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ABSTRACT. In our previous study, the author and Tamaru proved that a left-invariant
Riemannian metric on a three-dimensional simply-connected solvable Lie group is a
solvsoliton if and only if the corresponding submanifold is minimal. In this paper,
we study the minimality of the corresponding submanifolds to solvsolitons on four-
dimensional cases. In four-dimensional nilpotent cases, we prove that a left-invariant
Riemannian metric is a nilsoliton if and only if the corresponding submanifold is
minimal. On the other hand, there exists a four-dimensional simply-connected solvable
Lie group so that the above correspondence dose not hold. More precisely, there exists
a solvsoliton whose corresponding submanifold is not minimal, and a left-invariant
Riemannian metric which is not solvsoliton and whose corresponding submanifold is
minimal.

1. Introduction

A left-invariant Riemannian metric <, on a simply-connected solvable
Lie group G is called a solvsoliton if the following holds for some ¢ € R and
D e Der(g):

RiC<_’> =cl +D.

Here Ric  is the Ricci operator of ¢, », g is the Lie algebra of G, and Der(g)
is the algebra of derivations of g. When G is nilpotent, a solvsoliton on G
is called a wmilsoliton. Solvsolitons have been introduced by Lauret [9, 14].
Solvsolitons have been studied very actively and played a key role in the
study of homogeneous Ricci solitons (See, for instance, [4, 5, 6, 7, 9, 12, 13, 14,
15, 18, 19]). In particular, every solvsoliton on a simply-connected solvable
Lie group is a Ricci soliton ([14]), and every left-invariant Ricci soliton on a
solvable Lie group is isometric to a solvsoliton ([7]).
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Let n be the dimension of G. Note that the set of all left-invariant
Riemannian metrics on G can be naturally identify with the set of all inner
products on g. We define

9 := {¢,>|an inner product on g} = GL,(R)/O(n), (1.1)

and an equivalence relation “isometric up to scaling” on 9. For any inner
product, we call its equivalence class the corresponding submanifold. As we see
in Section 2, the corresponding submanifolds are R* Aut(g)-homogeneous sub-
manifolds of the noncompact Riemannian symmetric space GL,(R)/O(n).
Since solvsolitons are preserved by the action of R* Aut(g), it would be
natural to ask the following question.

QUESTION 1. Is it possible to characterize solvsolitons by properties of the
corresponding submanifolds?

The author and Tamaru ([4]) proved that the answer to Question 1 is
affirmative in the case of three-dimensional simply-connected solvable Lie
groups. More precisely, we proved that a left-invariant Riemannian metric
on a three-dimensional simply-connected solvable Lie group is a solvsoliton if
and only if the corresponding submanifold is minimal. This result makes us
interested in the minimality of the corresponding submanifolds.

The aim of this paper is to study the following question:

QUESTION 2. Is it true that a left-invariant Riemannian metric is a
solvsoliton if and only if the corresponding submanifold is minimal?

In this paper, we examine the minimality of the corresponding submani-
folds to solvsolitons on four-dimensional simply-connected solvable Lie groups.
As a result, we show that the answer to Question 2 is affirmative in four-
dimensional nilpotent cases.

THEOREM 1.1. A left-invariant Riemannian metric on a four-dimensional
simply-connected nilpotent Lie group is a nilsoliton if and only if the corre-
sponding submanifold is minimal.

On the other hand, we construct examples which show that the answer to
Question 2 is negative in general.

THEOREM 1.2. There exists a four-dimensional simply-connected solvable
Lie group G which satisfies the following:
(1) There exists a left-invariant Riemannian metric on G such that it is not
a solvsoliton, and the corresponding submanifold is minimal.
(2) There exists a left-invariant Riemannian metric on G such that it is a
solvsoliton, and the corresponding submanifold is not minimal.
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However we know many examples so that the corresponding submanifold
to a solvsoliton is minimal. For example, in four-dimensional cases, if the
nilradical is abelian, then the corresponding submanifold to a solvsoliton is
minimal. We expect that Question 2 has a positive answer under certain
additional conditions, which will be studied in the forthcoming papers.

The contents of this paper is as follows. In Section 2, we recall the notion
of the corresponding submanifolds to left-invariant Riemannian metrics, and
some necessary facts on reductive homogeneous spaces. In Sections 3 and 4,
we prove Theorems 1.1 and 1.2 respectively.

