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ABSTRACT. Our aim in this paper is to treat Hardy’s inequalities for Musielak-Orlicz-
Sobolev functions on proper open subsets of RY.

1. Introduction

The higher dimensional Hardy’s inequality of the form
J () [Po(x) PP < cJ Vu(x)|"5(x) dx,  we CPQ)
Q Q

appeared in [12] for bounded Lipschitz domains Q@ = RY, 1< p < « and
p < p—1, where §(x) = dist(x, Q). For related results, we refer to [1], [2],
[6], [7], [8] and [13].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced
to discuss nonlinear partial differential equations with non-standard growth
conditions. Harjulehto-Héast6-Koskenoja [4] proved Hardy’s inequality for
Sobolev functions u € WO1 ’ <‘)(.Q) when @ is bounded and p(-) is a variable
exponent satisfying the log-Hélder conditions on 2, as an extension of [2]. In
fact they proved the following:

THEOREM A. Let Q be an open and bounded subset of RY. Suppose
l<p <pt<oo, where p~:=inf _gv p(x) and p* :=sup, gy p(x). As-
sume that Q satisfies the measure density condition, that is, there exists a
constant k > 0 such that

|B(z,r) N Q| > k|B(z,r)| (1)

Sfor every z € 0Q2 and r > 0 (see [3]). Then there exist positive constants C and
by such that the inequality

16° " ull s ) < Cll0° V|

L) 2)
holds for all ue WS""Y(Q) and all 0 < b < by, where 5(x) = dist(x, 0Q).
0
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In the case when b =0, Héistd [5, Theorem 3.2] proved Theorem A
without the assumption that € is bounded. It is also shown in [4] that if
p~ > N then (2) holds without the measure density condition (1).

Recently, these results have been extended to the two variable exponents
Sobolev spaces Wol‘d)”(')“’(') () in [10], where @, ) (x, 7) = (t(log(co + 1)) 1*))P™)
with p(-) as above and a measurable bounded function ¢(-). In fact, the
following results are shown in [10]:

TueoREM B ([10, Theorem 1.1]). Let Q # RY be an open set. Suppose
l<p <p" < oo and Q satisfies the measure density condition (1). Then, for
0<A<N/p*t, A<1, there exist positive constants C and by such that the
inequality

a+b—1 b
1057 ullg,, . @ < CI°Vulllg, @

holds for all ue WOI’@”(')"’(') (Q), 0<a<A and 0<b<by, where 1/p,(x)=
1/p(x) —a/N.

THeoreM B’ (10, Theorem 1.2]). If N < p~ < p* < oo, then the same
conclusion as in Theorem B holds without the measure density condition (1).

Our aim in this paper is to extend these results to functions in general
Musielak-Orlicz-Sobolev spaces WOI"QS(_Q) defined by a general function @(x, 1)
satisfying certain conditions (see Section 2 for the definitions of & and
Wol"p(Q)). Corresponding to the functions @, 4. (x,7) in [10], we shall
introduce functions ¥,(x,?) to state our main Theorems | and 2, which are
extensions of Theorem B and Theorem B’, respectively.

2. Preliminaries

Throughout this paper, let C denote various constants independent of the
variables in question and C(a,b,...) be a constant that depends on a,b,....
We consider a function

D(x, 1) = tg(x,1) : RN x [0,00) — [0, 0)

satisfying the following conditions (®1)—(®4):
(@1)  ¢(-,1) is measurable on RY for each # > 0 and ¢(x,-) is continuous
on [0,0) for each x e R";
(@2) there exists a constant 4; > 1 such that

A7 < g(x, 1) < 4y for all xeRY;

(@3)  ¢(x,-) is uniformly almost increasing, namely there exists a constant
A, > 1 such that

d(x, 1) < Arg(x, ) for all xeRY whenever 0 <7 < s;
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(@4) there exists a constant A3 > 1 such that
&(x,2t) < Asd(x, 1) for all xeRY and ¢ > 0.
Note that (@2), (#3) and (P4) imply

0 < inf @(x,7) < sup @(x,1) < ©
xeRY xeRY
for each ¢ > 0.
If &(x,-) is convex for each x € RY, then (®3) holds with 4, = 1; namely
¢(x,-) is non-decreasing for each x e RY.

