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Abstract. Homogeneous polar foliations of complex hyperbolic spaces have been

classified by Berndt and Dı́az-Ramos. In this paper, we study geometry of leaves of

such foliations: the minimality, the parallelism of the mean curvature vectors, and the

congruency of orbits. In particular, we classify minimal leaves.

1. Introduction

An isometric action of a connected Lie group H on a Riemannian mani-

fold M is said to be polar if there exists a connected complete submanifold S of

M such that

( i ) S meets each orbit of the action, that is, SVH:p0q holds for each

p A M,

(ii) S intersects the orbits orthogonally, that is, TpSH npðH:pÞ holds for each

p A S.

Note that such a submanifold S, called a section of the polar action, is always

a totally geodesic submanifold of M (for instance, see [4, Theorem 3.2.1]).

Polar actions on Riemannian symmetric spaces have been studied very

actively (for instance, refer to [2], [10], and references therein). Above all, it is

noteworthy that cohomogeneity one actions on Riemannian symmetric spaces

are always polar ([15]). Therefore, one can regard a polar action on a

Riemannian symmetric space as a kind of generalizations of cohomogeneity

one actions. We also note that polar actions provide a lot of interesting

examples of homogeneous submanifolds. For example, a principal orbit of a

polar action is an isoparametric submanifold ([14]), and has a parallel mean

curvature vector field (refer to [4, Corollary 3.2.5], and also see Remark 3.14).

In this paper, we consider polar actions on a complex hyperbolic space

CHn having no singular orbits, or equivalently, inducing homogeneous polar
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foliations of CHn. The aim of this paper is to study the geometry of

homogeneous polar foliations of CHn, and to determine the minimality of

their leaves. We remark that such polar actions have been classified by Berndt

and Dı́az-Ramos. More precisely, they have proved that there exist exactly

2n� 1 actions which induce nontrivial homogeneous polar foliations of CHn

up to orbit equivalence ([5]). Here, a homogeneous foliation of CHn is said

to be trivial if the leaves are points in CHn or the leaf coincides with CHn.

According to their result, moreover, the actions can be divided into the

following two types:

( i ) none of the orbits is contained in horospheres of CHn,

(ii) all orbits are contained in horospheres of CHn.

Let us call them S-type and N-type, respectively. Our main theorem (The-

orems 4.6 and 5.1) is as follows.

Main theorem. We have that

(1) every S-type action has exactly one minimal orbit,

(2) every N-type action has the congruency of orbits, and none of the orbits is

minimal.

Here, an isometric action on a Riemannian manifold is said to be having

the congruency of orbits if all orbits of the action are isometrically congruent to

each other.

Remark 1.1. Our main theorem includes the known results on cohomo-

geneity one actions on CHn in [1] and [6]. See Remark 2.5 for more details.

This paper is organized as follows. In Section 2, we recall the solvable

model of a complex hyperbolic space CHn, and recall the classification of

homogeneous polar foliations of CHn. In Section 3, we introduce new Lie

groups, which play essential roles in the study of homogeneous polar foliations

of CHn. In order to prove the main theorem, we study the geometry of orbits

of the S-type actions in Section 4, and deal with the analogue for the N-type

actions in Section 5.

2. Preliminaries

In this section, we recall the solvable model of a complex hyperbolic space

CHn with nb 2 (refer mainly to [8], [12]). We also recall the classification of

homogeneous polar foliations of CHn according to [5].

Definition 2.1. We call a triple ðs; h ; i; JÞ the solvable model of CHn if

(1) s :¼ spanRfA0;X1;Y1; . . . ;Xn�1;Yn�1;Z0g is a Lie algebra whose bracket

relations are defined by
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½A0;Xi� ¼ ð1=2ÞXi; ½A0;Yi� ¼ ð1=2ÞYi;

½A0;Z0� ¼ Z0; ½Xi;Yi� ¼ Z0; ð2:1Þ

(2) h ; i is an inner product on s such that the above basis is orthonormal,

(3) J is a complex structure on s defined by

JðA0Þ ¼ Z0; JðZ0Þ ¼ �A0; JðXiÞ ¼ Yi; JðYiÞ ¼ �Xi: ð2:2Þ

Let S be the simply-connected Lie group with Lie algebra s. Denote by

the same symbols h ; i and J the induced left-invariant Riemannian metric and

the complex structure on S, respectively.