The author wishes to express his thanks to Hiroshi Tamaru for valuable
comments and discussions. The author would like to thank Yoshio Agaoka,
Kazuhiro Shibuya, Akira Kubo and Yuichiro Taketomi for useful comments
and some discussions. The author is also grateful to Christopher Khoshaba
for useful comments. Finally, the author would like to thank the referee for
valuable comments and helpful suggestions.

2. Preliminaries

We recall the notion of the corresponding submanifolds in Subsection 2.1.
In Subsection 2.2, we also recall some necessary facts on reductive homoge-
neous spaces which we need to study the minimality of the corresponding
submanifolds.

2.1. The corresponding submanifolds. In this subsection, we recall the notion
of the corresponding submanifolds to left-invariant Riemannian metrics. For
details we refer to [4, §].

First of all, we recall the space of left-invariant Riemannian metrics, which
will be the ambient space of the corresponding submanifolds. Let G be an
n-dimensional simply-connected Lie group and g be the Lie algebra of G. We
consider the set of all left-invariant Riemannian metrics on G, which can
naturally be identified with

M = {{,>]an inner product on g}.

We identify g with R” from now on. Then, since GL,(R) acts transitively on
M by

g.(yyi=<g g7 > (for g e GL,(R),{, ) e M),

we have an identification

9t = GL,(R)/O(n).
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Note that M equipped with the natural GL,(R)-invariant Riemannian
metric is a noncompact Riemannian symmetric space. In order to describe
this natural metric, we recall a general theory of reductive homogeneous
spaces. Let U/K be a reductive homogeneous space, that is, there exists an
Adg-invariant subspace m of u satisfying

u=t@dm (2.1)

Note that u and f are the Lie algebras of U and K, respectively, and @ denotes
the direct sum as vector spaces. The decomposition (2.1) is called a reductive
decomposition. Let us denote by n: U — U/K the natural projection, and by
0 := 7n(e) the origin of U/K. We identify m with the tangent space T,(U/K)
at o by the isomorphism

dn,|,, : m — T,(U/K).

m

This identification induces a one-to-one correspondence between the set of
U-invariant Riemannian metrics on U/K and the set of Adg-invariant inner
products on m.

Now one can see that M = GL,(R)/O(n) is a reductive homogeneous
space, whose reductive decomposition is given by the subspace

sym(n) := {X e gl,(R) | X = 'X}.

Here gl,(R) is the Lie algebra of GL,(R). We define the Adg,-invariant
inner product on sym(n) by

(X,Y):=u(XY) (for X, Y esym(n)).

We call the GL,(R)-invariant Riemannian metric corresponding to the above
Adoy-invariant inner product the natural Riemannian metric. )

Next, we recall the notion of “isometric up to scaling” on 9. This gives
an equivalence relation on 9IR.

DEerINITION 2.1.  Two inner products <, »; and {, ), on g are said to be
isometric up to scaling if there exist k > 0 and an automorphism ¢ : g — g such

that (-, > = k<p(),0(-) 2.

Note that above equivalence relation gives the equivalence relation of
left-invariant Riemannian metrics on Lie groups. Assume that inner products
{, > and <, >, on g are isometric up to scaling. Then, the corresponding left-
invariant Riemannian metrics on G are isometric up to scaling as Riemannian
metrics.

DerNITION 2.2, For each inner product <, » on g, we call its equivalence
class [(, )] the corresponding submanifold to ().
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Note that
[<v>] ::{<7>,€Sﬁt|<7>/~<7>}7

where (,>' ~ (,> means that {,)" and {,) are isometric up to scaling. Let
us denote by

R*:={c-id:g— g|ceR\{0}},
Aut(g) := {9 : g — g|an automorphism}.

Then, the subgroup R* Aut(g) of GL,(R) acts naturally on 9. Let us denote
by R* Aut(g).(,)> the R* Aut(g)-orbit through {, ).

ProposiTION 2.3 ([8], Theorem 2.5). Let {,) be an inner product on g.
Then, the corresponding submanifold [{, ] is a homogeneous submanifold with
respect to R* Aut(g), that is,

[(,0] =R Aut(g).(, ).

Next we recall the “moduli space” PIN. We need LI to examine the
minimality of the corresponding submanifolds.