Let ¢(x,1) = supy,, ¢(x,s) and

D(x,1) = Jl b(x, r)dr

0

for xe RY and r>0. Then &(x,-) is convex and

1 _
2713(15(x, 1) < D(x,1) < Ay D(x,1)
for all xeR" and 7> 0.

By (®3), we see that

< Ayad(x,1) f0<a<l

e, “Z){ > ASlad(x, 1) ifa> 1. (3)

We shall also consider the following conditions:
(@5) for every y >0, there exists a constant B, > 1 such that

$(x,1) < B,g(y, 1)

whenever |x — y| <yt~V/N and > 1;
(@6) there exist a function g e L'(R") and a constant B,, > 1 such that
0<g(x) <1 for all xeR" and

B 'g(x,1) < ¢p(x', 1) < Boog(x, 1)
whenever |x'| > |x| and g(x) <t < 1.

ExampLE 1. Let p(-) and ¢;(-), j=1,...,k, be measurable functions on
RY such that

(P) 1< p:=inf, gv plx) < sup, gy p(x) =t p* <
and

(Ql) —oo < g; :=inf, gy ¢j(x) <sup, gy ¢i(x) =1 ¢ < 0
for all j=1,...,k.
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Set L.(t) =log(c+1t) for ¢c>e and >0, Lgl)(t) = L.(1), L£j+l)(l) =
L(LY(1)) and

k
®(x, 1) = 'O T«
j=1

Then, @(x,1) satisfies (@1), (P2) and (P4). It satisfies (@3) if there is a con-
stant K > 0 such that K(p(x) — 1) +¢;(x) >0 for all xe RY and j=1,...,k;
in particular if p~ >1 or ¢; >0 for all j=1,... k.

Moreover, we see that @(x, 1) satisfies (D5) if

(P2) p(-) is log-Hoélder continuous, namely

C
p(x) = W) < 57—
Lo(1/]x = y1)
with a constant C, >0 and
(Q2) ¢;(-) is (j+ 1)-log-Holder continuous, namely
Cy
)

1g;(x) — q;(y)| <

with constants C,, >0, j=1,...k.
Finally, we see that @(x, ) satisfies (@6) with g(x) = 1/(1 + [x)™ if p(*)
is log-Holder continuous at oo, namely if it satisfies

Cy 0 .
(P3) |p(x) — p(x)| < —L= |) whenever |x’| > |x| with a constant C, ., > 0.

Le(|x
In fact, if 1/(1+|x)*™' < t<1, then r- P =p] < NG for |x!| > |x|
and Lgl)(t)\%'(x)*q/(x’)\ < LC(,/ (1) 4

ExaMPLE 2. Let pi(-), p2(*), q1(-) and ¢2(-) be measurable functions on
RY satisfying (P1) and (Q1). Then,

d(x,0) = (1+ )"+ 1/0) I L ()" L(1/1)~ W

satisfies (1), (92) and (P4). It satisfies (P3) if p; > 1, j=1,2 or ¢; 20,
Jj=1,2. As a matter of fact, it satisfies (®3) if and only if p;(-) and ¢;(-)
satisfy the following conditions:

(1) gj(x) =0 at points x where p;(x) =1, j=1,2;

(2) SUPyy oot {min(g(x), 0) log(py(x) — )} < o0, j = 1,2.

Moreover, we see that @(x,?) satisfies (@5) if pi(-) is log-Holder con-
tinuous and ¢(-) is 2-log-Holder continuous.

