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Caloric morphisms for rotation invariant metrics
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Abstract. We determine all the caloric morphisms for rotation invariant (spherically

symmetric) metrics, in the case where the space dimension is greater than two. We also

treat the caloric morphisms on two dimensional spheres and hyperbolae.

1. Introduction

Let ðM; gÞ be an n-dimensional Riemannian manifold. We denote by Dg

the Laplace-Beltrami operator of ðM; gÞ, which is given in a local coordinate

ðxiÞni¼1 by

Dgu ¼
Xn
i; j¼1

1ffiffiffiffiffiffi
jgj

p q

qxi

ffiffiffiffiffiffi
jgj

p
gij qu

qxj

� �
;

where jgj ¼ detðgijÞ and ðgijÞ denotes the inverse matrix of ðgijÞ.
We consider the heat equation on Riemannian manifolds.

Definition 1. A Cy-function uðt; xÞ defined on an open set DHR�M

is said to be caloric if u satisfies the heat equation

qu

qt
� Dgu ¼ 0

on D. We call Hg :¼
q

qt
� Dg the heat operator on R�M.

In the following, we consider the caloric morphisms, the transformations

which preserve the caloric functions. The precise definition is the following:

Definition 2. Let ðM; gÞ and ðN; hÞ be Riemannian manifolds, f a Cy-

mapping from a domain DHR�M to R�N and j a strictly positive Cy-
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funcion on D. The pair ð f ; jÞ is said to be a caloric morphism if f and j

satisfy the following conditions:

(1) f ðDÞ is a domain in R�N;

(2) For any caloric function u defined on an open set E in R�N, the

function jðt; xÞðu � f Þðt; xÞ is caloric on f �1ðEÞ.
The Appell transformation

D ¼ fðt; xÞ; t > 0; x A Rng; f ðt; xÞ ¼ � 1

t
;
x

t

� �
; jðt; xÞ ¼ ð4ptÞ�n=2

e�jxj2=4t

is the most important example of the caloric morphism on Rn. The Appell

transformation plays important roles, especially in the study of positive

solutions, because it preserves positive solutions of the heat equation.

In [7], we defined the notion of caloric morphism on manifolds as a

generalization of the Appell transformation, and obtained a characterization

theorem of caloric morphisms. Note that the well-known harmonic morphism

is considered as the case where j is constant 1 (see e.g. [2] and [3]).

In [5], Leutwiler determined all the caloric morphisms for Euclidean

space. He proved that every caloric morphism from a domain of Rnþ1 into

Rnþ1 is a composition of the Appell transformation and parabolic similarities:

uðt; xÞ 7! uðl2tþ d; lRxþ vÞ;

where l > 0, d A R, R is an orthogonal matrix of degree n, and v A Rn.

This paper treats the following problem: determine all the caloric mor-

phisms for rotation invariant (spherically symmetric) metrics on Rn (nb 2)

regarded as a Riemannian manifold.

Some partial results on this problem were obtained in [8]. We restricted

ourselves there to consider radial metrics g ¼ rðjxjÞg0, where g0 is the Euclidean

metric of Rn, and we considered the caloric morphism whose mapping f is of

form

f ðt; xÞ ¼ ð f0ðtÞ; nðtÞRðtÞxÞ or f ðt; xÞ ¼ f0ðtÞ; nðtÞRðtÞ
x

jxj2

 !
ð1Þ

with RðtÞ A OðnÞ, where OðnÞ denotes the totality of orthogonal matrices. We

have determined r, f and j in this case.