First of all, we remark that CHn can be identified with ðS; h ; i; JÞ, and

hence with the solvable model ðs; h ; i; JÞ. Let us define

G :¼ SUð1; nÞ; K :¼ SðUð1Þ �UðnÞÞ: ð2:3Þ

One knows that G is the identity component of the isometry group of CHn,

and K is the isotropy subgroup of G at some point o, called the origin of

CHn. Denote by g and k the Lie algebras of G and K , respectively. Then,

CHn can be realized as a Riemannian symmetric space of noncompact type

G=K . It is known that S is isomorphic to the solvable part of the Iwasawa

decomposition of G, and that S acts on CHn simply-transitively. Hence, we

can naturally identify CHn with the Lie group S. In particular, one can show

that ðS; h ; i; JÞ is holomorphically isometric to CHn with the constant holo-

morphic sectional curvature �1.

We here study the structure of our solvable model ðs; h ; i; JÞ. Let us

define

a :¼ spanRfA0g; ð2:4Þ

v :¼ spanRfX1;Y1; . . . ;Xn�1;Yn�1g; ð2:5Þ

z :¼ spanRfZ0g; ð2:6Þ

and n :¼ vl z. Then, we have the orthogonal decomposition

s ¼ al vl z ¼ al n: ð2:7Þ

One can easily see that n ¼ ½s; s�, and n is the ð2n� 1Þ-dimensional Heisenberg

Lie algebra. In particular, it follows from the definition of the solvable model

that, for any V ;W A v,

½V ;W � ¼ hJV ;WiZ0: ð2:8Þ

One can also see that v is J-invariant, and hence v is an ðn� 1Þ-dimensional

complex vector space. We note that the complex structure J is an isometry of
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ðs; h ; iÞ, that is, for any X ;Y A s,

hJX ; JVi ¼ hX ;Yi: ð2:9Þ

Remark 2.2. Let k0 be the centralizer of a in k, which is isomorphic to

uðn� 1Þ, and K0 be the connected Lie subgroup of K with Lie algebra k0. Then,

one knows that k0 normalizes s, and especially, the adjoint action of K0 on v is

isomorphic to the standard action of Uðn� 1Þ on Cn�1.

In the rest of this section, we recall the classification of homogeneous polar

foliations of CHn according to [5]. We always mean by m the orthogonal

complement with respect to h ; i. Let us review the Lie groups introduced in

[5].

Definition 2.3. Denote by Sb and Nb the connected Lie subgroups of S

with Lie algebras

sb :¼ sm spanRfX1; . . . ;Xbg ðb A f1; . . . ; n� 1gÞ; ð2:10Þ

nb :¼ sm spanRfA0;X1; . . . ;Xb�1g ðb A f1; . . . ; ngÞ; ð2:11Þ

respectively.

Remark 2.4. We note that these notations are changed from ones given

in [5]. Indeed, the Lie groups Sb and Nb are written as S1;b and S0;b�1,

respectively, in [5].

One can see that the actions of Sb and Nb on CHn are of cohomogeneity

b, and have no singular orbits.

Remark 2.5. Consider the case of cohomogeneity one, that is, b ¼ 1.

