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ABSTRACT. We determine all the caloric morphisms for rotation invariant (spherically
symmetric) metrics, in the case where the space dimension is greater than two. We also
treat the caloric morphisms on two dimensional spheres and hyperbolae.

1. Introduction

Let (M,g) be an n-dimensional Riemannian manifold. We denote by 4,
the Laplace-Beltrami operator of (M, g), which is given in a local coordinate

(xi)?:l by

1 0 o ou
apu=3" = (Vo 52 )
jzzl Vgl oxi 0%
where |g| = det(g;) and (¢7) denotes the inverse matrix of (g;).
We consider the heat equation on Riemannian manifolds.

DermniTION 1. A C*-function u(¢,x) defined on an open set D < R x M
is said to be caloric if u satisfies the heat equation

ou

0
on D. We call H, ::5_4" the heat operator on R x M.

In the following, we consider the caloric morphisms, the transformations
which preserve the caloric functions. The precise definition is the following:

DeriNITION 2. Let (M, g) and (N,h) be Riemannian manifolds, f a C*-
mapping from a domain D c R x M to R x N and ¢ a strictly positive C*-
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funcion on D. The pair (f,¢) is said to be a caloric morphism if f and ¢
satisfy the following conditions:

(1) f(D) is a domain in R x N;

(2) For any caloric function u defined on an open set £ in R x N, the
function ¢(¢,x)(uo £)(t,x) is caloric on f~!(E).

The Appell transformation

D ={(t,x);t>0,xeR"}, f(z,x):<_lv£>v p(t, x) = (dut) "2/

is the most important example of the caloric morphism on R”. The Appell
transformation plays important roles, especially in the study of positive
solutions, because it preserves positive solutions of the heat equation.

In [7], we defined the notion of caloric morphism on manifolds as a
generalization of the Appell transformation, and obtained a characterization
theorem of caloric morphisms. Note that the well-known harmonic morphism
is considered as the case where ¢ is constant 1 (see e.g. [2] and [3]).

In [5], Leutwiler determined all the caloric morphisms for Euclidean
space. He proved that every caloric morphism from a domain of R""! into
R is a composition of the Appell transformation and parabolic similarities:

u(t,x) — u(2*t+d, \Rx + v),

where 2 >0, d e R, R is an orthogonal matrix of degree n, and ve R".

This paper treats the following problem: determine all the caloric mor-
phisms for rotation invariant (spherically symmetric) metrics on R" (n > 2)
regarded as a Riemannian manifold.

Some partial results on this problem were obtained in [8]. We restricted
ourselves there to consider radial metrics g = p(|x|)go, where g is the Euclidean
metric of R”, and we considered the caloric morphism whose mapping f is of
form

(1) f(tx) = (fo@),v(@O)R(@)x)  or  f(t,x) = <fo(l)7V(l)R(1) &)
with R(f) € O(n), where O(n) denotes the totality of orthogonal matrices. We
have determined p, f and ¢ in this case.

The purpose of this paper is to solve the problem completely for rotation
invariant metrics in the case n > 3. Clearly, if the metric is rotation invariant,
then the time translations and the space rotations are caloric morphisms, which
we call trivial caloric morphisms. In the course of determining all the caloric
morphisms, it turns out that if a rotation invariant metric admits a non-trivial
caloric morphism, then not only the mapping but also the metric is much
restricted.
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THEOREM 1. Let g be a rotation invariant metric on M = R"\{0} with
n > 3. If there exists a non-trivial caloric morphism (f, ) defined on a domain
D cR x M into Rx M, then g satisfies one of the following up to isometry:

(a) g=p(x)ge  with p(r(t)r) =

where A(t) and v(t) are positive C* functions. In this case, the space component
S has the form f'(x) = v(t)R(t)x for each t, where R(t) € O(n) is a C* function
of t.

. v(t A
(v o=r(hanwith p(*) =20 0,

r

where A(t) and v(t) are positive C* functions. In this case, the space component

f! has the form f'(x)= v(t)R(l)i2 for each t, where R(t) e O(n) is a C*
function. x|

© 1
c 9="—"7"7390;
(X" +49)
where q € R (For the precise definition of the space component and the trivial
caloric morphism, see §2 and §3 below, respectively.)