The purpose of this paper is to solve the problem completely for rotation

invariant metrics in the case nb 3. Clearly, if the metric is rotation invariant,

then the time translations and the space rotations are caloric morphisms, which

we call trivial caloric morphisms. In the course of determining all the caloric

morphisms, it turns out that if a rotation invariant metric admits a non-trivial

caloric morphism, then not only the mapping but also the metric is much

restricted.
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Theorem 1. Let g be a rotation invariant metric on M ¼ Rnnf0g with

nb 3. If there exists a non-trivial caloric morphism ð f ; jÞ defined on a domain

DHR�M into R�M, then g satisfies one of the following up to isometry:

g ¼ rðjxjÞg0 with rðnðtÞrÞ ¼ lðtÞ
nðtÞ2

rðrÞ;ðaÞ

where lðtÞ and nðtÞ are positive Cy functions. In this case, the space component

f t has the form f tðxÞ ¼ nðtÞRðtÞx for each t, where RðtÞ A OðnÞ is a Cy function

of t.

g ¼ rðjxjÞg0 with r
nðtÞ
r

� �
¼ lðtÞr4

nðtÞ2
rðrÞ;ðbÞ

where lðtÞ and nðtÞ are positive Cy functions. In this case, the space component

f t has the form f tðxÞ ¼ nðtÞRðtÞ x

jxj2
for each t, where RðtÞ A OðnÞ is a Cy

function.

g ¼ 1

ðjxj2 þ qÞ2
g0;ðcÞ

where q A R. (For the precise definition of the space component and the trivial

caloric morphism, see § 2 and § 3 below, respectively.)

In the above three cases (a), (b) and (c), the cases (a) and (b) have been

already studied in [8]. We study the case (c) in § 5 in this paper, where we

treat constant curvature manifolds including 2-dimensional case. It is remark-

able that the results of the semi-riemannian radial metric case are applied to the

study of the case (c).

After that, we determine all the caloric morphisms for rotation invariant

metrics in Theorems 2 and 3, stated in § 6.

2. Preliminaries

In this section, we list necessary results on caloric morphisms for later use.

For each mapping f : R�M ! R�N, we sometimes need to separate

the mapping f into the time component f0 and the space component f t as

f ðt; xÞ ¼ ð f0ðt; xÞ; f tðxÞÞ; f0ðt; xÞ A R; f tðxÞ A N:

The following theorem characterizes the caloric morphism.

Theorem A ([7, Theorem 2.1]). Let ðM; gÞ and ðN; hÞ be Riemannian

manifolds. For a smooth mapping f from a domain DHR�M into R�N
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such that f ðDÞ is a domain and for a positive smooth function j defined on D,

the following three conditions are equivalent:

(1) ð f ; jÞ is a caloric morphism;

(2) There exists a positive smooth function l on D such that

Hgðj � u � f Þðt; xÞ ¼ lðt; xÞjðt; xÞððHhuÞ � f Þðt; xÞ

holds for every C2-function u on f ðDÞ;
(3) ð f ; jÞ satisfies the following equations:

(E-1) Hgj ¼ 0;

(E-2) Hg f
t
a ¼ 2gðgradg log j; gradg f t

a Þ þ
Pn

b; g¼1

gðgradg f t
b ; gradg f t

g ÞðG a
bg � f tÞ

ða ¼ 1; . . . ; nÞ;
(E-3) gradg f0 ¼ 0; which means f0 is a function of t,

(E-4) gðgradg f t
a ; gradg f t

b Þ ¼
df0

dt
ðtÞðhab � f tÞ ða; b ¼ 1; . . . ; nÞ;

where we denote by gradg the gradient operator on M, we write f t ¼ ð f t
1 ; . . . ; f

t
n Þ

in a local coordinate ðxaÞna¼1 of ðN; hÞ, and G a
bg ¼

Pn
l¼1

1

2
hal qhgl

qxb
þ qhbl

qxg
� qhbg

qxl

� �
is

the Christo¤el symbol of ðN; hÞ.

Remark 1. Please note that in paper [7] the equation (E-2) has been

miswritten. As a matter of fact, the sign of the second term of the right hand

side in the equation (E-2) of Theorem 2.1 of [7] was incorrect. We have

corrected it in the above.