Then, the actions of S1 and N1 on CHn are well-known. Note that n1 ¼ n, and

hence N1 is the nilpotent part of the Iwasawa decomposition of G ¼ SUð1; nÞ.
Then, the action of N1 induces the horosphere foliation on CHn. The orbits of

N1, which are nothing but horospheres, are isometrically congruent to each other

and not minimal. On the other hand, the action of S1 induces the so-called

solvable foliation. The orbit of S1 though the origin o, which is the homogeneous

ruled minimal hypersurface, is a unique minimal orbit (refer to [1], and also

see [6]).

Berndt and Dı́az-Ramos proved the following theorem.

Theorem 2.6 ([5]). Let H be a connected closed subgroup of G ¼ SUð1; nÞ.
Then, the action of H on CHn induces a nontrivial homogeneous polar foliation

of CHn if and only if it is orbit equivalent to one of the following:

(1) the action of Sb, where b A f1; . . . ; n� 1g,
(2) the action of Nb, where b A f1; . . . ; ng.
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We note that the actions of Sb and Nb are of S-type and of N-type

mentioned in Section 1, respectively ([5]).

Owing to their result, in order to study geometry of the orbits of polar

actions having no singular orbits on CHn, it is su‰cient to consider the orbits

of Sb and Nb.

3. Construction of certain Lie groups and their geometry

In this section, we introduce new Lie subgroups SbðjÞ of S, which play

essential roles in the study of both of the Sb-orbits and the Nb-orbits. We also

study the geometry of the orbits of SbðjÞ through the origin o.

Let us define w :¼ spanRfX1; . . . ;Xn�1g, which is an ðn� 1Þ-dimensional

subspace of v with hJw;wi ¼ 0. For j A ½0; p=2�, we define

x0 :¼ cosðjÞX1 þ sinðjÞA0: ð3:1Þ

Definition 3.1. Denote by wb a ðb� 1Þ-dimensional subspace of w

orthogonal to x0. Then, for j A ½0; p=2�, we define

sbðjÞ :¼ sm ðspanRfx0glwbÞ: ð3:2Þ

Remark 3.2. The above definition of sbðjÞ depends only on j and b, up to

conjugation, because the adjoint action of K0 on v is isomorphic to the standard

action of Uðn� 1Þ on Cn�1.

Remark 3.3. We remark on the range of allowable values of b. Recall

that wb is a ðb� 1Þ-dimensional subspace of w orthogonal to x0, and that

hw;A0i ¼ 0. If j A ½0; p=2½, then we have hwb;X1i ¼ 0, and hence b A f1; . . . ;
n� 1g. On the other hand, if j ¼ p=2, then we have hwb; x0i ¼ 0, and hence

b A f1; . . . ; ng.

First of all, we shall show that sbðjÞ is always a subalgebra of s. Let us

define

T0 :¼ cosðjÞA0 � sinðjÞX1 A sbðjÞ; ð3:3Þ

which is orthogonal to the normal vector x0, and

v0 :¼ sbðjÞm ðspanRfT0gl zÞ: ð3:4Þ

Lemma 3.4. We have that v0 H vm spanRfX1g.

Proof. Note that vm spanRfX1g ¼ sm spanRfA0;X1;Z0g. Hence, we

have only to show

hv0;A0i ¼ hv0;X1i ¼ hv0;Z0i ¼ 0: ð3:5Þ
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By definition, it is clear that v0 is orthogonal to Z0. Meanwhile, one knows

that A0;X1 A spanRfT0; x0g. Since v0 is orthogonal to T0 and x0, we have

hv0;A0i ¼ hv0; x0i ¼ 0, which completes the proof. r

With the notations above, one has the orthogonal decomposition

sbðjÞ ¼ spanRfT0gl v0 l z; ð3:6Þ

which we need hereafter.

Proposition 3.5. The subspace sbðjÞ is a subalgebra of s.