DEFINITION 2.4. For a Lie algebra g, the quotient space of 9t by the
equivalence relation in Definition 2.1 is called the moduli space of left-invariant
Riemannian metrics on g, and denoted by

PM = {[, D], > e M.

To determine SPIN explicitly, we will use the following expression as a
double coset space.

ProposiTION 2.5 ([8], Theorem 2.5). If dim g = n, then we have
PAM = R* Aut(g)\GL,(R)/O(n).
Let [[g]] denote the double coset of g e GL,(R), that is,
[[9]] := R” Aut(g) - g - O(n).
Denote by {, >, € M = GL,(R)/O(n) the origin. Then, the map
R* Aut(g)\GL4(R)/O(n) — B0 : [[g]] = [9.€. o).

gives a bijection.
A subset X < GL,(R) is called a system of representatives of PI if

P = {[g.<, >} | g € U}.

One can easily see the following.
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LEMMA 2.6. Let g be an n-dimensional Lie algebra. Then W < GL,(R) is
a system of representatives of BIM if and only if for each ge GL,(R), there
exists g’ € W such that g’ € [|g]].

2.2. Standard facts on reductive homogeneous spaces. In this subsection, we
review some of the standard facts on reductive homogeneous spaces and their
homogeneous submanifolds. We refer to [1, 3].
Let U/K be a reductive homogeneous space with a reductive decompo-
sition
u=t@m.

Recall that m is identified with the tangent space T,(U/K). In the following,
we equip a U-invariant Riemannian metric g on U/K.

We here recall a formula for the Levi-Civita connection V of g. For any
X eu, we define the fundamental vector field X* on U/K by

X :%(exp tX).pl,—o (for pe U/K).

Let X,Y,Zeu. Then one knows (see [3]):

X, =dn.(X),
(X*, Y] =-[X, Y], (2.2)
29(Vy-Y",Z%) = g([X*, Y], Z7) +g([X", Z7], Y") + (X7, [V, Z7]).
We now consider homogeneous submanifolds in (U/K,g). Let U’ be a Lie
subgroup of U, and consider the orbit U’.o through the origin 0. Let u’ be

the Lie algebra of U’, and denote by <, > the inner product on m correspond-
ing to g. We define

m' :=dr, (1) = T,(U".0).

Denote by m © m’ the orthogonal complement of m’ in m with respect to
{,>. Then, the second fundamental form #: m' x m' — moEm’ of U'.0 at o
is defined by

h(X),Y)):=VxY* =V YY) (for X,Y eu),

o

where V' is the Levi-Civita connection of U’.o with respect to the induced
metric. Take Z e u satisfying Z* e m©m’. From (2.2), one obtains

2UNX], Y)), 25> =<2, X];, Y, )+ <X, [Z, Y],). (2.3)
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The mean curvature vector of U’.o at o is defined by

H = —(1/k) tr(h) = —(1/k) > h(E/

where {E!} is an orthonormal basis of m’, and k is the dimension of U’.o.
We call U’.0 minimal if its mean curvature vector H is equal to zero. Note
that we also call U’.0 minimal when the codimension of U’.o is equal to
zero. Let /( # 0) be the codimension of U’.o, and {&[,...,¢/} be the basis of
m@m’. Then U’.o is minimal if and only if

> <h(E]E), &y =0 (24)

for each j=1,...,L

3. Four-dimensional nilsolitons

Our goal of this section is to prove Theorem 1.1. We first recall that all
four-dimensional simply-connected nilpotent Lie groups admit nilsolitons ([10]).
After that we examine the minimality of the corresponding submanifold to each
left-invariant Riemannian metric.

We discuss solvsolitons in the Lie algebra. First of all, let us recall the
definition of a solvsoliton.

DerFiNITION 3.1. An inner product <,) on a solvable Lie algebra g is
called a solvsoliton if the Ricci operator satisfies

Ric¢y=cI+ D (for some ¢ e R and D € Der(g)).

If g is nilpotent, then a solvsoliton on g is called a nilsoliton. We also
recall a classification of four-dimensional nilpotent Lie algebras.

ProposITION 3.2 ([16]). Let g be a four-dimensional nilpotent real Lie
algebra. Then g is isomorphic to one of the following Lie algebras:

o R* an abelian Lie algebra,

* I)3@R:: span{el,...,e4\[e1,e2]:e3},

* 1y = span{el, .., | [61, 62] = e3, [81,83] = 64}.

