÞÞ ¼ ðr�
2 ðT1T2Þ; r�

2 ðT
T1T2

3 Þ; r�
2 ðT0T1ÞÞ

¼ ðr�
2 ðT1T2Þ; r�

2 ðT
T1

3 Þ; r�
2 ðT0T1ÞÞ:

Thus the restriction of r�
2 to p1ðON2; 1

Þ is equal to the original representation r2.

The only if part of ðbÞ. Suppose that r2 extends to a type-preserving

representation ~rr2 of p1ðObÞ. Pick a sequence of elliptic generators fQjg of

p1ðON2; 1
Þ. Since r2 is faithful, we have trðr2ðY1ÞÞ trðr2ðY2ÞÞ trðr2ðY1Y

�1
2 ÞÞ0 0

and trðr2ðY1ÞÞ trðr2ðY2ÞÞ trðr2ðY1Y2ÞÞ0 0, where Y1 ¼ Q0Q1 and Y2 ¼ Q0Q2.

Thus the complex probability ðb0; b1; b2Þ associated with fr2ðQjÞg and the

complex probability ðbð1Þ0 ; b
ð1Þ
1 ; b

ð1Þ
2 Þ associated with fr2ðsðQjÞÞg are well-

defined. Since p1ðON2; 1
Þ is identified with a subgroup of p1ðObÞ, the isometry
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~rr2ðT0Þ satisfies the following identities:

ð~rr2ðT0ÞÞ2 ¼ 1; ð~rr2ðT0Q2ÞÞ2 ¼ 1;

ð~rr2ðT0Q2Q0ÞÞ2 ¼ 1; ð~rr2ðT0Q2Q0K0ÞÞ2 ¼ 1:

Claim 5.8. The isometry ~rr2ðT0Þ is the p-rotation about the vertical

geodesic above 1
2 ðcðr2ðQ2Q0ÞÞ þ cðr2ðQ0Q2ÞÞÞ ¼ cðr2ðQ2ÞÞ. Moreover, we

have ~rr2ðT0Þðcðr2ðQ0ÞÞÞ ¼ cðr2ðQ
Q2

0 ÞÞ.

Proof. Since ð ~rr2ðT0ÞÞ2 ¼ 1, ~rr2ðT0Þ is either the identity or a p-rotation.

If ~rr2ðT0Þ ¼ 1, then r2ðKN2; 1
Þ ¼ ~rr2ððT0T3Þ2Þ ¼ ~rr2ðT 2

3 Þ ¼ 1, a contradiction.

Hence ~rr2ðT0Þ is a p-rotation. By ð~rr2ðT0Q2Q0ÞÞ2 ¼ 1 and ð ~rr2ðT0Q2Q0K0ÞÞ2
¼ 1, we have ~rr2ðKT0

2 Þ ¼ r2ðK0Þ. Hence ~rr2ðT0Þ maps Fixðr2ðK2ÞÞ ¼
fcðr2ðQ0Q2ÞÞ;yg to Fixðr2ðK0ÞÞ ¼ fcðr2ðQ2Q0ÞÞ;yg. Since ~rr2ðT0Þ has order

2, the isometry ~rr2ðT0Þ must fix y. (Otherwise cðr2ðY �1
2 ÞÞ ¼ cðr2ðQ2Q0ÞÞ ¼

cðr2ðQ0Q2ÞÞ ¼ cðr2ðY2ÞÞ and hence trðr2ðY �1
2 ÞÞ ¼ 0, a contradiction to

(Eq2).) Hence we have Fixð ~rr2ðT0ÞÞ ¼ 1
2 ðcðr2ðQ2Q0ÞÞ þ cðr2ðQ0Q2ÞÞÞ;y

� �
.

By Lemma 4.4(2.2), if r2ðQ2Þ fixes y, then trðr2ðY1ÞÞ trðr2ðY2ÞÞ ¼ 0.

This contradicts the identities trðr2ðY1ÞÞ trðr2ðY2ÞÞ trðr2ðY1Y
�1
2 ÞÞ0 0 and

trðr2ðY1ÞÞ trðr2ðY2ÞÞ trðr2ðY1Y2ÞÞ0 0. Hence r2ðQ2Þ does not fix y. Since

~rr2ðT0Þ fixes y, the axes of ~rr2ðT0Þ and r2ðQ2Þ intersect orthogonally by

ð~rr2ðT0Q2ÞÞ2 ¼ 1. Hence ~rr2ðT0Þ is the p-rotation about the vertical geodesic

above 1
2 ðcðr2ðQ2Q0ÞÞ þ cðr2ðQ0Q2ÞÞÞ ¼ cðr2ðQ2ÞÞ.