Proof. Consider the decomposition (3.6) of sbðjÞ. Firstly, it follows

from Lemma 3.4 and ½v; v�H z that

½v0 l z; v0 l z�H zH sbðjÞ: ð3:7Þ

One also can directly calculate that, for any V A v0,

½T0;V � ¼ ð1=2Þ cosðjÞV � sinðjÞhJX1;ViZ0;

½T0;Z0� ¼ cosðjÞZ0: ð3:8Þ

This means ½T0; v0 l z�H sbðjÞ. Hence, we complete the proof. r

We note that sbðjÞ is a solvable subalgebra of s of codimension b.

Definition 3.6. We denote by SbðjÞ the connected Lie subgroup of S

with Lie algebra sbðjÞ.

Remark 3.7. In the case where b ¼ 1, the Lie groups S1ðjÞ have been

introduced in [1], and have played essential roles in the study of cohomogeneity

one actions (see [1], [12] and [13]). We remark that SbðjÞ is a natural gener-

alization of S1ðjÞ, and that the propositions mentioned below are natural

extensions of the known results in the case where b ¼ 1.

In the rest of this section, we shall study the geometry of the orbit SbðjÞ:o
through the origin o. Recall that we identify CHn with the Lie group S.

Accordingly, we hereafter identify the submanifold SbðjÞ:o with the Lie

subgroup SbðjÞ.
We first recall the Levi-Civita connection ‘ of S, which is well-known (see

[8] for instance).

Lemma 3.8. Let X ;Y A s, and write as

X ¼ x1A0 þ V þ x2Z0; Y ¼ y1A0 þW þ y2Z0 ð3:9Þ

for some V ;W A ga. Then, one has
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2‘XY ¼ ðhV ;Wiþ 2x2 y2ÞA0 � y1V

� x2JW � y2JV þ ðhJV ;Wi� 2x2y1ÞZ0: ð3:10Þ

Now, we calculate the second fundamental form h of SbðjÞ. Recall that h

is defined by

hhðX ;YÞ; xi ¼ h‘XY ; xi ð3:11Þ

for X ;Y A sbðjÞ and x A sm sbðjÞ ¼ spanRfx0glwb. Here and hereafter the

subscripts indicate the orthogonal projections onto each spaces.

Proposition 3.9. Let V ;W A v0. Then, the second fundamental form h of

SbðjÞ satisfies that

(1) hðT0;T0Þ ¼ ð1=2Þ sinðjÞx0,
(2) hðV ;WÞ ¼ ð1=2ÞhV ;Wi sinðjÞx0,
(3) hðZ0;Z0Þ ¼ sinðjÞx0,
(4) hðV ;Z0Þ ¼ �ð1=2ÞðJVÞspanRfx0glwb

,

(5) hðT0;WÞ ¼ hðT0;Z0Þ ¼ 0.

Proof. Let V ;W A v0, and put

X :¼ x1T0 þ V þ x2Z0; Y :¼ y1T0 þW þ y2Z0

for xi; yi A R. Then, by using Lemma 3.4 and Lemma 3.8, one can directly

calculate that, for x A spanRfx0glwb,

2hhðX ;Y Þ; xi ¼ h2‘XY ; xi

¼ ðx1 y1 sin2ðjÞ þ hV ;Wiþ 2x2 y2ÞhA0; xi

þ x1 y1 sinðjÞ cosðjÞhX1; xi� hx2JW þ y2JV ; xi

¼ ðhX ;Yiþ x2 y2Þ sinðjÞhx0; xi� hx2JW þ y2JV ; xi: ð3:12Þ

By using Equation (3.12), one can show the assertions. We here only calculate

hðV ;Z0Þ for V A v0. Let fxig be an orthonormal basis of spanRfx0glwb.

In this case, it follows from (3.12) that

2hðV ;Z0Þ ¼
X

h2hðV ;Z0Þ; xiixi

¼
X

h�JV ; xiixi ¼ �ðJVÞspanRfx0glwb
; ð3:13Þ

which proves (4). r
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Secondly, we calculate the shape operator Ax of SbðjÞ. Recall that Ax

satisfies

hAxðX Þ;Yi ¼ hhðX ;Y Þ; xi ð3:14Þ

for X ;Y A sbðjÞ and x A sm sbðjÞ ¼ spanRfx0glwb.