Note that bh; = span{e;, ez, e3|[e1,e2] = e3} is the Heisenberg Lie algebra.

In the abelian case, it is well known that there exists only one left-invariant
Riemannian metric up to isometry and scaling, which is flat. Furthermore the
corresponding submanifold coincides with the ambient space I, which is
minimal.
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For ¢ = h; ® R or ny, let us denote by <, >, the inner product on g so that
the above basis {ej,...,es} is orthonormal. By Lauret, nilsolitons on four-
dimensional Lie algebras have been classified.

ProposiTioN 3.3 ([10]). Let g=Dh; ®R or ny, and {,) be an inner
product on g. Then the inner product <{,) is a nilsoliton if and only if

<,>E[<,>0}.

Proposition 3.3 follows from the arguments about /"4 in [10, Section 5].
Note that /74 is the set of all nilpotent Lie brackets on a four-dimensional real
vector space. We also refer to [19, Table 2], a classification table of nilsolitons
in four-dimensional cases.

Next we study the minimality of the corresponding submanifolds to
nilsolitons on h; @ R and ns. In the case of g=D0h; ® R, it is known that
Pt = {pt} ([8, 11]). Then the corresponding submanifold [<,>,] coincides
with the ambient space 9, which is minimal.

Therefore we only need to consider the case of g =ny. We first calculate
Der(g) and Aut(g). Recall that they are defined by

Der(g) = {D egl(g) | D[-.-] = [D(), ]+ [, D()]},
Aut(g) = {p e GL(g) | ¢[- -] = [0(-), ()]}
By direct calculations, one can obtain matrix expressions of Der(ny) and
Aut(ny) with respect to the basis {ej,...,es} as follows:
xip 0 0 0
X21 X22 0 0
Der(ny) = ,
(na) X3l X43 X111+ X2 0
X41 X4 X43 2x11 + x2
X11 0 0 0
X1 X 0 0
Aut(ng) = o Xi1,X0 # 0 5. (3.1)
X3 X xnxn 0

2
X41 X4  X11X32  X{X22

LemMmA 3.4. Let g = ny, Then the following W is a system of representatives

of PM:

1 0 0 0

0 44 0 0
U=1990n) = 0 01 .o 1>0,4eR

0 0 4 1
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Proor. Take any g € GL4(R). By Lemma 2.6, we only need to show
that
(. 22) € W G, 2) € [l9]]-
First of all, there exists k € O(4) such that

a 0 0 0

ay a3 0 0
gk = ; ay, as,ag, ayp > 0.
as as ag 0

ar; dg dy dy

By (3.1), one has

1 0 0 0
—az/al 1 0 0
= Aut(ny).
£ —ay/ay 0 1 o|SAuw
(azag — a3a7)/(a1a3) —Clg/a3 0 1
This yields that
ay 0 0 0
0 a3 0 O
k =
lall2mok=| o =

0 0 dg dyo

By (3.1), one can take

as/ao 0 0 0
0 a/a 0 0
0 = an/(mas) [ 1(/) ° a Jaro 0 e R* Aut(ny).
0 0 0 (11616/(1]20
This yields that
1 0 0 0
0 (a3a10)/az 0 0
gl = papr9k = | as/ e 6 Lo
0 0 ag/am 1
y (3.1), one has
1 0 0 0
0 1 0 0
= e Aut(n
& 0 —(asas)/(azaio) 1 0 ()
0 (asa6)/(a3a10) —(asag)/(azary) 1



182 Takahiro HASHINAGA

This gives
1 0 0 0
0 (asai0)/ag 0 0O
9] > p302019k = | o 1 o
0o 0 a1

By putting 4; := (azajg)/ag >0, and 1, := aj, we complete the proof. O

PROPOSITION 3.5. Let g=ny4. Then R* Aut(ny).{, >, is the unique min-
imal orbit.