In the above three cases (a), (b) and (c), the cases (a) and (b) have been
already studied in [8]. We study the case (c) in §5 in this paper, where we
treat constant curvature manifolds including 2-dimensional case. It is remark-
able that the results of the semi-riemannian radial metric case are applied to the
study of the case (c).

After that, we determine all the caloric morphisms for rotation invariant
metrics in Theorems 2 and 3, stated in §6.

2. Preliminaries

In this section, we list necessary results on caloric morphisms for later use.
For each mapping f: R x M — R x N, we sometimes need to separate
the mapping f into the time component fy and the space component f' as

ft,x) = (fo(t,x), f'(x),  folt,x) eR, f(x)eN.
The following theorem characterizes the caloric morphism.

THEOREM A (|7, Theorem 2.1]). Let (M,g) and (N,h) be Riemannian
manifolds.  For a smooth mapping f from a domain D < R x M into R x N
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such that f(D) is a domain and for a positive smooth function ¢ defined on D,
the following three conditions are equivalent:

(1) (f,9) is a caloric morphism;

(2) There exists a positive smooth function A on D such that

Hy(¢-uo f)(t,x) = A, x)p(t, x) (Hyu) o f)(2; x)

holds for every C>-function u on f(D);
(3) (f,9) satisfies the following equations:
(E-1)  Hyp =0,
(E2) Hyf = (e, log . grad, 1) + S g(grad, i, grad, £)(I'% o ')
(a=1,...,n), Biy=1
(E-3) grad, fg =0, which means fy is a function of t,

(B4) g(grad, £ grad, ) = L0 o 1) (p=1..m)

where we denote by grad, the gradient operator on M, we write f'= (f{,..., )

Ohy  Oh oh
in a local coordinate (x,),_, of (N,h), and ry = Z h“l(a /+6_/” _ q_/’?’) is
the Christoffel symbol of (N,h). X 0 0N

REMARK 1. Please note that in paper [7] the equation (E-2) has been
miswritten. As a matter of fact, the sign of the second term of the right hand
side in the equation (E-2) of Theorem 2.1 of [7] was incorrect. We have
corrected it in the above.

REMARK 2. By (E-3) in the above theorem, f; depends only on ¢ for
each caloric morphism. Hence 4 = f; and 2 also depends only on ¢. So, we
can write the mapping f in the form

f(l,X):(f()(l),ft(x)), f(.):R_’vat:M_’N-

ExamPLE 1. (Isometry) An isometry induces a caloric morphism. Let
1: M — N be an isometry. Then (z,x)— (f,1(x)) is a caloric morphism:
Rx M — Rx N, where p = 1.

(Time scaling) For a constant p > 0, the time scaling (¢, x) — (pt, x) gives
a caloric morphism from a manifold with metric g to that with pg, where
p=1.

(Time translation) For d € R, time translation (¢, x) — (t+d, x) is always
a caloric morphism, where ¢ = 1. We call it the identity if d = 0.

We use the direct product of caloric morphisms, stated in [7, Proposition
2.1]. We summarize here some methods to construct new caloric morphisms.

ProposITION 1. (Direct product) Let I be an interval of R and Q; be a
domain of a manifold M; (j=1,2). Consider two caloric morphisms (f,p)
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from I x Q1 to Rx My and (h,\) from I x Q, to R x My such that fy = hy.
We consider the map (fo, f',h") from I x Q) x Q5 to R x M; x My:

(t,x, ) = (fo(0), f1(x), 1 (»),
and the function gy on I x Q1 X Q5

(%, ) = o(t,x)Y(t, ).

Then the pair ((fo, f',h"), o) is a caloric morphism. We remark that the
assertion also holds for semi-Riemannian manifolds, the manifolds with metrics
not-necessarily positive definite. (See [7, Theorem 2.1].)

(Composition) The composition of caloric morphisms is also a caloric
morphism. Let M, N and L be Riemannian manifolds and D, E be domains
in Rx M, R x N, respectively. If (f,9): D —RXxN and (h,}y): E—R x L
are caloric morphisms such that f(D) < E, then we can make a caloric morphism
(F,®): D — R x L by putting (F,®) = (ho f,p- (o f)).