Proposition 3.10. Let V ;W A v0. Then, for each x A spanRfx0glwb, the

shape operator Ax of SbðjÞ satisfies that

(1) AxT0 ¼ ð1=2Þ sinðjÞhx0; xiT0,

(2) AxV ¼ ð1=2Þ sinðjÞhx0; xiV þ ð1=2ÞhV ; JxiZ0,

(3) AxZ0 ¼ ð1=2ÞðJxÞv0 þ sinðjÞhx0; xiZ0.

Proof. We only calculate AxV for V A v0 and x A spanRfx0glwb. Let

fEig be an orthonormal basis of v0. Then, by Proposition 3.9, one can

directly calculate that

hAxV ;T0i ¼ hhðV ;T0Þ; xi ¼ 0;

hAxV ;Eii ¼ hhðV ;EiÞ; xi ¼ ð1=2Þ sinðjÞhx0; xihV ;Eii;

hAxV ;Z0i ¼ hhðV ;Z0Þ; xi ¼ ð1=2ÞhV ; Jxi:

ð3:15Þ

Altogether, it follows that

AxV ¼ hAxV ;T0iT0 þ
X

hAxV ;EiiEi þ hAxV ;Z0iZ0

¼ ð1=2Þ sinðjÞhx0; xiV þ ð1=2ÞhV ; JxiZ0; ð3:16Þ

which proves (2). The remaining assertions can be obtained by similar

calculations. r

An eigenvalue of the shape operator Ax is called a principal curvature in

direction x, and the dimension of an eigenspace is called the multiplicity.

Proposition 3.11. (1) The principal curvatures in direction x0 are l1, l2
and l3, and the multiplicities are 1, 2n� b� 2, 1, respectively, where

l1 :¼ ð3=4Þ sinðjÞ � ð1=4Þð1þ 3 cos2ðjÞÞ1=2;

l2 :¼ ð1=2Þ sinðjÞ;

l3 :¼ ð3=4Þ sinðjÞ þ ð1=4Þð1þ 3 cos2ðjÞÞ1=2:

(2) If x A wb, then the principal curvatures in direction x are �1=2, 0, 1=2, and

the multiplicities are 1, 2n� b� 2, 1, respectively.

Proof. Firstly, we consider the case where x ¼ x0. Note that we have

Jx0 ¼ cosðjÞJX1 þ sinðjÞZ0, and JX1 A v0. Then, by Proposition 3.10, one can
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directly calculate that, for V A v0 m spanRfJX1g,

Ax0T0 ¼ ð1=2Þ sinðjÞT0;

Ax0V ¼ ð1=2Þ sinðjÞV ;

Ax0JX1 ¼ ð1=2Þ sinðjÞJX1 þ ð1=2Þ cosðjÞZ0;

Ax0Z0 ¼ ð1=2Þ cosðjÞJX1 þ sinðjÞZ0;

ð3:17Þ

from which the former assertion follows.

Similarly, we consider the case where x A wb, that is, hx0; xi ¼ 0. Note

that Jx A v0. Then, one can also calculate that, for V A v0 m spanRfJxg,

AxT0 ¼ AxV ¼ 0; Ax0ðJxÞ ¼ ð1=2ÞZ0; Ax0Z0 ¼ ð1=2ÞJx; ð3:18Þ

from which the latter assertion follows. r

Lastly, we calculate the mean curvature vector H. We also study the

minimality of SbðjÞ and the parallelism of the mean curvature vector. Recall

that the mean curvature vector is defined by

H :¼ trace h: ð3:19Þ

If H ¼ 0, then the submanifold is said to be minimal.

Proposition 3.12. The mean curvature vector H of SbðjÞ is given by

H ¼ ð1=2Þð2n� bþ 1Þ sinðjÞx0: ð3:20Þ

In particular, SbðjÞ is minimal if and only if j ¼ 0.