Remark 2. By (E-3) in the above theorem, f0 depends only on t for

each caloric morphism. Hence l ¼ f 0
0 and l also depends only on t. So, we

can write the mapping f in the form

f ðt; xÞ ¼ ð f0ðtÞ; f tðxÞÞ; f0 : R ! R; f t : M ! N:

Example 1. (Isometry) An isometry induces a caloric morphism. Let

i : M ! N be an isometry. Then ðt; xÞ 7! ðt; iðxÞÞ is a caloric morphism:

R�M ! R�N, where j ¼ 1.

(Time scaling) For a constant p > 0, the time scaling ðt; xÞ 7! ðpt; xÞ gives
a caloric morphism from a manifold with metric g to that with pg, where

j ¼ 1.

(Time translation) For d A R, time translation ðt; xÞ 7! ðtþ d; xÞ is always

a caloric morphism, where j ¼ 1. We call it the identity if d ¼ 0.

We use the direct product of caloric morphisms, stated in [7, Proposition

2.1]. We summarize here some methods to construct new caloric morphisms.

Proposition 1. (Direct product) Let I be an interval of R and Wj be a

domain of a manifold Mj ð j ¼ 1; 2Þ. Consider two caloric morphisms ð f ; jÞ
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from I �W1 to R�M1 and ðh;cÞ from I �W2 to R�M2 such that f0 ¼ h0.

We consider the map ð f0; f t; htÞ from I �W1 �W2 to R�M1 �M2:

ðt; x; yÞ 7! ð f0ðtÞ; f tðxÞ; htðyÞÞ;

and the function jc on I �W1 �W2:

ðt; x; yÞ 7! jðt; xÞcðt; yÞ:

Then the pair ðð f0; f t; htÞ; jcÞ is a caloric morphism. We remark that the

assertion also holds for semi-Riemannian manifolds, the manifolds with metrics

not-necessarily positive definite. (See [7, Theorem 2.1].)

(Composition) The composition of caloric morphisms is also a caloric

morphism. Let M, N and L be Riemannian manifolds and D, E be domains

in R�M, R�N, respectively. If ð f ; jÞ : D ! R�N and ðh;cÞ : E ! R� L

are caloric morphisms such that f ðDÞHE, then we can make a caloric morphism

ðF ;FÞ : D ! R� L by putting ðF ;FÞ ¼ ðh � f ; j � ðc � f ÞÞ.
(Conjugate by isometry) Let i : M ! N be an isometry. Then for each

caloric morphism ð f ; jÞ from EHR�N to R�N, the pair ð f �; j�Þ with

f �ðt; xÞ ¼ ð f0ðtÞ; i�1 � f t � iðxÞÞ; j�ðt; xÞ ¼ jðt; iðxÞÞ

is a caloric morphism for R�M.

(Conjugate by time scaling) A time scaling corresponds to a dilatation of

the metric. For a fixed p > 0, we put

Ap f ðt; xÞ :¼ ðpf0ðt=pÞ; f t=pðxÞÞ; Apjðt; xÞ :¼ jðt=p; xÞ:

Then, ðAp f ;ApjÞ is a caloric morphism for the metric pg if ð f ; jÞ is a caloric

morphism for the metric g.

3. Rotation invariant metrics on Rnnf0g

In the following, we consider caloric morphisms for rotation invariant

metrics on the Euclidean spaces. Let g be a rotation invariant metric on

M ¼ Rnnf0g. Here, ‘‘rotation invariant’’ means that the metric is invariant

under every orthogonal transformation R A OðnÞ. Clearly, the Laplacian Dg is

also rotation invariant if g is rotation invariant. Hence for all C > 0, d A R

and R0 A OðnÞ, the pair ð f ; jÞ with

f ðt; xÞ ¼ ðtþ d;R0xÞ; jðt; xÞ ¼ C

is a caloric morphism for any rotation invariant metric. We refer to these

caloric morphisms as trivial caloric morphisms.
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A metric g is rotation invariant if and only if there exist positive smooth

functions m0ðrÞ and m1ðrÞ on ð0;yÞ such that

g ¼ m0ðrÞ
2sþ m1ðrÞ

2ðdrÞ2

by using the polar coordinate, where s denotes the surface metric of the unit

sphere in Rn. When m0ðrÞ ¼ rm1ðrÞ, we say that g is a radial metric. In other

words, g ¼ m1ðrÞ
2
g0 where g0 ¼ r2sþ ðdrÞ2 denotes the Euclidean metric.