(Conjugate by isometry) Let 1: M — N be an isometry. Then for each
caloric morphism (f,p) from E<R XN to Rx N, the pair (f*,¢*) with

f*(tax) - (fo(l),171 Oft 0 l(x))a go*(tﬂ X) = (ﬂ([,l(x))

is a caloric morphism for R x M.
(Conjugate by time scaling) A time scaling corresponds to a dilatation of
the metric. For a fixed p >0, we put

Apf(1,x) = (pfolt/p), 7 (x)), Ayt x) = p(1/p, ).

Then, (A,f,App) is a caloric morphism for the metric pg if (f,¢) is a caloric
morphism for the metric g.

3. Rotation invariant metrics on R"\{0}

In the following, we consider caloric morphisms for rotation invariant
metrics on the Euclidean spaces. Let g be a rotation invariant metric on
M =R"\{0}. Here, “rotation invariant” means that the metric is invariant
under every orthogonal transformation R € O(n). Clearly, the Laplacian 4, is
also rotation invariant if g is rotation invariant. Hence for all C >0, d e R
and Ry € O(n), the pair (f,p) with

f(tvx) = (t+dv Rox), ¢(t>x) =C

is a caloric morphism for any rotation invariant metric. We refer to these
caloric morphisms as trivial caloric morphisms.
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A metric g is rotation invariant if and only if there exist positive smooth
functions g,(r) and g, (r) on (0,00) such that

g = wo(r)o + y (r)* (dr)’

by using the polar coordinate, where o denotes the surface metric of the unit
sphere in R".  When u,(r) = ru,(r), we say that g is a radial metric. In other
words, g = u,(r)2go where go = r26 + (dr)* denotes the Euclidean metric.

As a matter of fact, any rotation invariant metric is isometric to a radial
metric by a change of variables.

LemMmA 1.  Any rotation invariant metric is, at least locally, isometric to a
radial metric.

PrOOF. Let g be a rotation invariant metric. Using the polar coordinate,
we write

9= po(r)’o + () (dr)’

with some positive smooth functions g, and x,. By the change of variable

s(r) = exp J:ﬂl(f)/ﬂo(f)dfa

we have
2
9=l + 8 D)7 = (90 + @9)
where we put p(s) = uo(r(s))*s 2. O

Therefore we may assume that g is a radial metric of form g = p(r)go.

4. Proof of Theorem 1
To prove Theorem 1, we prepare a technical lemma.

LemmA 2. (i) Let U be a non-empty open set in R". Assume that n > 2
and C' functions u(s) and v(s) satisfy the equation

ullx—a) (k) =0,  xeU

with some a€R". If v is not constant on {|x|*;x € U}, then a = 0.
(i) Let U be a non-empty open set in R". Assume that n >3 and C!
Sunctions p(s1,s>) and v(s) satisfy the equation

alle—al? [x=b") +v(x) =0,  xeU
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with some a,beR”, a#b. If v'(|xo|*) #0 at some point xo € U, then there
exist constants o, and B with o> + > #0 such that

(2) aa+pb =0

ou op 2 2y _
3) (@m ﬁmJUX - =0,  xeU.

Proor. (i) Differentiating the both sides of the given equation by x; and

x; (i # j), we have
{Cn—WMHx—m%+ww%ﬂ%=o
(g — a(fx — a) + x'(x]%) = 0.

Taking x e U so that v/(|x|?) # 0, we see

a;  Xj . X;i—d; Xj —0

aj Xj Xj — aj Xj

for all i # j. Hence a and x are linearly dependent for all x in the non-empty
open set {xe U;v/(|x|?) #0}. This implies a = 0.

(i) Differentiating the both sides of the given equation by xi,...,x,, we

have

o u

e (|x —af?,[x = b|? )(x—a)+a—(|x—al e = %) (x = b) +v'(|x*)x = 0,
ie.,

6/1 ou du  ou

4 —b= — .
( ) 5S1 a+ 052 (651 + 552 )X

Suppose that

Vo= {xe U <§S” T ‘”‘)qx— al?,|x — b?) +v/(|x]?) # o}

is not empty. Then the above equality (4) implies that every x in an n-
dimensional non-empty open set V' is a linear combination of two vectors «
and b. This is a contradiction because n > 3. Therefore (ﬁ—ﬁfﬂv,)(le al?,
Ix —b|*) +v/(]x]*) =0 on U, and hence

a ja)
() a-(x—afilx=bP)a+ s (x—al’ [x=b})b=0,  xeU

6S1 aSZ
by (4). Putting o = ”‘ (|0 — al*,|xo — b|*) and g = (|xo —al*, |xo — b|? )
obtain (2). Also (oc [)’) (0,0) holds, because the assurnptlon V' (|x0)?) # 0
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implies o+ f = (5—;‘1+?—”)(|x0 —al?,|xo — b]*) = —V/(|x0|*) #£0. Since a#b

082

and (a,f) # (0,0), (3) follows from (2) and (5). O
Now we shall prove Theorem 1.