Finally, we see that @(x, 1) satisfies (@6) with g(x) = 1/(1 4 |x|)" " if pa(")
is log-Hoélder continuous at oo and
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(Q3) ¢a(-) is 2-log-Holder continuous at co, namely

|2 (x) — g2 (x')] < %;OC whenever |x/| > |x|
L7 (Ix)
with a constant C,, . > 0.
In fact, if 1/(1+ |x|)N+1 <t<1, then ( + )P E=p )] <2n L
(1 + 1/1)|P2(— ( 8l < NGy (log( ))Iql( q1(x") S (log( )) —q7 and
(log(e + 1/1)) 2™~ < c(N, qu,oc) for |x'| > |x].

Let Q be an open set in RY. Given ®(x,7) as above, the associated
Musielak-Orlicz space

L2(@) ={ £ e L} (@) | @070y < 0}
is a Banach space with respect to the norm
1oy = in 2> 0 [ @l l/ma <1}

(cf. [11]). Further, we define the Musielak-Orlicz-Sobolev space by
Wh(Q) ={ueL?(Q):|Vul e L*(Q)}.
The norm
H“”Wl-q’(g) = H“”Lq’(g) + [ [Vul HL"’(Q)

makes W!?(Q) a Banach space. We denote the closure of Cg(2) in
whe(Q) by W(}’¢(Q). As usual, let Wzl ?(RY) denote the set of functions
u on RY such that u|, e W' ?(Q) for every bounded open set Q. By (P2)
and (#3), W, "(RY) = W (RY).

3. Lemmas

We denote by B(x,r) the open ball centered at x of radius r. For a
measurable set E, we denote by |E| the Lebesgue measure of E.

For a locally integrable function f on Q, the Hardy-Littlewood maximal
function Mf is defined by

1
Mf(x) = Srl>l¥)3|B(x7”)|JB(x,r)ﬂQ |/ (»)ldy.

We know the following boundedness of the maximal operator on L?(Q).
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LemMA 1 ([9, Corollary 4.4]). Suppose that ®(x,t) satisfies (®5), (P6) and
further assume:
(D3*) t— t7¢(x, 1) is uniformly almost increasing on (0,0) for some
g > 0, namely there is a constant A, ., > 1 such that

170h(x, 1) < Ay 5 O(x,5)  for all xeR"N whenever 0 <t <s.

Then the maximal operator M is bounded from L®(Q) into itself, namely, there
is a constant C >0 such that

[Mfll o) < Cllf Lo
for all feL®Q).
For A>1, xeR" and >0, set
@;(x, 1) = D(x,t'/*) = 14, (x, 1),
where ¢, (x, 1) =t/ 1p(x, 11/4).

LemMma 2. (1) @,(x,t) satisfies the conditions (D2) and (D4).

(2)  Suppose @(x,t) satisfies (P3*). Then ®@;(x,1) satisfies (P1) and (D3)
when L <1+ &, and it satisfies (D3*) when L <1+ ¢& (with ¢ replaced by
(14e0—2)/2).

(3) If ®(x,1t) satisfies (DS), then so does D,(x,1).

(4) If ®(x,t) satisfies (D6), then so does D;(x,1).

Proor. (1) (@2) for @ immediately implies that for @,. For (&4), note
that ¢, (x,2) < 277142430, (x, ).
(2) The assertions of (2) follow from (#3*) and the equality

Bie.0) = () g 1),

(3) It is enough to note that = < /~'/N for 1> 1.
(4) It is enough to note that g(x) < g(x)"/* when 0 < g(x) < 1. O

From Lemma 1 and the above lemma, we obtain

COROLLARY 1. Suppose that ®(x,t) satisfies (P5), (P6) and (®3*). Then
the maximal operator M is bounded from L®*(Q) into itself for 1 <A <1+ &.