By ð~rr2ðT0Q2ÞÞ2 ¼ 1 and ð~rr2ðT0Q2Q0ÞÞ2 ¼ 1, we have ~rr2ðQT0

0 Þ ¼ r2ðQ
Q2

0 Þ.
By the above argument, the isometry ~rr2ðT0Þ is a Euclidean isometry preserving

y. Hence, by Lemma 4.7, we have ~rr2ðT0Þðcðr2ðQ0ÞÞÞ ¼ cðr2ðQ
Q2

0 ÞÞ. r

Then we have

b0 ¼ cðr2ðQ0ÞÞ � cðr2ðQ2Q0ÞÞ by Proposition 4:11ð1:1Þ

¼ cðr2ðQ0Q2ÞÞ � cðr2ðQ
Q2

0 ÞÞ by Claim 5:8

¼ b
ð1Þ
2 by Proposition 4:11ð1:1Þ and Notation 4:12;

b1 ¼ cðr2ðQ2ÞÞ � cðr2ðQ0ÞÞ by Proposition 4:11ð1:1Þ

¼ cðr2ðQ
Q2

0 ÞÞ � cðr2ðQ2ÞÞ by Claim 5:8

¼ b
ð1Þ
1 by Proposition 4:11ð1:1Þ and Notation 4:12;

b2 ¼ cðr2ðQ0Q2ÞÞ � cðr2ðQ2ÞÞ by Proposition 4:11ð1:1Þ

¼ cðr2ðQ2ÞÞ � cðr2ðQ2Q0ÞÞ by Claim 5:8

¼ b
ð1Þ
0 by Proposition 4:11ð1:1Þ and Notation 4:12:
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To show the uniqueness of the extension of r2, let ~rr2 and ~rr 0
2 be extensions

of r2 to p1ðObÞ. Then we have the following identity:

ð~rr2ðT1T2Þ; ~rr2ðTT1

3 Þ; ~rr2ðT0T1ÞÞ ¼ ð~rr2ðQ0Þ; ~rr2ðQ1Þ; ~rr2ðQ2ÞÞ

¼ ð~rr 0
2ðQ0Þ; ~rr 0

2ðQ1Þ; ~rr 0
2ðQ2ÞÞ

¼ ð~rr 0
2ðT1T2Þ; ~rr 0

2ðT
T1

3 Þ; ~rr 0
2ðT0T1ÞÞ:

By Claim 5.8, we have ~rr2ðT0Þ ¼ ~rr 0
2ðT0Þ. Hence we have ~rr2 ¼ ~rr 0

2. r

In the remainder of this section, we study what happens if we drop the

faithfulness condition in Theorem 5.1.

Proposition 5.9. Under Convention 4.5, the following hold for every

r2 A WðN2;1Þ.
(1) For the conditions (ii) and (iii) in Theorem 5.1(1) and the condition (i) 0

defined below, the implication (iii) ) (ii) ) (i) 0 holds.

(i) 0 There exists a (possibly non-faithful) representation r1 A WðS1;1Þ
which is commensurable with r2.

(2) The assertion ðaÞ in Theorem 5.1(3) holds.

(3) The if part of ðbÞ in Theorem 5.1(3) holds.

Proof. (1) In the proof of the implication (iii) ) (ii) in Theorem 5.1(1),

we do not use the faithfulness of r2. In the proof of the implication (ii) ) (i)

in Theorem 5.1(1), we do not use the faithfulness of r2 to show the existence of

the representation r1 A WðS1;1Þ which is commensurable with r2. Hence we

have the desired results.

(2) The proof of the if part of ðaÞ in Theorem 5.1(3) does not use the

faithfulness. In the proof of the only if part of ðaÞ in Theorem 5.1(3), we use

the faithfulness of r2 only to guarantee the existence of a sequence of elliptic

generators fQjg of p1ðON2; 1
Þ such that

� trðr2ðY1ÞÞ trðr2ðY2ÞÞ trðr2ðY1Y
�1
2 ÞÞ00 with Y1 ¼Q0Q1 and Y2 ¼ Q0Q2

and
� r2ðQ1Þ does not fix y.

On the other hand, Lemma 4.4(2.2) implies that the above two conditions are

equivalent. Hence, we have only to show that r2ðQ1Þ does not fix y without

the faithfulness of r2.