ProoOF OF THEOREM 1. By Lemma 1, we may assume that g is a radial
metric g = p(|x|)go with some positive smooth function p. First, we note that
if p is constant, then g is the Euclidean metric, which corresponds to the
case (c) with ¢ =0 by inversion x — x/|x|>. Next we assume that p is not
constant. Then the equation (E-4) implies

1 n afdl(x) Gfﬁ’(x) . ; e
© p(|x|); 0x; 0X; _A(t)(s“ﬁp(‘ft(x)b’ B=1,...n,

where A(7) = f;(t). The equality (6) shows that the space component f* is
conformal with respect to the Euclidean metric for each . We fix ¢ in the rest
of the proof. By Liouville’s theorem on conformal mappings (see [1, pp. 222—
227]), every conformal mapping on R”" (n > 3) is a similarity

X +— VRx + v, (v>0,Re O(n),veR")
or a composition of a similarity and an inversion with respect to a sphere

X —d
X —

5 +a (aeR").
[x —a

Then f’(x) has the form

or

where v=v(f) >0, R=R(f) € O(n) and a =a(t) eR", b =b(r) eR".
If f'(x) =vR(x —a), then (6) implies

(7) v2p(vlx — al) = 2p(|x]).

Then by (i) of Lemma 2, we have a =0 because p is assumed to be non-
constant. Hence

S0 =Ry and pOll) = ().

Thus we have (a).
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We proceed to the latter case f'(x) =vR <Laz+b>. Then by dif-
ferentiation we have x —d

n a t 2
Z(f“—(x)> :v2|x—a|_4, a=1,...,n
'\ O

First, we assume that » =0. Then (6) implies

V2 V
=1
|x_m“(u—a0 p(1x])

and hence, (1) of Lemma 2 shows « =0. Therefore f'(x) :vR% and

2
x|
p(ﬁ) M:C‘ p(|x]) hold. Thus we have (b).

Next, we assume that b # 0. Then (6) implies

v a3
’ =1
Q | = )
b
because | |+\x alb| = m—&-\b\(x If we put u(s,s) =

(Wbl Y2) and 50) = ip(y). then

Vs) e
ﬂox—d AT )—mufw=
Since p is not constant, (ii) of Lemma 2 shows that aa + f| a — B | ) 0 and

rx;” B — 0 with some (x,f) # (0,0). By the definition of x, we obtain

052 081

S et R )

VS
VS

, we have

(@ wo<wmm=

If f =0, then p’(r) = 0 holds for all r, which is a contradiction because p is not
2|b|?

p

Putting r = v|b| =

constant. Putting ¢ = , we have the equation

4r
2 +gq

p'(r) + p(r)=0
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Therefore p(r) = 5 5 with some p > 0, and hence g = %go, which
is isometric to (r* +9) (|x" +4)
1 g
S —
(Ix* +4/p)?
Thus we have (c) and this completes the proof. O

5. Caloric morphisms on spheres and hyperbolae

In this section, we treat constant curvature cases, which correspond to (c)
in Theorem 1. Only in this section, we let n > 2.
We begin with the following lemma.

LemMmA 3. Let (M,g) be a Riemannian manifold and (f,p) be a caloric
morphism defined on a domain D =« R x M. If (M,g) has a non-zero constant
curvature, then f) =1 and the space component ['(x) is a local isometry for
each t.

ProoF. By (E-4) of Theorem A,

ifo
g(grad, £, grad, f) =—=(1)(g™ o /).
Since (M,g) has a constant curvature x # 0, the above equality implies

K= %(Z)K.