Set
& (x,5) = sup{t > 0; D(x, 1) < s}
for xe RY and s> 0.
LemMa 3 (cf. [9, Lemma 5.1]). @ !(x,.) is non-decreasing,

D(x, 0 (x,1) =1t
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and
At < o7 (x, D(x, 1)) < AFt (4)
for all xeRY and t > 0.

We shall consider the following condition:
(D6*) @(x,1) satisfies (P6) with g(x) < (1+ |x|)? for some > N.

LemMA 4. If @(x,t) satisfies (P6*), then there exists 0 < A <1 such that
d(x,29"(x)) < 2Ix)  for all xeR",
where g*(x) = max(g(x), Mg(x)).

ProoF. Since g(x) s (1+x])7* with >N, Mg(x) < C(1+|x|)™", so
that ¢g*(x) < C(1 + |x|)™". Hence

D(x,2g%(x)) < AC(1 + |x]) N A29(x, 2C) < 2V 1CA>(2|x]) N p(x, AC).
Thus, the required inequality holds if A < (2% CAlAg)fl. O
)

LeMMA 5. i r®® Y (x,rN) is uniformly almost decreasing on (0, x0),

where gy = N/(1 + (log A43)/(log 2)).

ProoF. By (@4), we see that

1 1
-1 b <
@ (x 2A3S> 2@25 '(x, ) (5)
for all xeR" and s>0. If 0 <A<, then choosing k€N such that
243) " < < (245" and applying (5), we have
(
@ (x,2s) < 27K o (x,5) <22/ (x,s),

where o = (log 43)/(log 2). Note that gp = N/(1 + o). Thus, for a > 1, we
have

(ar)zm@—] (X, (ar)fN) < (ar)aoz(a—N) 1/(1+U)¢—1 (X, }’_N)
=2r @~ (x,r V),
which shows the assertion of the lemma. O

LEMMA 6. Suppose that @(x,t) satisfies (®5) and (P6*). Let 0 < o < gy
for oy given in Lemma 5. Then there exists a constant C > 0 such that

J x =y f(p)dy < G (x,r ) ©)
B(x, 2|x)\B(x,r)
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and

j Sy < GV (x, ) )
B(x,r)

for all xeRY, 0 <r<2|x|, and f >0 satisfying 1/l owy) < L.

Proor. Condition (®xJ) in [9] with x(x,r) =r" and J(x,r) =r*" is
satisfied by Lemma 5, if 0 < o < gp. Hence, (6) follows from [9, Lemma 6.3]
in view of Lemma 4. (7) follows from [9, Lemma 5.3] and Lemma 4. [J

Hereafter, let Q is an open set in R" such that Q # R”, and let §(x) =
dist(x, 09).
The following is a key lemma:

Lemma 7. (1) If Q satisfies
|B(z,r) N Q| = k|B(z,7)| ®)

Jor every z€ 0Q and r > 0 with a constant k >0 (k <1), then there exists a
constant C = C(N,k) > 0 such that

) < C |

x =y M Vu(y)|dy
B(x,20(x))

Jfor almost every x € Q, whenever u e W,(I;Cl RY) and u=0 outside Q.
(2) Let A> N. Then there exists a constant C >0 such that

1/2
o) < c(&m”j |vU<y>|’“dy>
B(x,20(x))

for every x € Q, whenever v e W,“‘(RN ) and v =0 outside Q.

oc

For (1) see [10, Lemma 2.1]; for (2) see e.g. [6, (3.1)] (also cf. [2, Proposi-
tion 1]). Here note that (2) holds without the assumption (8).
We consider

H(fx,2) = 5(x)! L( o Ay

for veQ, 0<a<1 and feLl (RY) such that f >0, f =0 outside Q.
We know (by integration by parts)

H(f;x,0) < CMf(x) )
for all xe Q.
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Lemma 8. Let Q # RY be an open set and suppose that ®(x,t) satisfies
(D5) and (D6*).
(1) Let 0€[0,00)N[0,1). Then there exists a constant C >0 such that

H(f3x,2) < CMf (x)®(x, Mf (x)) """ (10)

for all xe Q and f >0 such that f =0 outside Q and | f| o) <1
(2) Let ae€[0,00]. Then there exists a constant C >0 such that

6" [ )y < Cup )@t My ) (11)
B(x,25(x))

for all xe Q and f >0 such that f =0 outside Q and | f| o) <1

ProOF. We have only to consider the case o > 0. Without loss of gen-
erality, we may assume that 0e dQ, so that d(x) <|x|. Let />0, f=0
outside Q and || f1 0 < 1.