Let ~rr2 be the extension of r2 to p1ðOaÞ. Since p1ðON2; 1
Þ ¼ hQ0;Q1;Q2 j

Q2
0 ¼ Q2

1 ¼ Q2
2 ¼ 1i is identified with a subgroup of p1ðOaÞ ¼ hS0;S1;S2 jS2

0 ¼
S2
1 ¼ S2

2 ¼ 1; ðS1S2Þ2 ¼ 1i, we have ð ~rr2ðQ1S2ÞÞ2 ¼ ð~rr2ðS1S2ÞÞ2 ¼ 1. By the

proof of Claim 5.6, we have Fixð ~rr2ðS2ÞÞ ¼
�
1
2 ðcðr2ðQ2Q0ÞÞ þ cðr2ðQ0Q2ÞÞÞ;

y
�
. Suppose to the contrary that r2ðQ1Þ fixes y. Then r2ðQ1Þ is equal to

r2ðK0Þ or r2ðK2Þ by Lemma 4.4(2.2). Hence Fixðr2ðQ1ÞÞ ¼ fcðr2ðQ2Q0ÞÞ;yg
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or fcðr2ðQ0Q2ÞÞ;yg. Since ð ~rr2ðQ1S2ÞÞ2 ¼ 1, we have r2ðQ1Þ ¼ ~rr2ðS2Þ.
Hence cðr2ðQ2Q0ÞÞ ¼ cðr2ðQ0Q2ÞÞ, and therefore trðr2ðQ0Q2ÞÞ ¼ trðr2ðY2ÞÞ
¼ 0. This contradicts (Eq2). Hence r2ðQ1Þ does not fix y.

(3) The proof of the if part of ðbÞ in Theorem 5.1(3) does not use the

faithfulness. r

Definition 5.10. An element r2 of WðN2;1Þ is strongly non-faithful if

there exists an elliptic generator Qj of p1ðON2; 1
Þ with j2 1 ðmod 3Þ such that

trðr2ðK0QjÞÞ ¼ 0.

Proposition 5.11. Under Convention 4.5, let r2 be an element of WðN2;1Þ.
Then the following conditions are equivalent.

(1) r2 is strongly non-faithful.

(2) The conditions (i) 0 in Proposition 5.9(1) and (ii) in Theorem 5.1(1) hold,

but the condition (iii) in Theorem 5.1(1) does not hold.

(3) r2 extends to a type-preserving representation ~rr2 of p1ðObÞ such that

~rr2ðT1Þ ¼ 1, where T1 is the generator of p1ðObÞ as in Figure 3.

Proof. We prove this proposition by proving the implications ð1Þ ) ð2Þ,
ð2Þ ) ð1Þ, ð1Þ ) ð3Þ and ð3Þ ) ð1Þ.

ð1Þ ) ð2Þ. Suppose that r2 is strongly non-faithful, i.e., there is an elliptic

generator Qj of p1ðON2; 1
Þ with j2 1 ðmod 3Þ such that trðr2ðK0QjÞÞ ¼ 0. We

may assume without losing generality that j ¼ 0. Then the pseudo-Marko¤

triple associated with fr2ðQjÞg is equal to ð0; 2i; rÞ for some r A C�. In

particular, the complex probability associated with fr2ðQjÞg is not defined.

Hence r2 does not satisfy the condition (iii) in Theorem 5.1(1). However, the

complex probability ðbð2Þ0 ; b
ð2Þ
1 ; b

ð2Þ
2 Þ associated with fr2ðs2ðQjÞÞg is equal to

ð1;�1=r2; 1=r2Þ, and the complex probability ðbð�1Þ
0 ; b

ð�1Þ
1 ; b

ð�1Þ
2 Þ associated with

fr2ðs�1ðQjÞÞg is equal to ð1=r2;�1=r2; 1Þ. Thus we have ðbð2Þ0 ; b
ð2Þ
1 ; b

ð2Þ
2 Þ ¼

ðbð�1Þ
2 ; b

ð�1Þ
1 ; b

ð�1Þ
0 Þ. By replacing fQjg with fs�1ðQjÞg, the representation r2

(together with fQjg) satisfies the condition (ii) in Theorem 5.1(1), and hence r2
satisfies the condition (i) 0 in Proposition 5.9(1) by Proposition 5.9(1).

ð2Þ ) ð1Þ Suppose that the conditions (i) 0 in Proposition 5.9(1) and (ii) in

Theorem 5.1(1) hold, but the condition (iii) in Theorem 5.1(1) does not hold.