Therefore fj =1 and then
g(grad, f;, grad, f) =g o f",
which shows that /! is an isometry for each ¢. O
First we consider the case where M is the n-dimensional sphere
S={xeR"hxi+ - +x2 =1}

PropoSITION 2. Let (f,¢) be a caloric morphism defined on a domain
DcRxS. Then

FtX) = (t+d,Rox)  and  o(t,x) = C.
where d and C are constants with C >0 and Ry € O(n+1).

ProorF. By Lemma 3, fo(#) =¢+d and f'(x) = R(¢)x where d e R and
R(t) e O(n+1). To complete the proof, it suffices to show that R(¢) is
constant.
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Consider the direct product (f*,¢*) of (f,p) and a time translation
induced by fy(r) on RxR. More precisely, let S*=S x R be the direct
product manifold and define the pair of the mapping f/*: D x Rc R x S* —
R x S* and the function ¢* on D x R by

[ t,x,r)=(t+d, f1(x),r) = (t+d, R(t)x,r) and " (t,x,r) = p(t,x).

Note that the space component f*' of f* is f*(x,r) = (R(¢)x,r). Then
(f*,9*) is a caloric morphism defined on the domain D x R =« R x S*.
Now consider the mapping 7:S* — R"'\{0}

r — y
Y= i) = 'x, zl<y>=(|7,1og|y).

By 1, the product metric g* := G+ dr> of S*, where G denotes the induced
metric of S in R"*!, corresponds to the radial metric

s72(s%G + ds*) = s%g;

of R"™\{0} in the polar coordinate of y-space s=|y|, where g; is the
Euclidean metric of R"*!.  The mapping 1 gives the isometry from the cylinder
{(x,r) eR"™*x? + ... +x2, =1} to the punctured space {yeR""';y #0}
with metric \y|_2g3‘. Then the conjugate (f**,¢**) of (f*,¢*) by 17! is given
by

(1t y)=(t+d, (1o f*or () = <l+d’l(f*t<%|’logy|>)>

<z +d,1 (R(t) ﬁ : logy|>) = (Z +d, S PIR() ﬁ)

= (t+d,R(t)y).

On the other hand, (f**,¢*) is a caloric morphism for the radial metric
s72gs. Since n+1 >3, this corresponds to Case 2-a of Theorem 1 of [8]:

*(t,y) = (t+d,ce“Roy), “*(t,y)=C (1/2)pa o 1 a’t
Y Y ® y Y p 417
with p=1, ¢=1 and a =0, or Case 4:

St y) = (At +d,vRyy), ¢ (t,y)=C

with A =1 and v=1, or Case 6:

S y) =@ +d Roy), 97 (,y)=C,
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where Ry € O(n+1). Hence R(¢) is a constant matrix Ry. This completes the
proof. O

Next we consider the case where M is the hyperbola

Hi={xeR™ () = —xf = —xi 4 x = 1}
in the semi-Euclidean space R!”, which is the real hyperbolic space. Here
R"" denotes R""!" with semi-Euclidean metric g% := —dx? — -+ —dx2 +dx2, .

PropoSITION 3. Let (f,¢) be a caloric morphism defined on a domain
DcRxH. Then

f(t,x) = (t+d, Rox) and p(t,x) = C,

where Ry € O(1,n) and d and C are constants with C > 0. Here

-1, 0
O(1,n) ={Re M(n+1,R);'RJ; ,R=J; ,} with Ji :( ,0" 1)

is the Lorentz group.

Proor. The proof is similar to that of Proposition 2. For the com-
pleteness, we enter into details. By Lemma 3, f3(7) = 1+ d and f'(x) = R(?)x,
where d e R and R(¢) € O(1,n). We need to show that R(¢) is constant.
Consider the direct product of (f,p) and a time translation of R x R, i.e.,
let H* =H x R be the direct product and define the pair of the mapping
f*:DxRcRxH"— RxH" and the function ¢* on D x R by

fHt,x,r) = (t+d, f1(x),r) = (t+d,R(D)x,r) and o (t,x,r) = o(t, x).