Proor. Take any {,>. By Lemma 3.4, there exist 4; >0, and 4, e R
such that

R Aut(ng).C, > = R* Aut(s).(gs, 1)< Do)-
Let us define
U= 3 (R AR,

Then, since g(/} 22) gives an isometry of the space &, one has an isometric
congruence

R* Aut(14).(g(3,,2,)-<5 Do) = U, Dy

Hence we have only to study U’.<,»,. Let u’ be the Lie algebra of U’. By
the expression of R @ Der(ng), one can directly calculate

u' = g(;},/lz)(R @ Der(14))g(,, 1)

r—+ X11 0 0 0
_ (1/41)x21 F 4 X 0 0
X31 A1X43 F+ X1+ X2 0

—JoX31 +Xa1 A(—AaXez +Xa2)  daxii+ X4z r+2x1 + X2

r’ 0 0 0
/ !
!
X31 }v1X43 X2n 0
/ I /
Xy X} AaX11 4+ Xa3 X117 + X,

Let us denote by E; the matrix whose (i, j)-entry is 1 and others are 0. It is
easy to see that {Ej,..., Eg} given by the following is a basis of u’:

E) = Eyy, E; := Ex + E33 + Eug, E; = Ey,
Ey = Ejp, Es := Ey, Es := Ey, (3'2)

E7 := W1 E3 + Eg, Eg := —Exn + A Eg3 + Eg.
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Let us put
E!:=(E), = (1/2)(E; + 'E;) i=1,...,8).

1

Then {Ej,...,E{} is a basis of m’ :=dn(u') = {(1/2)(X +'X) | X eu'}. We
also define

&1 = —Exn + 2E33 — Eug,
& 1= Aida(Exy — Eag) — 4E3 + 441 B3,
and put
=) =01/2)(&+C) (=1,2).

As mentioned in Section 2, the inner product on m:=sym(n) is given
by

(X, Yy :=tr(XY) (for X,Y em).

Hence, one can see that {&[,&5} is a basis of m©m’. Here we take an
orthonormal basis of m’. Let us put

X] = El, X2 = (1/\/§)E2, X3 = \/§E3, X4 = \/§E4;

Xs := V2E;s, X := V2Es, X7:=1/2/(1 + 2} E;,

Xg = T(—(J2/(1+ A}))E7 + Eg),

where T = \/2(1 +3)/(3323 +4(1 + 2})). Furthermore we also put

X = (X)) = (1/2)(XYi+ %) (i=1,....8).

Since
CE)Epy = (1473)/2, (B3 Epy=12)2,  (E4Epy =4+ 13)/2,

one can see that {X/,...,Xg} is an orthonormal basis of m’.
We show that U’.<, >, is minimal if and only if (1;,4,) = (1,0). By (2.4),
U'.{,>, is minimal if and only if

{Z Ch(X], X7),

Our first claim is that

> <h(X],X]),&>=0 i and only if i =1. (3.3)
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We calculate > <h(X/,X/),&>. By direct calculations, one has
(1, E7] = 3(M1Ex — Eg3), (&1, Eg] = —3A2E43.
Then, we obtain the bracket products [£;, X;] as follows:

[élaX?ﬁ] = _X37 [§I7X4] = 2X4a [élaXS] = _X57

[€1, X7 = 34/2/(1 + A1) (1 Ex — Eu3),
€1, Xs] = (=34 T /(1 + i7)) (Ex + A Es3),
and others are equal to zero. These yield that
[én, Xa]y, (X3), ) = (=43, X3) = —1,
(&1, Xal,, (Xa)y> = 22Xy, Xy =2,
e, Xs]y, (X5), > = (= X5, X5) = —1,

(&0, Xaly, (X2)g> = 34/ 2/ (1 + 23) i (Ex)y — (Exs)y, X7>
=302 = 1)/(1 +4),
& Xsly, (Xs)y> = (=314 T /(14 23))<(Ex2)y + 2 (Ex) ;s XD
= =322 (7 = D/((1 4 2) (4773 + 4(1 + 7))
Therefore, by (2.3), we obtain

12(2] — 1)
240+
Since A; > 0, this yields our first claim (3.3).

Our second claim is, under the assumption A; = 1, that

SO hx! X)), =

> <h(X],X!),&>=0 i and only if i, =0.
From now on we assume A; = 1. Then, note that
X7 = E7 = E3 + Eg3,
Xs =2/1/75 +8((—12/2)E7 + Eg),

&y = M(Ey — Eng) —4Es + 4E4;.