Proof. Let fEig be an orthonormal basis of v0. It follows readily from

Proposition 3.9 that

H ¼ hðT0;T0Þ þ
X

hðEi;EiÞ þ hðZ0;Z0Þ

¼ ð1=2Þð2n� bþ 1Þ sinðjÞx0: ð3:21Þ

Therefore, since j A ½0; p=2�, the remaining assertion is clear. r

Denote by ‘? the normal part of ‘, namely, the normal connection of

SbðjÞ. The mean curvature vector H is said to be parallel if ‘?
XH ¼ 0 holds

for any X A sbðjÞ.

Proposition 3.13. The mean curvature vector H of SbðjÞ is always

parallel.

Proof. It follows from Proposition 3.12 that we have only to calculate

‘T0
x0, ‘Z0

x0, and ‘Vx0 for any V A v0. Take any V A v0. By Lemma 3.8,
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one can directly calculate that

‘Tx0 ¼ �ð1=2Þ sinðjÞT0;

‘Vx0 ¼ �ð1=2Þ sinðjÞV þ ð1=2Þ cosðjÞhJV ;X1iZ0;

‘Z0
x0 ¼ �ð1=2Þ cosðjÞJX1 � sinðjÞZ0:

ð3:22Þ

It follows that ‘Xx0 A sbðjÞ, and hence ‘?
Xx0 ¼ 0 for any X A sbðjÞ. r

Remark 3.14. We note that Proposition 3.13 can be shown by the general

theory of polar actions. As we mention in the following sections, SbðjÞ:o is

always a principal orbit of some polar action. Therefore, it follows from [4,

Corollary 3.2.5] that the mean curvature vector field on SbðjÞ:o is parallel with

respect to ‘?.

4. Orbits of the S-type actions

In this section, we consider the S-type actions on CHn, namely, the Sb-

actions, and study the geometry of their orbits. In particular, we show that,

for every Sb-action the orbit through the origin o is a unique minimal orbit.

Throughout this section, we fix b A f1; . . . ; n� 1g. Recall that Sb is the

connected Lie subgroup of S with Lie algebra

sb :¼ sm spanRfX1; . . . ;Xbg: ð4:1Þ

Our first aim is to show that every Sb-orbit can be translated into the

orbit SbðjÞ:o for some j A ½0; p=2½. From now on, we identify the tangent

space ToCH
n with s ¼ al n through CHn ¼ S. Then, for each k A K0,

the di¤erential ðdkÞo of k at o satisfies that ðdkÞo ¼ AdðkÞjs. Recall that

K0 is the connected Lie subgroup of K with Lie algebra k0, the centralizer of a

in k.

Lemma 4.1. Let NK0
ðSbÞ be the normalizer of Sb in K0. Then, NK0

ðSbÞ
acts transitively on the unit sphere in noðSb:oÞ ¼ spanRfX1; . . . ;Xbg.

Proof. Recall that the adjoint action of K0 on v is isomorphic to the

standard action of Uðn� 1Þ on Cn�1. One can see that the action of NK0
ðSbÞ

on the normal space noðSb:oÞ at the origin o is isomorphic to the standard

action of OðbÞ on Rb. Hence, if b > 1, then the assertion is clear. In the case

where b ¼ 1, one knows that Oð1Þ ¼ fG1g acts on R naturally, and hence, on

its unit sphere fG1g transitively. r

Remark 4.2. Denote by No
KðSbÞ the identity component of the normalizer

NKðSbÞ of Sb in K. Then, the action of N o
KðSbÞSb on CHn is of cohomogeneity
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one. If b > 1, especially, the orbit N o
KðSbÞSb:o ¼ Sb:o is a singular orbit. Refer

to [3], [7] for more details.