Then, by the proof of (ii) ) (iii) in Theorem 5.1(1), for some sequence of

elliptic generators fQjg and some integer k, the complex probability associated

with fr2ðskðQjÞÞg is not defined. This implies y
ðkÞ
1 y

ðkÞ
2 ðyðkÞ1 y

ðkÞ
2 � y

ðkÞ
12 Þ ¼ 0

for the pseudo-Marko¤ triple ðyðkÞ1 ; y
ðkÞ
12 ; y

ðkÞ
2 Þ associated with fr2ðskðQjÞÞg.

Hence trðr2ðK0s
kðQ0ÞÞÞ or trðr2ðK0s

k�1ðQ0ÞÞÞ is equal to 0, and therefore r2 is

strongly non-faithful.

ð1Þ ) ð3Þ Suppose that r2 is strongly non-faithful, namely, there is an

elliptic generator Qj of p1ðON2; 1
Þ with j2 1 ðmod 3Þ such that trðr2ðK0QjÞÞ
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¼ 0. We may assume j ¼ 0 without losing generality. Then there is a

representation r�
2 from p1ðObÞ ¼ hT0;T1;T2;T3 jT 2

0 ¼ T 2
1 ¼ T 2

2 ¼ T 2
3 ¼ 1;

ðT0T1Þ2 ¼ ðT1T2Þ2 ¼ ðT2T3Þ2 ¼ 1i to PSLð2;CÞ sending ðT0;T1;T2;T3Þ to

ðg0; g1; g2; g3Þ :¼ ð ~KKr2ðK0Þ; g�1
0 r2ðQ2Þ; g�1

1 r2ðQ0Þ; r2ðK0ÞÞ, where ~KK is the hor-

izontal translation z 7! zþ 1 and r�
2 is an extension of r2 to p1ðObÞ. This can

be seen as follows. By the proof of the if part of ðbÞ in Theorem 5.1(3), we

have g23 ¼ ðg0g1Þ2 ¼ ðg1g2Þ2 ¼ g20 ¼ 1. Hence we have only to show that

g21 ¼ 1, g22 ¼ 1 and ðg2g3Þ2 ¼ 1. Since y1 ¼ trðr2ðY1ÞÞ ¼ trðr2ðK0Q0ÞÞ ¼ 0,

we have cðr2ðQ0ÞÞ ¼ 0 A Fixðr2ðK0ÞÞ and r2ðQ2Þ ¼ ~KKr2ðK0Þ by Lemma

4.4(2.2). By r2ðQ2Þ ¼ ~KKr2ðK0Þ, we have g1 ¼ g�1
0 r2ðQ2Þ ¼ 1, and hence

g21 ¼ 1. Since g2 ¼ g�1
1 r2ðQ0Þ ¼ r2ðQ0Þ, we have g22 ¼ 1. By cðr2ðQ0ÞÞ A

Fixðr2ðK0ÞÞ, the axes of r2ðQ0Þ and r2ðK0Þ intersect orthogonally, and hence

g2g3 ¼ g�1
1 r2ðQ0Þr2ðK0Þ ¼ r2ðQ0Þr2ðK0Þ is a p-rotation. In particular,

ðg2g3Þ2 ¼ 1. Moreover, we have r�
2 ðT1Þ ¼ g1 ¼ 1. Thus we obtain the

desired representation r�
2 .

ð3Þ ) ð1Þ Suppose that the representation r2 extends to a type-

preserving PSLð2;CÞ-representation ~rr2 of p1ðObÞ such that ~rr2ðT1Þ ¼ 1.

Note that p1ðON2; 1
Þ is identified with a subgroup of p1ðObÞ and T1 ¼ T0Q2.

By the proof of Claim 5.8, the isometry ~rr2ðT0Þ fixes y. Since ~rr2ðT1Þ ¼
~rr2ðT0Q2Þ ¼ 1, the isometry r2ðQ2Þ fixes y. By Lemma 4.4(2.2), we have

trðr2ðY1ÞÞ trðr2ðY2ÞÞ ¼ 0. By (Eq2), we have trðr2ðY1ÞÞ ¼ trðr2ðK0Q0ÞÞ ¼ 0.

Hence r2 is strongly non-faithful. r

6. Application to Ford domains

In this section, we give an application to the study of the Ford domains.