(1) For 0 <r<d(x), we have by (6) in Lemma 6

B(x,26(x))\B(x,r)

H(f;x,0) < C{5(X) lrMf (x) + J |x - yI“Nf(y)dy}

< C{r*Mf (x) + r*® ' (x,r ™M)}
Suppose P(x, Mf(x))fl/N > J(x). Then we have by (9)
H(f;x,) = 0(x)"H(f3x,0) < C(x)"Mf (x) < CMF (x)@(x, Mf (x) """,

which is (10).

Next, if @(x, Mf(x))""" <6(x), then take r = ®(x, Mf(x))""/Y. Then,
in view of (4) in Lemma 3, we obtain (10).

(2) By (7),

6<x>“*Nj )y < Co(x) 0 (x,5(x) ).
B(x,20(x))

If « <oy, then r r*®@~'(x,r~V) is uniformly almost decreasing in view of
Lemma 5. Hence

5<x>“—Nj F()dy < Cro(x,r V)
B(x,26(x))

for 0 <r<d(x). Thus, by the same arguments as above we obtain (11).

O
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4. Hardy’s inequality I

Lemma 9. Let Q # RY be an open set satisfying (8). Suppose ®(x,1)
satisfies (D5), (P6) and (P3*). Then there exist constants C > 0 and 0 < by < 1
such that

16° ul o) < CIIO" IVl [l o (12)

for all ue Wol’tp(.Q) and 0 <b<by Ifue WOI’(D(Q) and 8°|Vu| € L?(Q) for
0 < b < by, then 6°u extended by 0 outside Q belongs to WH?(R").

Proor. Without loss of generality, we may assume that 0e 0Q2. For
ue W01’¢(Q) and b >0, let

b .
() = {5(x) u(x), ?f xeQ
0 if xe Q¢

7

We first treat ue C;°(2). Note that 6 and 1/0 are bounded on the
support of u and 9 € W"*(Q). Hence u, ¢ WH*(RY) =« W' (RY) for every
b>0. Applying Lemma 7 (1) to this function, we have

8(x)"|u(x)| < CL( e e = 3"V BO() " ()| +0(») " IVu(y) [}y, (13)
so that
8(x)"Mu(x)| < C{EM©G" " u)(x) + M|V ul)(x)}

for a.e. x € 2 with a constant C independent of b. In view of Lemma 1, we
find

16" ull Loy < Co{blI6" " ull o) + 16°IVul | Loy}
which gives
(I- COb)||5b_1”HLd’(Q) = C0||5b|V”| HLd’(Q)'

Hence, taking by such that 1 — Cyby > 0, we have (12) for 0 < b < by.

We next treat u e W()I’Q)(Q) such that ¥ =0 outside B(0,R) for some
R >0. Then we can find a sequence ¢; € C;°(£2) such that ¢; — u in WOI"D(.Q)
and ¢, =0 outside B(0,2R) for each j. By the above discussions, for
0 < b < by, we have

16" o1l o) < ClO" Vol Il (e o

for all j and

1" 0, = 9 og@) < CI8* 170, = Vi o )