Then (f*,¢*) is a caloric morphism defined on the domain D x R = R x H™.
Now consider the mapping 7: H* — {p e RV (y> > 0} : y =1(x,r) = e'x, by
which the product metric g* :=¢6_; +dr? of H* corresponds to the radial
metric

5725?61 +ds?) =529,

on R in the polar coordinate of y-space s= (y)>. Then the conjugate
(f**,9") of (f*,9*) by 17! is f**(¢,y) = (t+d,R(t)y). On the other hand,
(f**,9*) is a caloric morphism for the radial metric s~2¢g*,. The assumption
n+ 1> 3 implies that this corresponds to Case 2-a of Theorem 1 in [9]:

* a. *k a 1
f7(ty) = (t+d,ce“Roy), ¢ (t,y) = C{pHIAP eXP(ZP“ZZ)
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with p=1, c=1 and a =0, or Case 4-a:

St y) = (At +d,vRyy), ¢ (t,y) =C

with A =1 and v=1, or Case 5:

f**(lvy):(t+d7R0y)v ¢**(tay):C7

where Ry € O(1,n). Therefore, R(¢) is a constant matrix Ry. This completes
the proof. ]

6. Determination of caloric morphisms

Now, we state our main theorem. Here gy denotes the Euclidean metric
on R”".

THEOREM 2. Let g be a rotation invariant metric on M = R"\{0} with
n>3. If (f,p) is a caloric morphism defined on a domain of R x M, then one
of the following cases occurs, up to isometry of M, time translation, constant
multiple of ¢ and the conjugate by isometry and time scaling.

Case (a-1). g = |x|%gy with some constant q € R\{-2}, and

1 X 1
f(l7x) = <_%7W>7 (p(l,x) = Mn/z (28

where a > 0 is a constant.

|x‘q+2

(g+2)°t]

CaSE (a-2). g = |x| g0, f(1,x) = (£, ce”x) and ¢(1,x) = |x|"*e“"/*, where
a,ce R with ¢ > 0.

Case (a-3). g =p(x|)go, where p(r) satisfies p(vr) =vip(r) with some
constants v >0 and q, and f(t,x) = (vi*21,vx), ¢(t,x) = L

Cast (b-1). g =|x| *go and

f(t,x) = (z, ﬁ) o(t,x) =

where a,c € R with ¢ > 0.

Cast (b-2). g =p(|x)go, where p(r) satisfies p(v/r) = (Ar*/v*)p(r) with
some positive constants v and 1, and f(t,x) = (At,vx/|x|?), ¢(t,x) = 1.

! 590 and f(t,x) = (t,x), o(t,x) = 1 (identity).

C 1), g=———
ASE (c-1). ¢ (|x|2+1)
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Cask (c-2). ¢ :ﬁgo and f(t,x) = (t,x), p(t,x) =1 (identity).
X% =

Cast (c-3). g=go and

, a? ax 1 x|
f(l,X):<_T;7>a ¢(l,X):W eXp<_Z>a

or
2
f(t,x) = (a®t,a(x + tw)), o(t, x) = exp (%H—%v . x),

where a # 0 is a constant and v e R", and where v - x denotes the usual inner
product of v and x in R".

ProOOF. Our starting point is Theorem 1. We have three cases (a), (b)
and (c) in Theorem 1. The cases (a) and (b) in Theorem 1 have already been
treated in the paper [8] of one of the authors. Thus the remaining case is (c).
In the case ¢ =0 in (c), the metric g = |x| *go is isometric to the Euclidean
metric go by inversion x — |x| ?x. The Euclidean case was solved by Leutwiler
(5]

After the following preparation, the case g # 0 is reduced to Proposition 2
or 3 in §5 according as ¢ > 0 or ¢ < 0. In the case ¢ > 0 in (c), the metric g =
(Ix|* +¢) *go is the metric induced from the sphere S, := {3} + -+ y2,, =
1/4¢} in the Euclidean space R""! by the mapping

2
15:x»—>< \/azx, ( q+|x)2>:M—>Sq.
q+Ix" 2y/4q(q +[x]%)

In the case ¢ <0 in (c), the manifold (M,g) is isometric to the hyperbola
H,:={-y? - —y2+ 2, =1/4¢} in the semi-Euclidean space R"" by the
mapping

zh:x»—>< \/m X (\q|+|x|2) ):M—>Hq.

lal = 1xI* ™" 2+/1al (Il = IxI*)

In both cases in the above, by the conjugate by time scaling in Proposition 1,
we can choose |q| =1/4 (or |¢| =1). O

Note that semi-Riemannian metrics actually appear in the case g < 0.