Definition 6.1. Let G be a non-elementary Kleinian group such that the

stabilizer Gy of y contains parabolic transformations. Then the Ford domain

PðGÞ of G is the polyhedron in H3 defined below:

PðGÞ :¼ 7fEðgÞ j g A G � Gyg:

Lemma 6.2. Under Convention 4.5, the following hold:

(1) Let r1 be an element of WðS1;1Þ. Suppose that r1 is discrete. Then

Pðr1ðp1ðOS1; 1
ÞÞÞ ¼ Pðr1ðp1ðS1;1ÞÞÞ.

(2) Let r2 be an element of WðN2;1Þ. Suppose that r2 is discrete. Then

Pðr2ðp1ðON2; 1
ÞÞÞ ¼ Pðr2ðp1ðN2;1ÞÞÞ.

Proof. The assertion (1) is well-known (see [1, Proposition 2.2.8]). The

assertion (2) follows from the fact that p1ðON2; 1
Þ ¼ hp1ðN2;1Þ;K2i and that

r2ðK2Þ is a Euclidean transformation preserving y by Convention 4.5. r
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Proposition 6.3. Under Convention 4.5, let r1 and r2 be elements

of WðS1;1Þ and WðN2;1Þ, respectively. Suppose that they are discrete and

commensurable. Then Pðr1ðp1ðS1;1ÞÞÞ ¼ Pðr1ðp1ðOS1; 1
ÞÞÞ ¼ Pðr2ðp1ðON2; 1

ÞÞÞ ¼
Pðr2ðp1ðN2;1ÞÞÞ.

Proof. We prove only the second equality, because the remaining

equalities can be proved by Lemma 6.2.

Since r1 and r2 are commensurable, there exist a double covering

p1 : OS1; 2
! OS1; 1

and a double covering p2 : OS1; 2
! ON2; 1

such that

r1 � ðp1Þ� ¼ r2 � ðp2Þ�. Then we can easily observe that

p1ðOS1; 1
Þ ¼ hðp1Þ�ðp1ðOS1; 2

ÞÞ;Ki;

p1ðON2; 1
Þ ¼ hðp2Þ�ðp1ðOS1; 2

ÞÞ;K2i:

Since r1ðKÞ and r2ðK2Þ are Euclidean transformations preserving y, we see

Pðr1ðp1ðOS1; 1
ÞÞÞ ¼ Pðr1ððp1Þ�ðp1ðOS1; 2

ÞÞÞ

¼ Pðr2ððp2Þ�ðp1ðOS1; 2
ÞÞÞ ¼ Pðr2ðp1ðON2; 1

ÞÞÞ: r

Example 6.4. Jorgensen and Marden [7] constructed complete hyperbolic

structures of the punctured torus bundles over the circle with monodromy

matrices
2 1

1 1

� �
and

3 2

1 1

� �
by explicitly constructing the fiber groups

G1 and G2 and their Ford domains. The groups G1 and G2, respectively, are

the images of (faithful) representations r1 and r 0
1 in WðS1;1Þ constructed by

Proposition 4.8(1) from the following triples:

ða0; a1; a2Þ ¼
1ffiffiffi
3

p eðp=6Þi;
1ffiffiffi
3

p e�ðp=2Þi;
1ffiffiffi
3

p eðp=6Þi
� �

;

ða 0
0; a

0
1; a

0
2Þ ¼ � 1

2
;
1ffiffiffi
2

p eðp=4Þi;
1

2

� �
:

Let r2 and r 0
2, respectively, be elements of WðN2;1Þ constructed by Proposition

4.11(1) from the above triples. Then r2 and r 0
2, respectively, satisfy the

conditions (iii)-ðaÞ and (iii)-ðbÞ in Theorem 5.1(1). Hence, by Proposition

5.9(1), for each of r2 and r 0
2, there is an element of WðS1;1Þ which is com-

mensurable with it. In fact, we can easily check that r1 (resp. r 0
1) is commen-

surable with r2 (resp. r 0
2). Hence r2 and r 0

2 are faithful by Remark 4.16, and

Pðr1ðp1ðOS1; 1
ÞÞÞ ¼ Pðr2ðp1ðON2; 1

ÞÞÞ and Pðr 0
1ðp1ðOS1; 1

ÞÞÞ ¼ Pðr 0
2ðp1ðON2; 1

ÞÞÞ by

Proposition 6.3. The Ford domain Pðr2ðp1ðON2; 1
ÞÞÞ (resp. Pðr 0

2ðp1ðON2; 1
ÞÞÞ) is

illustrated in the left (resp. right) of Figure 11 (compare with [7, FIG. 1 and 2]).
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