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ABSTRACT. In this paper, we study free boundary-value problems for p-harmonic
maps on half simple spaces of Euclidean space, and obtain some Liouville-type
theorems.

1. Introduction and main results

Let (M,g) be a Riemannian manifold of dimension m > 3 with boundary
OM # . (N,h) be another Riemannian manifold of dimension n > 2. De-
note S a given closed submanifold of N of dimension d, ] <d <n—1. Fora
map u : M — N such that u(0M) = S, we call dM the free boundary of map u
and S the supporting manifold for the free boundary values.

If u is a critical point of p-energy functional E,(u) = %IM |du|’v, amongst
maps satisfying a free boundary condition u(dM) = S, then we call u a p-
harmonic map with free boundary. We refer to [1], [2], [3], [5] for the
existence, regularity and minimizing properties of p-harmonic maps with
boundary-value.

In this paper, we will prove some new type of Liouville theorems for p-
harmonic maps with free boundary. Our results concern the asymptotic
behavior of p-harmonic maps at infinity. For p =2, we refer to [7] and
[9] for this type of Liouville theorems.

Denote by R (m > 3) the half simple space of Euclidean space R™ and
go the standard Euclidean metric on RY'. We can state our main results as
follows:

THEOREM A. For p e [2,m), let u: (R"',go) — (N,h) be a C' p-harmonic
map with free boundary condition: u(0R') = S <N, g—ﬁ’(x) L TywS for any
x € R, where v is the unit normal to OR". If the p-energy E,(u) < oo, then u

must be a constant map.
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THEOREM B. For pe[2,m), let u: (R, g0) — (N,h) be a C' p-harmonic
map with free boundary condition: u(0R}') = S <N, S—’f(x) L TywS for any
xedRY. If u(x) — QyeS as |x| — oo, then u must be a constant map.

By the way, using similar method as in the proof of Theorem B, we have
the following Liouville-type theorem for p-harmonic maps which is the gen-
eralization of Jin’s result for harmonic maps in [7].

Tueorem C. For p e [2,m), let u: (R™, go) — (N,h) be a C' p-harmonic
map, m > 3. If u(x) = QoeN as |x| — oo, then u must be a constant map.

2. Proof of Theorem A

In this section, we will prove the following Theorem A’ which is slightly
more general than Theorem A while taking f =1 there.

TueOREM A'. For pe[2,m), let u:(RY, fgo) — (N,h) be a C' p-
harmonic map with free boundary condition: u(0R7) = S < N, %(x) L TS

for any x € R, where [ is some positive function on R’} which satisfy

(e—(m—p))fix) < ? %oxi, for some constant ¢ > 0. (2.1)

If the p-energy E,(u) < oo, then u must be a constant map.

Proor. For the case of RY" with the Riemannian metric g = fgo for some
positive function f on R, the p-energy density can be written as

_ ou* ouP\""?
\duf? = (f (X)) ax») , (2.2)
and
— ou* ouP\'?
\dul”, = f0n=P)2(x) (hzﬁ(u)a 6x~> dx. (2.3)

For t >0, we define a family {V;} : R" — N of maps by V;(x) := u(tx)

for x e RY, and set

1

D(R, 1) := —J |dV,|P vy, (2.4)
D JB(R)

where B(R) =R7'N{x:|x[ <R}. Then, applying Green’s theorem, we cal-
culate
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= J <d*(|dup2du),du(r£> >dx
=1 B(R) or
0 0
IB(R)N{ x>0} ov or

+J |du|p_2<d*u(v),% >dx’.
AB(R)N{x,n=0} dr |,
10

where %z £ is the unit normal, or denotes the volume element of the
induced Riemannian metric on 0B(R). By virtue of the p-harmonic condition
d*(|du/”>du) = 0, the free boundary condition and du(2) = f~'du(2), it
follows that

0 ®(R,1)

ot

g(.b(R, 7)

= > 0. (2.5)

t=1

On the other hand, re-parameterizing the integral (2.4), we get

®(R,1) = ;JB(R)f(mp)/Z(x) (ha/;(u(tx)) GMT(:C) 5“;(56))[, dx
—m ou™ /2
= % JB<[R)f~(mP>/2 (é) (l’lu/f(u(x)) Oua)EIX) au;)EIX)>p dx. (26)