As a matter of fact, any rotation invariant metric is isometric to a radial

metric by a change of variables.

Lemma 1. Any rotation invariant metric is, at least locally, isometric to a

radial metric.

Proof. Let g be a rotation invariant metric. Using the polar coordinate,

we write

g ¼ m0ðrÞ
2sþ m1ðrÞ

2ðdrÞ2

with some positive smooth functions m0 and m1. By the change of variable

sðrÞ ¼ exp

ð r
1

m1ðtÞ=m0ðtÞdt;

we have

g ¼ m0ðrÞ
2sþ m0ðrÞ

2

sðrÞ2
ðdsÞ2 ¼ rðsÞðs2sþ ðdsÞ2Þ;

where we put rðsÞ ¼ m0ðrðsÞÞ
2
s�2. r

Therefore we may assume that g is a radial metric of form g ¼ rðrÞg0:

4. Proof of Theorem 1

To prove Theorem 1, we prepare a technical lemma.

Lemma 2. (i) Let U be a non-empty open set in Rn. Assume that nb 2

and C1 functions mðsÞ and nðsÞ satisfy the equation

mðjx� aj2Þ þ nðjxj2Þ ¼ 0; x A U

with some a A Rn. If n is not constant on fjxj2; x A Ug, then a ¼ 0.

(ii) Let U be a non-empty open set in Rn. Assume that nb 3 and C1

functions mðs1; s2Þ and nðsÞ satisfy the equation

mðjx� aj2; jx� bj2Þ þ nðjxj2Þ ¼ 0; x A U
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with some a; b A Rn, a0 b. If n 0ðjx0j2Þ0 0 at some point x0 A U, then there

exist constants a and b with a2 þ b2 0 0 such that

aaþ bb ¼ 0ð2Þ

a
qm

qs2
� b

qm

qs1

� �
ðjx� aj2; jx� bj2Þ ¼ 0; x A U :ð3Þ

Proof. (i) Di¤erentiating the both sides of the given equation by xi and

xj (i0 j), we have

ðxi � aiÞm 0ðjx� aj2Þ þ xin
0ðjxj2Þ ¼ 0;

ðxj � ajÞm 0ðjx� aj2Þ þ xjn
0ðjxj2Þ ¼ 0:

(

Taking x A U so that n 0ðjxj2Þ0 0, we see

ai xi

aj xj

����
���� ¼ �

xi � ai xi

xj � aj xj

����
���� ¼ 0

for all i0 j. Hence a and x are linearly dependent for all x in the non-empty

open set fx A U ; n 0ðjxj2Þ0 0g. This implies a ¼ 0.

(ii) Di¤erentiating the both sides of the given equation by x1; . . . ; xn, we

have

qm

qs1
ðjx� aj2; jx� bj2Þðx� aÞ þ qm

qs2
ðjx� aj2; jx� bj2Þðx� bÞ þ n 0ðjxj2Þx ¼ 0;

i.e.,

qm

qs1
aþ qm

qs2
b ¼ qm

qs1
þ qm

qs2
þ n 0

� �
x:ð4Þ

Suppose that

V :¼ x A U ;
qm

qs1
þ qm

qs2

� �
ðjx� aj2; jx� bj2Þ þ n 0ðjxj2Þ0 0

� �

is not empty. Then the above equality (4) implies that every x in an n-

dimensional non-empty open set V is a linear combination of two vectors a

and b. This is a contradiction because nb 3. Therefore
�
qm
qs1

þ qm
qs2

�
ðjx� aj2;

jx� bj2Þ þ n 0ðjxj2Þ ¼ 0 on U , and hence

qm

qs1
ðjx� aj2; jx� bj2Þaþ qm

qs2
ðjx� aj2; jx� bj2Þb ¼ 0; x A Uð5Þ

by (4). Putting a ¼ qm
qs1

ðjx0 � aj2; jx0 � bj2Þ and b ¼ qm
qs2

ðjx0 � aj2; jx0 � bj2Þ, we
obtain (2). Also ða; bÞ0 ð0; 0Þ holds, because the assumption n 0ðjx0j2Þ0 0
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implies aþ b ¼
�
qm
qs1