We calculate > <h(X/,X/),&). By direct calculations, we have
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(&2, X3] = A X5 — 4 X4, (&, X4] = 4XGs,
[627)(5] = —A X, [fz,Xd = —2A X,

(&2, X7] = 8Es — JoE7 = 4V2Xs — Jn X7,

&5, Xs] = £/ 73 + 8(E3 — Eu3),

and others are equal to zero. These yield that
(&, X3],, (X3), > = aXy — 44X, X3 = I,
(&, Xu],, (Xa),> = (4X5, X)) =0,

(&2, X5, (X5), > = (= X5, X5) = —/a,

(&, Xelys (X6), > = (=200 X(, Xg) = —2/a,
(

(&, X)L, (X7)0y = AV2X, — ha X3, X7 = —Ja,

<[€27X8];7 (XS):> = }é + 8<(E32) (E43) X8>
=2{(Esn), — (Es3),, (—12/2)E; + E> = —Ja.

We thus obtain > <h(X/, X!),&,> = —44>. This yields our second claim (3.4).
This completes the proof of (2). O

By (3.2), all orbits of the action of R* Aut(ny) have dimension eight.
Hence this action is of cohomogeneity two, and has no singular orbits.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let us consider the four-
dimensional solvable Lie algebra

=span{e,...,e4|[er,e2] = s, [er, €3] = —e3, [er, €3] = e4}.

We will write {,), the inner product on s; so that the above basis is
orthonormal.

We first study Der(ss) and Aut(ss) with respect to the above basis

{e1,...,e4}. By direct calculations, we have
0 0 0 0
—x43 x2 0 0
D = 4.1
er(ss) Cxp 0 s 0 ) (4.1)

X41 X2 X43 X2+ X33
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1 0 0 0
X21 X2 0 0
Aut 0. 4.2
ut(s4) o . 0 . 0 X22, X33 F (4.2)
X41  —X31X22  —X21X33  X22X33

ProrosITION 4.1. Let g=s4, Then the following W is a system of
representatives of PIN.

A4 0 0 O
0O 1 0 O .

W= QG0 i da, 1) = 0 4 1 0 M >0, 25,23,44€R
0 A3 A 1

Proor. Take any g € GL4(R). By Lemma 2.6, we only need to show
that
3901, 2,3, 0) € Wi G0 0, 25,2) € [9]]-
One knows there exists k € O(4) such that

a 0 0 0

ay a3 0 0
gk = ) a, as,ag, ayo > 0.
dsg ds dg 0

ar; ag 4y dp

By (4.2), we can take

1 0 0 0
—az/al 1 0 0
— Aut
T a0 o | AU
A a4/a1 Clz/Cll 1
where 4 = (—aja; — 2azas)/a?. This yields that
a 0 0 O
0 a3 0 O
gl = prgk = | s a0
0 a; ay ap

Furthermore, from (4.2), one can take

1 0 0 0

0 a6/a10 0 0 %
pr=aw/(@a5)| o a Jaro 0 e R* Aut(ss).

0 0 0 (agaé)/alzo
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This gives us that

(aran)/(azas) 0 0 0

0 1 0 0

[l9]] > @219k = 0 as/ag 1 0
0 ag/aw  ag/ar 1

By putting A= (alalo)/(a3a6) >0, Ay = as/aé, Ay = aé/alg, and A4 = aé/alo,
we complete the proof. O

By Lauret [14], solvsolitons on four-dimensional simply-connected solv-
able Lie groups have been classified, and it is known that s, admits a
solvsoliton.

PROPOSITION 4.2.  An inner product {,» on s4 is a solvsoliton if and only if
[, = [g(ﬁ/27070_0)~< Do)

Proor. It has been proved by Lauret that a given solvable Lie algebra can
admit at most one solvsoliton up to isometry and scaling ([14, Theorem 5.1]).
Hence it is sufficient to show that 9 ﬂ/z,o‘o,o)'<v>0 is a solvsoliton. Here,
recall that g(\/i/z,o,o,o)-< , Y0 is an inner product so that {(v/3/2)e1,es,e3,e4} is
orthonormal. Note that the nilradical of s, coincides with the Heisenberg
Lie algebra ; = span{e,,e3,es}, and s4 = Re; @ b is the orthogonal decom-
position with respect to g \/§/2,0,o.0)'<v>0- Then, by Lauret’s theorem ([14,
Theorem 4.8]), we only need to show that g \/5/270_0’0)( , >0 satisfies the
following conditions:

(1) (b3,g<\/§/2101070)~<7>0‘1)3><I)3) is a nilsoliton with Ricci operator Ric =

cI + D, for some ¢ <0 and D € Der(bs).

(2) [61,61] =0.