~ Ou’(x) 8uﬂ(x) r/2 . . .
Set e, (u) = ( hup(u(x)) =7 - ) , by a direct calculation, we obtain from
(2.1) that

0
—D(R, ¢t
at(7)

=1 p

_ uj FrD12(x)3, () (ﬁ . xl.) dac
B(R)

2
OXi

4 Rm—lf'(m—p)/Z(x)ép(u)o_R

p J OB(R)N{x,, >0}

< —ed(R, 1) + RdiR ®(R,1). (2.7)

Combining (2.5) and (2.7), we have —e®(R,1) + R ®(R,1) > 0. Therefore,
for all R > 0, it follows that

%{R*S(D(R, 1)} > 0. (2.8)
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Now, suppose that u is a nonconstant p-harmonic map, by the C! regularity,
|du|” cannot vanish identically on some open set in R7’. Thus there exists
Ry >0 and C > 0 such that [, |du|’v, > C. Meanwhile, for all R > Ry, we
have from (2.8) that

RY RY
J |dulv, > (—) J |du|?v, > C(—) .
B(R) RO B(Ry) RO

Since ¢ > 0, hence

1
Eu:—limJ du|’vy > o0,
)= Jim |l
which gives a contradiction to the finiteness condition of E,(u). We complete
the proof of Theorem A’ and Theorem A as a corollary of Theorem A’.

O

3. Proofs of Theorems B and C

It is obvious that Theorem B is the special case of the following theorem
while taking f =1 there.

THEOREM B'.  For p € [2,m), let u: (R, fgo) — (N, h) be a C' p-harmonic
map with free boundary condition: u(oRY') = S < N Qu(y) L Tyx)S for any

> Oy

x € R, where f is some positive function on R satisfying the following two
conditions:
(1) there are comstants &€ >0, Ry > 0, such that
: m—p of :
- =" LD frMzRe ()

(2) with the same constants ¢, Ry as in (1), there is a constant C > 0, such
that

FonR(x) < Clx| ") for |x| > Ry. (3.2)
If u(x) - Qe S as |x| — oo, then u must be a constant map.

Proor. We will prove Theorem B’ by contradiction. Denote by B(R)
the geodesic ball centered at origin with radius R in R”. Set
1

Ep(B(R)) = —

J |dul|?v,. (3.3)
P JR"NB(R)

Suppose that p-harmonic map u is not a constant map, then the assumption
(3.1) on f and Theorem A’ imply that the p-energy E,(u) of u must be infinite.
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That’s to say E,(B(R)) — o as R — oo, from which, we would derive an
upper and a lower bound for the growth rate of E,(B(R)) as R — oo, the
two bounds will contradict to each other, at that time, we will complete the
proof.

Step I Modification of the p-harmonic map u at boundary OR!.

Since |l‘im u(x) = Qo, there exists a neighborhood U,, = {(x1,...,X):
X|— 00

|| < 1o} of OGR! such that the image U, NR7 of u lies on the standard
neighborhood A7(S) of S, that means, for every y e A47(S), there exists only
one point y’ € S such that y’ is a projection of y along the unique geodesic

minimizing the distance between two points y and y’. Let X = (x1,...,Xu_1,
—Xp) and x = (X1,...,Xu_1,Xn), if X € U, \R"" is the reflection point of x € R,

we project u(x) onto S along the minimal geodesic y, denote by #u(x) € S,
extending y to some point Q such that dist(u(x),#(x)) = dist(Q, @(x)), then we
define the reflection #(x) as follows

u(x) = u(x), xeR, (3.4

u(x) =0 =u(x), xeU,\R". 4)
According to the arguments in part 4 of [4], we know that & : U, URY — N is
a smooth map.

Step II The upper bound for the growth rate of E,(B(R)).