þ qm
qs2

�
ðjx0 � aj2; jx0 � bj2Þ ¼ �n 0ðjx0j2Þ0 0. Since a0 b

and ða; bÞ0 ð0; 0Þ, (3) follows from (2) and (5). r

Now we shall prove Theorem 1.

Proof of Theorem 1. By Lemma 1, we may assume that g is a radial

metric g ¼ rðjxjÞg0 with some positive smooth function r. First, we note that

if r is constant, then g is the Euclidean metric, which corresponds to the

case (c) with q ¼ 0 by inversion x 7! x=jxj2. Next we assume that r is not

constant. Then the equation (E-4) implies

1

rðjxjÞ
Xn
i¼1

qf t
a ðxÞ
qxi

qf t
b ðxÞ
qxi

¼ lðtÞdab
1

rðj f tðxÞjÞ ; a; b ¼ 1; . . . ; n;ð6Þ

where lðtÞ ¼ f 0
0 ðtÞ. The equality (6) shows that the space component f t is

conformal with respect to the Euclidean metric for each t. We fix t in the rest

of the proof. By Liouville’s theorem on conformal mappings (see [1, pp. 222–

227]), every conformal mapping on Rn (nb 3) is a similarity

x 7! nRxþ v; ðn > 0;R A OðnÞ; v A RnÞ

or a composition of a similarity and an inversion with respect to a sphere

x 7! x� a

jx� aj2
þ a ða A RnÞ:

Then f tðxÞ has the form

f tðxÞ ¼ nRðx� aÞ

or

f tðxÞ ¼ nR
x� a

jx� aj2
þ b

 !
;

where n ¼ nðtÞ > 0, R ¼ RðtÞ A OðnÞ and a ¼ aðtÞ A Rn, b ¼ bðtÞ A Rn.

If f tðxÞ ¼ nRðx� aÞ, then (6) implies

n2rðnjx� ajÞ ¼ lrðjxjÞ:ð7Þ

Then by (i) of Lemma 2, we have a ¼ 0 because r is assumed to be non-

constant. Hence

f tðxÞ ¼ nRx and rðnjxjÞ ¼ l

n2
rðjxjÞ:

Thus we have (a).
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We proceed to the latter case f tðxÞ ¼ nR
x� a

jx� aj2
þ b

 !
. Then by dif-

ferentiation we have

Xn
i¼1

qf t
a ðxÞ
qxi

� �2
¼ n2jx� aj�4; a ¼ 1; . . . ; n:

First, we assume that b ¼ 0. Then (6) implies

n2

jx� aj4
r

n

jx� aj

� �
¼ lrðjxjÞ

and hence, (i) of Lemma 2 shows a ¼ 0. Therefore f tðxÞ ¼ nR
x

jxj2
and

r
n

jxj

� �
¼ ljxj4

n2
rðjxjÞ hold. Thus we have (b).