As is remarked in §3, every rotation invariant metric is represented as
a radial metric. For reference, we restate our main theorem in radial metric
form without any normalization.
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THEOREM 3. Let g =p(|x|)go be a radial metric on M = R"\{0} with
n>3. If (f,9) is a non-trivial caloric morphism defined on a domain of
R x M, then one of the following cases occurs:

Cast (a-1). p(r) = pr? with some constant q € R\{-2}, p >0, and

ct+d Rox
t =
UL (at+b’|at+b|2/(q+2)>’

palx|?
(q+2)*(at + b)

o(t,x)

)

e
\at + b|"/?

where constants a,b,c,d,C e R satisfy bc —ad =1, C >0 and Ry € O(n).

Cast (a-2). p(r) = pr2

with some constant p > 0 and
F(t,3) = (14 b,ceRox),  olt, x) = Clx|"Zer.

CasE (a-3). p(r) satisfies p(vr) = vip(r) with some constants v >0, q € R,
and

f(t,x) = (v +d,vRox),  9(1,x) = C,
where C >0, d eR and Ry € O(n).

Case (b-1). p(r) = pr=? with some constant p >0 and

R 1 2
St,x) = <z+d, —x> plt,x) = C— P/t

ol |2

where a,c,d,C e R with ¢,C >0 and Ry € O(n).

Cask (b-2). p(r) satisfies p(v/r) = (Ar*/v*)p(r) with some positive constants
v, A, and

R
f(z7x):</1z+d,—v| rzx> p(t,x) = C
X
where C >0, d e R and Ry € O(n).

Cask (c-1).  p(r) = p(rX+q) % with ¢ > 0, and (f, ) is a caloric morphism
induced by a time translation and an isometry Fy which is a composition of
inversions:

f(ta x) = (t+ daFO(x))v w([a )C) =C
where C >0 and d e R.
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CASE (c-2). p(r) = p(r2 4 q) % with ¢ < 0, and (f,¢) is a caloric morphism
induced by a time translation and an isometry Fy which is a composition of
inversions:

f(t,x) = (t+d, Fo(x)), p(t,x)=C
where C >0 and d € R.

CasE (c-3). g = pgo and

ct+d Ro(x+tw+w)
t =
S(8:x) <a1+b’ at+b ’
plaRox + aw — bo|?

—— > exp|— , a#0,
|at + b|"/? 4a(at +b)

o1, x) =

[P _

Cexp|p 4l+2v Rox ||, a=0,

where constants a,b,c,d,C e R satisfy bc—ad=1, C>0, and v,weR",
RO € 0(]1)

Finally, we remark that when n =2, we have not determined the caloric
morphism for all rotation invariant metrics.

Acknowledgments

The authors would like to express our gratitude to the referee and the
editors for their valuable comments.

References

[1] M. Berger, Geometry I, Springer-Verlag, Berlin, 1987.

(2] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier,
Grenoble 28 (1978), 107-144.

[3] B. Fuglede, Harmonic morphisms between semi-riemannian manifolds, Ann. Acad. Sci.
Fenn. Math. 21 (1996), 31-50.

[4] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J.
Math. Kyoto Univ. 19 (1979), no. 2, 215-229.

[5] H. Leutwiler, On Appell transformation, Potential theory, J. Kral, J. Lukes, I. Netuka,
J. Vesely eds., Plenum, New York, 1988, 215-222.

[6] K. Shimomura, The determination of caloric morphisms on Euclidean domains, Nagoya
Math. J. 158 (2000), 133-166.

[7] M. Nishio, K. Shimomura, A characterization of caloric morphisms between manifolds,
Ann. Acad. Sci. Fenn. Math. 28 (2003), 111-122.



Caloric morphisms for rotation invariant metrics 331

(8] K. Shimomura, Caloric morphisms with respect to radial metrics on R"\{0}, Math. J.

Ibaraki Univ. 35 (2003), 35-53.
[9] K. Shimomura, Caloric morphisms with respect to radial metrics on semi-euclidean spaces,

Math. J. Ibaraki Univ. 37 (2005), 81-103.

Masaharu Nishio
Department of Mathematics
Osaka City University
Sumiyoshi, Osaka 558-8585, Japan
E-mail: nishio@sci.osaka-cu.ac.jp

Katsunori Shimomura
Department of Mathematics
Ibaraki University
Mito 310-8512, Japan
E-mail: shimomur@mx.ibaraki.ac.jp