Hardy’s inequality in Musielak-Orlicz-Sobolev spaces 149

for all j, j/. Since J is bounded on B(0,2R), we see that
16"V, Nl o) — 16" IVl | o
as j— oo. Similarly
||5b|V¢j - V%’" HL"’(.Q) -0

as j,j/ — oo. Hence by (15), {(5”*1(2/} is a Cauchy sequence in L?(Q), which
implies that 5b*1(pj — 0" Yy in L?(Q). Thus, letting j — oo in (14), we obtain
(12). Further, (¢;), — up in L?(R") and

b—1 b
V(o) _{w pVo+06"Vp, onQ

0 on Q¢
_){b&bluV(H—équ on Q
0 on Q¢

in L?(RY) as j — co. It then follows that

{ bP ' uvS +6°Vu on Q
Vub = .
0 on Q°,

which belongs to L?(R"Y), and hence u, € W"?R").

Finally we treat a general u e Wol’q)(.Q). For each ne N, we consider a
C'-function H, on [0,c0) such that 0 < H, <1 on [0,0), H, =1 on [0,n],
H, =0 on [3n,00), 0 < —H/(t) <t! for t € (n,3n). The existence of such H,

is assured since J3n tVdr=1log3>1. Set u,(x) = H,(|x)u(x), n=1,2,....
Then we know byn the above that
16" all Loy < ISV ()] | o - (16)
Since 0" u,| 1 0% Hu| (n — ),
”517_1”’1”0”(9) - ||5b_1”HL®(Q) (n — o0).

On the other hand,

|Vun(x)| < |H,,/(|x|)| |u(x)| +H}1(|X|)|Vu(x)|
< ﬁw(x))fg(o&n)\g(om) (x) 4+ [Vu(x)|.

Since d(x)"/|x| < |x|*"" < n®! for |x| =n and b < 1,

8(x)"|Van (x)] < 0" fu(x)| +6(x) " |Vu(x)],
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so that
16|V 1| o) < n’! [ull ooy + 16|V u| o)
= 0" Vul o) (n— o).
Therefore, by letting n — oo in (16), we obtain (12), which also implies that
u, € WHE(RY). ]

For o > 0, we consider a function ¥,(x,): RY x [0, 00) — [0, o) satisfy-
ing the following conditions:

(P1) W¥,(-,1) is measurable on RY for each >0 and ¥,(x,-) is con-
tinuous on [0, o) for each x e R";

(Y2) W,(x,-) is uniformly almost increasing on [0, c0), namely there is
a constant A4 > 1 such that ¥,(x,1) < A4¥,(x,s) for all xeRY,
whenever 0 <t < s;

(P3) there exists a constant As > 1 such that

W, (x, 1D(x,1) "N < AsD(x, 1)

for all xeR" and 7> 0.
Note that we may take Yy(x,?) = &D(x,1).

ExamPLE 3. Let @(x,7) be as in Example 1. Set

k (%)
Y, (x, 1) = ([H(ng)(Z))qj(X)/p(X)> ,
where 1/p#(x)=1/p(x) —a/N. If 0<a<N/p", then ¥, satisfies (¥1),
(¥2) and (¥3).
ExaMpPLE 4. Let &(x,7) be as in Example 2. Set
w,(x,t) = ((1 + Z>Lc(t)111(x)/Pl(x))Pf(x)((l + 1/[)LC(I/Z>fqz(X)/Pz(X))pf(X)'
If 0 <o <min{N/p/,N/ps}, then ¥, satisfies (¥1), (¥2) and (¥3).
THeOREM 1. Let Q # RY be an open set satisfying (8). Suppose d(x,t)
satisfies (®5), (@3*) and (P6*) and let o € [0,00) N[0, 1] for oy given in Lemma
5. Then there exist constants C* >0 and 0 < by < 1 such that
J W, (x,0(x) P u(x)|/CP)dx < 1
Q