Next, we assume that b0 0. Then (6) implies

n2

jx� aj4
r njbj

���x� aþ b

jbj2

���
jx� aj

0
B@

1
CA¼ lrðjxjÞð8Þ

because
x� a

jx� aj þ jx� ajb
����

���� ¼ b

jbj þ jbjðx� aÞ
����

����. If we put mðs1; s2Þ ¼

n2

s21
r njbj

ffiffi
s

p
2ffiffi
s

p
1

� �
and ~rrðrÞ ¼ lrð

ffiffi
r

p
Þ, then

m jx� aj2; x� aþ b

jbj2

�����
�����
2

0
@

1
A� ~rrðjxj2Þ ¼ 0:

Since r is not constant, (ii) of Lemma 2 shows that aaþ b a� b

jbj2

 !
¼ 0 and

a qm
qs2

� b qm
qs1

¼ 0 with some ða; bÞ0 ð0; 0Þ. By the definition of m, we obtain

a
qm

qs2
� b

qm

qs1
¼ n2

2s31
njbj a

ffiffi
s

p
1ffiffi
s

p
2

þ b

ffiffi
s

p
2ffiffi
s

p
1

� �
r 0 njbj

ffiffi
s

p
2ffiffi
s

p
1

� �
� 4br njbj

ffiffi
s

p
2ffiffi
s

p
1

� �� �
¼ 0:

Putting r ¼ njbj
ffiffi
s

p
2ffiffi
s

p
1

, we have

n2jbj2a
r

þ br

 !
r 0ðrÞ þ 4brðrÞ ¼ 0:

If b ¼ 0, then r 0ðrÞ ¼ 0 holds for all r, which is a contradiction because r is not

constant. Putting q ¼ n2jbj2a
b

, we have the equation

r 0ðrÞ þ 4r

r2 þ q
rðrÞ ¼ 0:
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Therefore rðrÞ ¼ p

ðr2 þ qÞ2
with some p > 0, and hence g ¼ p

ðjxj2 þ qÞ2
g0, which

is isometric to

1

ðjxj2 þ q=pÞ2
g0:

Thus we have (c) and this completes the proof. r

5. Caloric morphisms on spheres and hyperbolae

In this section, we treat constant curvature cases, which correspond to (c)

in Theorem 1. Only in this section, we let nb 2.

We begin with the following lemma.

Lemma 3. Let ðM; gÞ be a Riemannian manifold and ð f ; jÞ be a caloric

morphism defined on a domain DHR�M. If ðM; gÞ has a non-zero constant

curvature, then f 0
0 1 1 and the space component f tðxÞ is a local isometry for

each t.

Proof. By (E-4) of Theorem A,

gðgradg f t
a ; gradg f t

b Þ ¼
df0

dt
ðtÞðgab � f tÞ:

Since ðM; gÞ has a constant curvature k0 0, the above equality implies

k ¼ df0

dt
ðtÞk:

Therefore f 0
0 1 1 and then

gðgradg f t
a ; gradg f t

b Þ ¼ gab � f t;

which shows that f t is an isometry for each t. r

First we consider the case where M is the n-dimensional sphere

S ¼ fx A Rnþ1; x2
1 þ � � � þ x2

nþ1 ¼ 1g:

Proposition 2. Let ð f ; jÞ be a caloric morphism defined on a domain

DHR� S. Then

f ðt; xÞ ¼ ðtþ d;R0xÞ and jðt; xÞ ¼ C;

where d and C are constants with C > 0 and R0 A Oðnþ 1Þ.

Proof. By Lemma 3, f0ðtÞ ¼ tþ d and f tðxÞ ¼ RðtÞx where d A R and

RðtÞ A Oðnþ 1Þ. To complete the proof, it su‰ces to show that RðtÞ is

constant.
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Consider the direct product ð f �; j�Þ of ð f ; jÞ and a time translation

induced by f0ðtÞ on R� R. More precisely, let S� ¼ S� R be the direct

product manifold and define the pair of the mapping f � : D� RHR� S� !
R� S� and the function j� on D� R by

f �ðt; x; rÞ ¼ ðtþ d; f tðxÞ; rÞ ¼ ðtþ d;RðtÞx; rÞ and j�ðt; x; rÞ ¼ jðt; xÞ:

Note that the space component f �t of f � is f �tðx; rÞ ¼ ðRðtÞx; rÞ. Then

ð f �; j�Þ is a caloric morphism defined on the domain D� RHR� S�.