Let g0 : R ! CHn be the unit-speed geodesic defined by

g0ð0Þ ¼ o; _gg0ð0Þ ¼ �X1: ð4:2Þ

Lemma 4.3. Let p A CHn, and t0 b 0 be the distance between the orbit Sb:p

and the origin o. Then, Sb:p is isometrically congruent to Sb:g0ðt0Þ.

Proof. Take any point p A CHn. In the case where p A Sb:o, one knows

t0 ¼ 0, and hence we have nothing to prove more.

Thus, we now consider the case where p B Sb:o. Since the orbit Sb:p

is closed, there exists q A Sb:p such that the distance between o and q is equal

to t0. Since CHn is complete, there exists a unit-speed geodesic g satisfying

gð0Þ ¼ o and gðt0Þ ¼ q. A standard variational argument implies that g

intersects the orbit Sb:q perpendicularly. It, hence, follows that g intersects

all orbits of Sb perpendicularly (see for instance [9, p. 78]). Put

V :¼ _ggð0Þ A noðSb:oÞ: ð4:3Þ

Then, Lemma 4.1 shows that there exists k A NK0
ðSbÞ such that AdðkÞV ¼ �X1,

that is, ðdkÞo _ggð0Þ ¼ _gg0ð0Þ. Since k is an isometry, we have k:gðtÞ ¼ g0ðtÞ for

any t. Consequently, it follows that

kðSb:pÞ ¼ kSb:gðt0Þ ¼ Sbk:gðt0Þ ¼ Sb:g0ðt0Þ; ð4:4Þ

which completes the proof. r

Recall that b A f1; . . . ; n� 1g, and let j A ½0; p=2½. Recall also that SbðjÞ
is the connected Lie subgroup of S with Lie algebra

sbðjÞ ¼ sm ðspanRfx0glwbÞ; ð4:5Þ

where x0 ¼ cosðjÞX1 þ sinðjÞA0, and wb is a ðb� 1Þ-dimensional subspace of w

orthogonal to x0. In this case, according to Remark 3.2, one may assume that

wb ¼ spanRfX2; . . . ;Xbg ð4:6Þ

without loss of generality. Then, we have

sb ¼ sm ðspanRfX1glwbÞ ¼ sbð0Þ: ð4:7Þ

Proposition 4.4. Let tb 0. Then, the orbit Sb:g0ðtÞ is isometrically

congruent to SbðjÞ:o, where j :¼ arcsinðtanhðt=2ÞÞ A ½0; p=2½.

Proof. Take any tb 0. Consider the connected Lie subgroup H of S

with Lie algebra h :¼ spanRfA0;X1g. Since H:o is a totally geodesic real
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hyperbolic plane RH2, the geodesic g0 lies in H:o. It, hence, follows that there

exists g A H such that g:o ¼ g0ðtÞ holds. One can readily see that

g�1ðSb:g0ðtÞÞ ¼ g�1Sbg:o ¼ Ig�1ðSbÞ:o: ð4:8Þ

This means that the orbit Sb:g0ðtÞ is isometrically congruent to Ig�1ðSbÞ:o, since
g�1 is an isometry of CHn. Now it remains to show that Ig�1ðSbÞ ¼ SbðjÞ,
or equivalently, Adðg�1Þsb ¼ sbðjÞ. Since g A HHS, one has Adðg�1Þsb H s.

For our goal, hence, it su‰ces to prove that Adðg�1Þsb is orthogonal to x0
and wb.

Firstly, we show that Adðg�1Þsb is orthogonal to wb. One can see that

hH sb l spanRfX1g, and sb l spanRfX1g is a subalgebra. It, hence, follows

that

Adðg�1Þsb H sb l spanRfX1g ¼ smwb: ð4:9Þ

Next we show that Adðg�1Þsb is orthogonal to x0 ¼ cosðjÞX1 þ sinðjÞA0.

For this purpose, we consider X1 and A0 as left-invariant vector fields on S.