According to theorem 5.1 in [6] (see also [7]), we can choose a local
coordinate neighborhood U of Qp in N such that Qy = 0 and, for any y e U,
the metric tensor /1 = h,g dy* @ dy? satisfies (for two matrices 4, B, by 4 > B,
we mean that 4 = B+ D for a positive semi-definite matrix D)

Ohap(y)

(P27 4 20 0)) 2 ) (33)
Now, since u(x) — Qyp =0 as |x| — oo, there exists R; >0 such that for
|x| > Ry, u(x) e U, and

(ahaa;;(yu)”y + 2haﬁ<”>> = (hyp(u)). (3.6)

Since u: (RY, fgo) — (N,h) is a p-harmonic map, it follows that
u(x) : (RN Uy, fgo) — (N,h) is also a p-harmonic map and then, for
w(x) € C5(R” N U, \B(Ry),expy. (U)),

4B (a(x) + 10(x))], o = 0. ()
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which jointly with (2.3) leads to

0a° deo’ Oha(sw aiai)dx . (3.8)

ox; Ox;  Oy” 0x; 0x;

[, G w00 (2t 5
R\B(R))
where A(f,u, Du) := [P (hyg(u) % Loﬁf)(p 7 and R = {x|xeR", x, >
—}’0}.

For 0 < & s < ry, we define Lipschitz functions ¢(¢) and @(¢) with compact
supports:

1, fort <1
ps(1):=q 1+ forl<r<1+§¢ (3.9)
0, fort>1+¢,
1, 0 < xps
D(xp) =9 14+2, —5<x, <0, (3.10)
0, 1o < Xy < =8,
and choose
(Ix1) |x]
(|x|)—(08( R 1 -9, r)) for R > 2R;. (3.11)
Notice that, for R < |x| < R(l+¢), %}C\/R) =—x 77~ Substituting o =

H(|x)P(xp)ei(x) into (3.8), and taking the limit as & — 0, then we obtain

A(f,u, Du) <2h(,,5(a) + Ohoo(8) - > ou” i’

2 2 dx 4+ D(R)

JR;;;H(B(R)\B(&» 0xj 0%

- J A(f,u, Du) (th;(a) auvfa%(xm))aR
OB(R)NR" 0x;
2A(f 1. Dulos i) () S0

dx, (3.12)

JR:gm<B<R>\B<R1>> din
where Ry = 2Ry, v= (v!,v?,...,v™) is the outer normal on dB(R), or denotes
the volume element of the induced Riemannian metric on 0B(R), and letting
s — 0, it follows that

ahm;(u) uy) ou’ 61,[6 (Rl)

A Du) | 2hgs
(f . 0u) (2 + 27 ) S22

J-RTW(B(R)\B(R’z))

A(f,u, Du) <2ha(;(u)zw7vju5¢(xm)) OR (3.13)

J dB(R)NR" Xj
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ou® 509, (lRll)
A(f7 u, Du) _2}105(”) l/l() —
{ an an

D(R) = |

RIN(B(R2)\B(Ry))

Ohgs .\ ou’ ou’ | x|
2h,, "——1l=—9, (= .
Jr( ) Gy ) 0x; 0x; ( P <R1 &

By means of (3.6), we obtain from (3.13) that

ou* oul
axi 6x,-

p/2
f(m—p)/Z (h“/;(u) ) dx+ D(Ry)

JRT”(B(R)\B(Rz))

S2J A(f,u, Du) <hag(u)aLVjM(S)O'R.
OB(R)NR”" 0x;

For R > R, set

ou* oul
6)61‘ 8X,’

Z(R) = J

RYN(B(R)\B(Ry))

f(m*[’)/Z (hx[i(u)

Following the arguments similar to Jin [7], we can derive

Z(R) < Cp(R)-R?,  for R> Rs,

p/2
> dx + D(R)).
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(3.14)

(3.15)

(3.16)

(3.17)

where #(R) is a non-increasing function on (Rj3, o) such that #(R) — 0 as
R — oo and 7(R) > max(hygu®uf)’ /2. Therefore, we obtain an upper bound
B(R

for the growth rate of E,(B(R)):

1
E)(B(R)) = —J
P JRon(B(R)\B(R,))

ou® ouf r/2
m=p)/2( p =) d
f ( x/}(u) (')xi 6x,-> .