Now consider the mapping i : S� ! Rnþ1nf0g

y ¼ iðx; rÞ ¼ erx; i�1ðyÞ ¼ y

jyj ; logjyj
� �

:

By i, the product metric g� :¼ ~ssþ dr2 of S�, where ~ss denotes the induced

metric of S in Rnþ1, corresponds to the radial metric

s�2ðs2~ssþ ds2Þ ¼ s�2g�
0

of Rnþ1nf0g in the polar coordinate of y-space s ¼ jyj, where g�
0 is the

Euclidean metric of Rnþ1. The mapping i gives the isometry from the cylinder

fðx; rÞ A Rnþ2; x2
1 þ � � � þ x2

nþ1 ¼ 1g to the punctured space fy A Rnþ1; y0 0g
with metric jyj�2

g�
0 . Then the conjugate ð f ��; j��Þ of ð f �; j�Þ by i�1 is given

by

f ��ðt; yÞ ¼ ðtþ d; ði � f �t � i�1ÞðyÞÞ ¼ tþ d; i f �t
y

jyj ; logjyj
� �� �� �

¼ tþ d; i RðtÞ y

jyj ; logjyj
� �� �

¼ tþ d; e logjyjRðtÞ y

jyj

� �

¼ ðtþ d;RðtÞyÞ:

On the other hand, ð f ��; j��Þ is a caloric morphism for the radial metric

s�2g�
0 . Since nþ 1b 3, this corresponds to Case 2-a of Theorem 1 of [8]:

f ��ðt; yÞ ¼ ðtþ d; ceatR0 yÞ; j��ðt; yÞ ¼ Cjyjð1=2Þpa exp 1

4
pa2t

� �

with p ¼ 1, c ¼ 1 and a ¼ 0, or Case 4:

f ��ðt; yÞ ¼ ðltþ d; nR0 yÞ; j��ðt; yÞ ¼ C

with l ¼ 1 and n ¼ 1, or Case 6:

f ��ðt; yÞ ¼ ðtþ d;R0 yÞ; j��ðt; yÞ ¼ C;
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where R0 A Oðnþ 1Þ. Hence RðtÞ is a constant matrix R0. This completes the

proof. r

Next we consider the case where M is the hyperbola

H :¼ fx A Rnþ1; hxi2 :¼ �x2
1 � � � � � x2

n þ x2
nþ1 ¼ 1g

in the semi-Euclidean space R1;n, which is the real hyperbolic space. Here

R1;n denotes Rnþ1 with semi-Euclidean metric g�
�1 :¼ �dx2

1 � � � � � dx2
n þ dx2

nþ1:

Proposition 3. Let ð f ; jÞ be a caloric morphism defined on a domain

DHR�H. Then

f ðt; xÞ ¼ ðtþ d;R0xÞ and jðt; xÞ ¼ C;

where R0 A Oð1; nÞ and d and C are constants with C > 0. Here

Oð1; nÞ ¼ fR A Mðnþ 1;RÞ; tRJ1;nR ¼ J1;ng with J1;n ¼
�In 0
t0 1

� �

is the Lorentz group.

Proof. The proof is similar to that of Proposition 2. For the com-

pleteness, we enter into details. By Lemma 3, f0ðtÞ ¼ tþ d and f tðxÞ ¼ RðtÞx,
where d A R and RðtÞ A Oð1; nÞ. We need to show that RðtÞ is constant.

Consider the direct product of ð f ; jÞ and a time translation of R� R, i.e.,

let H� ¼ H� R be the direct product and define the pair of the mapping

f � : D� RHR�H� ! R�H� and the function j� on D� R by

f �ðt; x; rÞ ¼ ðtþ d; f tðxÞ; rÞ ¼ ðtþ d;RðtÞx; rÞ and j�ðt; x; rÞ ¼ jðt; xÞ:

Then ð f �; j�Þ is a caloric morphism defined on the domain D� RHR�H�.