Jor all ue WOI"@(.Q) with [0°|Vul o) <1 and 0 < b < by.
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Proor. Let by be the number given in Lemma 9 and let 0 < b < by. Let
ue Wol’cp( ) with H5b|Vu| o <1. By Lemma 9, 8"u extended by 0 outside
Q belongs to W'(RV), so that by Lemma 7 (1), (13) holds a.e. x € Q. Hence

loc

5(x) " u(x)| < C(S(x)“”j oy [
X,20(x

for ae. xeQ, where f,(y)=5b6(»)""u(y)|+6(y)’|Vu(y)| for yeQ and
fu(y) =0 for yeQ° By Lemma 9, there is a constant C; > 1 such that
[full @) < C1. Applying Lemma 8 (1) to f,/Ci and using (P4), we have

O(x) M u(x)| < CrMS(x)D(x, My (x)) ™

a.e. xe Q. Hence by (¥2) and (¥3) we have

J ¥, (x,0(x) " u(x)|/ Cy)dx < A4A5J D(x, Mf,(x))dx (17)
Q Q

whenever ||0°|Vu| o < 1. By Lemma 1, [[Mf,[| sy < Cs5, which implies
Jo @(x, Mfy(x))dx < C4 (C4 = 1).
Now let 0 <e<1. Since

D(x, Mfy,(x)) = @(x,eMf,(x)) < Are®D(x, Mf,(x))

by (3), applying (17) to eu, we have
J W, (3, 0(x) P () |/ Ca )l < A4A5J B(x, Mfou(x))dx
Q Q

< A2A4A58J @(X, Mf,,(x))dx < Ay A4 A5Cqe.
Q
Thus, taking & = (A,A444s C4)71 and C* = C,/¢, we obtain the required result.
O

Applying Theorem 1 to special @ and ¥, given in Examples 1 and 3, we
obtain the following corollary, which is an extension of Theorem B.

COROLLARY 2. Let & and W, be as in Examples 1 and 3 and let Q # RY
be an open set satisfying (8). Suppose p~ >1 and let o €[0,N/pt)N[0,1].
Then there exist constants C >0 and 0 < by < 1 such that

||51+b71“||wx(9) < C||6"|Vul Lo
Sfor all ue WOI"qj(.Q) and 0 < b < b.

Similarly, applying Theorem 1 to special @ and ¥, given in Examples 2
and 4, we obtain another extension of Theorem B:
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COROLLARY 3. Let @ and ¥, be as in Examples 2 and 4 and let
Q #RY be an open set satisfying (8). Suppose min(p;,py) > 1 and let o€
[0, min(N/p;",N/p5))N[0,1). Then there exist constants C >0 and 0 < by < 1

such that
16 ull s ) < CUIS" IVt [ oo

for all ue WOI"@(.Q) and 0 < b < by.

5. Hardy’s inequality II

For a proof of Theorem 2 below, we prepare the following lemma instead
of Lemma 9.

Lemma 10. Let Q #RY be an open set. Suppose that ®(x,t) satisfies
(D5), (@6) and (D3*) for &g > N — 1. Then there exist constants C > 0 and
0 < by <1 such that

H5b_lu||Lw(Q) = C||5b|Vu| HLd’(Q)

Sor all ue WOI’(D(Q) and 0 <b<b,. Ifue WOI’(D(Q) and 6°\Vu| € L®(Q) for
0 < b < by, then 6°u extended by 0 outside Q belongs to WH®(RY).

PrROOF. Take / such that N < 2 < g+ 1. Then WL?(RY) « W *(RY).

loc

First, let u e C°(2) and b > 0. Let u; be the function 6”u extended by 0
outside Q. Then uy e WH*(RY) = W) *(RY) and applying Lemma 7 (2) to
v = up, we have

000" o)) < o) | Sy < ML) (19
B(x,26(x))NQ

for all x € Q, where f,(y) = [b0(»)" " u(»)| +6(»)"|Vu(y)|]*. In view of Cor-
ollary 1, we find

16" ) Los ) < Cllfull o1 g
Since ||/ |10:(0) = ||fw||£¢(9) for every f e L%(Q), we obtain
10" ull o) < CYAIL o) < CH{BIS" " ull Loy + 1671Vl [l oy}
which gives
(1= C15)[16" ull () < Cll6" |V || o,