Since _ggðtÞ is a unit normal vector of Sb:gðtÞ at gðtÞ, and the left-translation Lg�1

is an isometry, one can see that ðdLg�1Þe _ggðtÞ is a unit normal vector of Ig�1Sb:o

at o. On the other hand, by [8, Theorem 2, p. 94] one can obtain that

_ggðtÞ ¼ ð1=coshðt=2ÞÞð�X1Þg � tanhðt=2ÞðA0Þg

¼ �ðcosðjÞðX1Þg þ sinðjÞðA0ÞgÞ ¼ �ðx0Þg; ð4:10Þ

and hence, ðdLg�1Þe _ggðtÞ ¼ �ðx0Þe. Therefore, we have that Adðg�1Þsb is

orthogonal to x0.

Altogether, we have proved that Adðg�1Þsb H sbðjÞ, which completes the

proof. r

From the arguments above, one can readily obtain the following.

Proposition 4.5. Let p A CHn. Denote by tb 0 the distance between the

orbit Sb:p and the origin o, and set j :¼ arcsinðtanhðt=2ÞÞ. Then, Sb:p is

isometrically congruent to the orbit SbðjÞ:o.

Therefore, in order to study the geometry of orbits of the Sb-action, it is

su‰cient to study SbðjÞ:o for j A ½0; p=2½. We conclude this section by proving

the first assertion of the main theorem.

Theorem 4.6. For each b A f1; . . . ; n� 1g, the action of Sb has exactly one

minimal orbit, which is through the origin o.

Proof. It readily follows from Proposition 3.12 that Sb:o ¼ Sbð0Þ:o is

minimal. Now we show the uniqueness. Assume that p B Sb:o, and let t > 0
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be the distance between the orbit Sb:p and the origin o. Since we have j ¼
arcsinðtanhðt=2ÞÞ0 0, it also follows from Proposition 3.12 that Sb:p ¼ SbðjÞ:o
is not minimal. r

Remark 4.7. In fact, it has been known that the orbit Sb:o through the

origin is minimal. In the case where b ¼ 1, Berndt has proved its minimality in

[1]. On the other hands, if b > 1, one knows that Sb:o is a singular orbit of a

cohomogeneity one action on CHn, as we mentioned in Remark 4.2. It has been

proved that any singular orbit of a cohomogeneity one action is an austere

submanifold, and hence, a minimal submanifold (see [17] for more details).

5. Orbits of the N-type actions

In this section, we consider the N-type actions on CHn, namely, the Nb-

actions, and study the geometry of their orbits. In particular, we show that

the action of Nb has the congruency of orbits, and has no minimal orbits.

Throughout this section, we fix b A f1; . . . ; ng. Recall that Nb is the

connected Lie subgroup of S with Lie algebra

nb :¼ sm spanRfA0;X1; . . . ;Xb�1g: ð5:1Þ

We consider the case where j ¼ p=2. In this case, according to Remark 3.2,

one may assume that

wb ¼ spanRfX1; . . . ;Xb�1g; ð5:2Þ

without loss of generality. Note that wb is a ðb� 1Þ-dimensional subspace of

w orthogonal to x0 ¼ A0. Then, we have

nb ¼ sm ðspanRfA0glwbÞ ¼ sbðp=2Þ: ð5:3Þ

Now we show the second assertion of the main theorem.

Theorem 5.1. For each b A f1; . . . ; ng, the action of Nb has the congruency

of orbits, that is, all of the Nb-orbits are isometrically congruent to each other.

Moreover, the action has no minimal orbits.

Proof. We first show the congruency of orbits. Recall that S acts

transitively on CHn. One can directly see that nb is an ideal in s. Hence, it

follows from [16, Lemma 2.1] that the action of Nb has the congruency of

orbits.

Recall that Nb:o ¼ Sbðp=2Þ:o is not minimal by Proposition 3.12. Hence,

owing to the congruency, we conclude that the action of Nb has no minimal

orbits. r
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