(3) '(ad e;) € Der(ss).

@) 9am000-<eredo = —(1/0) r{(1/2)(ad e, + ‘(ad e1))}>
By direct calculations, we obtain that 9030, 0’0.0).< , >0|ngb3 is a nilsoliton on b,
with ¢ = —3/2, namely Condition (1) holds. It is obvious that Conditions (2)
and (3) hold. By direct calculations, we obtain Condition (4). O

To prove Theorem 1.2, we consider g, 0,0,0)-<,>o for >0, which is a
curve through {, ), and g(ﬁ/z,o,o,o>~<a>0~

PROPOSITION 4.3, Let g =s4, and t > 0.  Then [g( 0,0,0)-<, >o] is minimal
if and only if t=1.

Proor. Let us define

U= g(t,lo,o,O)(RX Aut(s4))9(1,0,0,0)-
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Then, since 9. ) gives an isometry, we have an isometric congruence

10,00
[9(0.0,0,0)-C; Yo = R* Aut(s4).(g(1,0,0,0)-<; Do) = U".{, .

Hence we have only to study U’.{,>,. Let u’ be the Lie algebra of U’. By
(4.1), we have

r 0 0 0
W —IX43 T+ X2 0 0
—1IX4 0 r+ X33 0

1x41 X42 X43 '+ X22 + X33

We take a basis {Xj,...,Xs} of u’ as follows:

= (1/2)(E\1 + Ex + Es3 + Eu), Xy := (1/2)(E11 + Ex» — Es3 — En),
Xz = (1/2)(En1 — Ex + E33 — Ew), Xy = (\/2/(12 + 1)) (—1Ex + Eg),

X5 :=( 2/(12 + 1))(—Z‘E31 + E42), X := \/§E41.

Let us put
X = (%) = (1/)(Xi+ X)) (i=1,....6).
Then {X{,...,X{} is an orthonormal basis of m’ = d=.(u’). Furthermore we
take
¢1:=En — En — E33+ Ea, & = Ep + tEg,
&3 1= E31 + 1Eg, &y = Ex,
and put

§i= ) =1/2G+'E)  U=1...9)

Then {&,...,&,} is a basis of mem'.
We prove that [g(;0,0,0).<, Y] is minimal if and only if z=1. By (2.4),
recall that [g(,0,0,0)-<, o] is minimal if and only if

> (X! X)), ¢y =0

for each j=1,...,4.
Our claim is

> <h(X],X]),&> =0 if and only if 1= 1. (4.3)
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We calculate > <h(X/, X/),&;>. By direct calculations, we have

(€1, Xa] = (24/2/(2 + 1))(tE21 + Eu3),
(1, X5] = (24/2/(2 + 1)) (tE31 + E),

and others are equal to zero. Therefore, we have

(&1, X,y (Xa),> = (24/2/(22 + 1)<U(En), + (Ea3),, Xi»
=2(1-13)/(1+ %),
(&1, X5, (X5),> = (24/2/(2 + 1)<U(E), + (Ea),, X5)
=2(1-13)/(1+%).
We thus obtain
> <h(X!, X)), &> =401 = 2)/(1+17).

Since ¢ > 0, this yields (4.3).
We assume ¢ =1 from now on. Then, it is sufficient to show that

> <h(X!,X]),&> =0 (44)
for each j =2,3,4. Note that, when ¢t =1,
X4 = —Ep + Ey3, Xs = —E31 + Ey,
& =By + Eg, &3 = E31 + Ep.

We calculate > <h(X/, X/), f}> for j =2,3,4. The bracket products are given
by

[, X3) =&, [, Xs) = —V2Xs,
(3, X2) =&, [E3,Xa) = —V2Xs,
[é47X2] = 647 [647X3] = _é4a [647X4] = _637

and others are equal to zero. We thus obtain that

<[é]7)(l]:7 (A/l)::> = Oa
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for any i=1,...,6 and j=2,3,4. These yield (4.4), and we complete the
proof. O

(1]

The next theorem follows from Propositions 4.2 and 4.3, immediately.

THEOREM 4.4. We have the following:

(1) Let {,>=<,> Then <,) is not a solvsoliton, and the corresponding
submanifold [, ] is minimal.

(2) Let <,>= g<(\/§/270,070)?<,>0. Then <,) is a solvsoliton, and the
corresponding submanifold [{, )] is not minimal.
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