Take b; such that 1 — C;h; > 0. Then, in the same way as the last half of
the proof of Lemma 9, we obtain the required results for u e W01’¢(Q) and
0<b<b. 0
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THEOREM 2. Let Q # RY be an open set. Suppose ®(x,1t) satisfies (®5),
(P6*) and (P3*) with ¢ > N —1. Let o€ [0,00]. Then there exist C* >0
and 0 < by < 1 such that

JQ ¥, (x,0(x) T u(x)] /) CH)dx < 1

Jor all we Wi (Q) with ||0°|Vul || Lag) < 1 and 0 <b < by,

Proor. Let b; be as in the above lemma and let 0 <b <b;. Let
ue Wy ?(Q) with ||0°|Vul[| e < 1. Take A such that N <i<g+ 1.
By the above lemma, d°u extended by 0 outside @ belongs to Wli"f(RN ), SO
that by (18) we have

[5<x>“+’“\u<x>n*scfxx)‘”*Nj  h)dy
B(x,20(x))

for all xeQ, where f,(y) = [b0(»)" " u(»)| +6(»)"|Vu(y)|]* for yeQ and
fu(y) =0 for ye Q¢ By Lemma 10, there is a constant C; > 1 such that
||ful/)'||Lﬂb(Q) < C1, so that || £l e, < Cf- A

Here we note that @;(x,¢) satisfies (®6*) with g* in place of g and
that 7 r*0@;(x,r~V) is uniformly almost decreasing on (0,00). Since
Jo € [0, a0], we can apply Lemma 8 (2) to f,/C{, Ax and @; in place of
f, o and @ respectively, and using (@4), we obtain

O(x) P u(x)| < CIMS, ()] 5 (x, My (x)/ €)Y
< GMf ()] D (x, [Mfy(x)]) 1) Y

for all xe Q. Hence by (¥2) and (¥3)

J ¥, (x,0(x) " u(x)|/ Ca)dx < A4A5J ®(x, [Mf,,(x)]/*)dx
Q Q

= A4A5 JQ @,{(X, Mfu(x))dx (19)

By Corollary 1, ||Mf,||, ;) < C3, which implies Jo @i (x, Mf,(x))dx < Cy.
Let 0 <e<1. Since

D, (x, Mfiu(x)) = @, (x, 6" Mfy(x)) = D(x, e[ Mf(x)] /")
< Are®(x, [Mf, (x)]"/") = Ae®;(x, Mfi(x))

by (3), applying (19) to eu, we have
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J W, (x,0(x) " eu(x)|/ Ca)dx < AsAs J D; (x, Mf,(x))dx
Q Q

< A2A4A58J (D;V(x, Mfu(x))dx < Ay Ay A5Cae.
Q

Thus, taking & = (424445 C4)71 and C* = C,/¢, we obtain the required result.
O

Applying Theorem 2 to special @ and ¥, given in Examples 1 and 3, we
obtain the following corollary, which is an extension of Theorem B'.

COROLLARY 4. Let @ and ¥, be as in Examples 1 and 3. Suppose
p~ >N and let 0<oa<N/p*. Then there exist constants C >0 and
0 < by <1 such that

16 | L ) < ClIO" V][] o
for all ue W, *(Q) and 0 <b < b,.

Similarly, applying Theorem 2 to special @ and ¥, given in Examples 2
and 4, we obtain another extension of Theorem B’:

COROLLARY 5. Let @ and ¥, be as in Examples 2 and 4. Suppose
min(p;,p;) > N and let 0 <o <min(N/p,,N/pS). Then there exist con-
stants C >0 and 0 < by <1 such that

b1 b
[Jo** ull L) < Cll0°Vul || Lo

for all ue Wy *(Q) and 0 <b < b,.
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