J )
+ -

ou® ouf r/2
a—xi ﬁx,-) Y

f(nr]l)/z <h“/;(u)

1 1
— _ - (m—p)/2
2(R) - DR+ jB(RW I (hmu) e

< C{n(R) n CI(;?] R,

where, c(u) = %jB(Rz)ﬂRi’ f(nrp)/z (hocﬂ(”) Qu* @Lﬁ) 17/2dx

- =
0x; 0x;

depending only on the p-harmonic map u.

1
p

ou* 6uﬂ)p/2dx

(3.18)

D(R;) is a constant
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Step III The lower bound for the growth rate of E,(B(R)).
Proceeding the similar argument as in the proof of Theorem A’, we can
easily get a lower bound for the growth rate of E,(B(R)) as follows:

E,(B(R)) = c1 + c2(u)R?, for R > Rs, (3.19)

where ¢, (1) are some constants.
Now, a contradiction appears as R — oo from (3.18) and (3.19), which
implies Theorem B’. O

We can prove Theorem C in the following more general frame, i.e., we
have

Tueorem C'. For p e [2,m), let u: (R™, fgo) — (N, h) be a C' p-harmonic
map, where f is some positive function on R" satisfying (3.1), (3.2) and in
additional

—(r-f(x)) =0, on R", r=|x|. (3.20)

If u(x) = Qo as |x| — oo, then u must be a constant map.

Before starting with the proof of Theorem C’, we quote the result which
concerns the finiteness of the p-energy of the p-harmonic map.

Lemva 1 (8, Theorem 9)). Suppose that m > p, and L (r- f(x)) >0,
r=|x|. Let u:(R™ fgo) — (N,h) be a p-harmonic map of (R", fgo) into an
n-dimensional Riemannian manifold N. If the p-energy E,(u) of u is finite, then
u is a constant map.

ProoF (oF THEOREM C’). Suppose that the p-harmonic map u is not a
constant map, then Lemma 1 (with the assumption (3.20) on f) implies that the
p-energy of u must be infinite. Then, similar to the proof of Theorem B’, we
can obtain an upper bound for the growth rate of E,(B(R)):

1
E,(B(R)) := —J |dul?v, < C{(n(R)) + Lu})} - R®. (3.21)
P JB(R) R?
Now, define a family 7, : (R™, fgo) — (N, h) of maps as V;(x) := u(tx), for
xeR™ >0 and set

®(R,1) = 1J dV,[’dx,  for R > Ry. (3.22)
P Ja(r)\5(r))
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Then we know from (2.5) that

0
E(D(R’ 1)

> 0. (3.23)
=1

On the other hand, re-parameterizing the integral (3.22) and calculating
LD(R,1),_, directly, we get

L I R R T
ot —1 P Josr P Jonry)
_ J fm—p-)2 (m - P)
B(R)\B(R)) 2
of ou* oub\"*?

where, we denote B(f,u, Du) :f(’”‘f’)/z(x)(haﬁ(u)%%)p/z. (3.24) together
with (3.1) implies that
0

acb(R, 1)

< —ed(R, 1) + Riqs(& 1) - R J B(f,u, Du)og. (3.25)
=1 dR OB(R))

Set H, = R, IEB(RI)B(f, u, Du)og, then (3.23) and (3.25) yield

d
R—®(R,1) —ed(R,1) — H .
dR(7) 6(7) IZO

By setting Hy = —¢ IB( R])ep(u)ug + &¢H, the last inequality is rewritten as
1 ! 1
RYE,(B(R) +Hy p — &0 Ey(B(R) +—Hy p 20,
and then, for all R > R, we have
1 /

{RE <E,,(B(R)) +8H0) } > 0.

Since E,(B(R)) — oo as R — oo, there exists Rs > R; such that
1 1
{R‘a (E,,(B(R)) + EH(])} > {Rs‘a (E,,(B(Rs)) +EHO)} >0

holds for R > Rs. Therefore

E,(B(R)) +%H0 > ¢ (u)R®  for R> Rs, (3.26)
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which contradicts to (3.21). This contradiction implies Theorem C’ and then
Theorem C. O
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