Now consider the mapping i : H� ! fy A R1;n; hyi > 0g : y ¼ iðx; rÞ ¼ erx; by

which the product metric g� :¼ ~ss�1 þ dr2 of H� corresponds to the radial

metric

s�2ðs2~ss�1 þ ds2Þ ¼ s�2g�
�1

on R1;n in the polar coordinate of y-space s ¼ hyi. Then the conjugate

ð f ��; j��Þ of ð f �; j�Þ by i�1 is f ��ðt; yÞ ¼ ðtþ d;RðtÞyÞ: On the other hand,

ð f ��; j��Þ is a caloric morphism for the radial metric s�2g�
�1. The assumption

nþ 1b 3 implies that this corresponds to Case 2-a of Theorem 1 in [9]:

f ��ðt; yÞ ¼ ðtþ d; ceatR0 yÞ; j��ðt; yÞ ¼ Chyið1=2Þpa exp
1

4
pa2t

� �
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with p ¼ 1, c ¼ 1 and a ¼ 0, or Case 4-a:

f ��ðt; yÞ ¼ ðltþ d; nR0 yÞ; j��ðt; yÞ ¼ C

with l ¼ 1 and n ¼ 1, or Case 5:

f ��ðt; yÞ ¼ ðtþ d;R0 yÞ; j��ðt; yÞ ¼ C;

where R0 A Oð1; nÞ. Therefore, RðtÞ is a constant matrix R0. This completes

the proof. r

6. Determination of caloric morphisms

Now, we state our main theorem. Here g0 denotes the Euclidean metric

on Rn.

Theorem 2. Let g be a rotation invariant metric on M ¼ Rnnf0g with

nb 3. If ð f ; jÞ is a caloric morphism defined on a domain of R�M, then one

of the following cases occurs, up to isometry of M, time translation, constant

multiple of j and the conjugate by isometry and time scaling.

Case (a-1). g ¼ jxjqg0 with some constant q A Rnf�2g, and

f ðt; xÞ ¼ � 1

a2t
;

x

jatj2=ðqþ2Þ

 !
; jðt; xÞ ¼ 1

jtjn=2
exp � jxjqþ2

ðqþ 2Þ2t

" #
;

where a > 0 is a constant.

Case (a-2). g ¼ jxj�2
g0, f ðt; xÞ ¼ ðt; ceatxÞ and jðt; xÞ ¼ jxja=2ea2t=4, where

a; c A R with c > 0.

Case (a-3). g ¼ rðjxjÞg0, where rðrÞ satisfies rðnrÞ ¼ nqrðrÞ with some

constants n > 0 and q, and f ðt; xÞ ¼ ðnqþ2t; nxÞ, jðt; xÞ ¼ 1.

Case (b-1). g ¼ jxj�2
g0 and

f ðt; xÞ ¼ t; ceat
x

jxj2

 !
; jðt; xÞ ¼ 1

jxja=2
eð1=4Þa

2t;

where a; c A R with c > 0.

Case (b-2). g ¼ rðjxjÞg0, where rðrÞ satisfies rðn=rÞ ¼ ðlr4=n2ÞrðrÞ with

some positive constants n and l, and f ðt; xÞ ¼ ðlt; nx=jxj2Þ, jðt; xÞ ¼ 1.

Case (c-1). g ¼ 1

ðjxj2 þ 1Þ2
g0 and f ðt; xÞ ¼ ðt; xÞ, jðt; xÞ ¼ 1 (identity).
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Case (c-2). g ¼ 1

ðjxj2 � 1Þ2
g0 and f ðt; xÞ ¼ ðt; xÞ, jðt; xÞ ¼ 1 (identity).

Case (c-3). g ¼ g0 and

f ðt; xÞ ¼ � a2

t
;
ax

t

� �
; jðt; xÞ ¼ 1

ð4pjtjÞn=2
exp � jxj2

4t

 !
;

or

f ðt; xÞ ¼ ða2t; aðxþ tvÞÞ; jðt; xÞ ¼ exp
jvj2

4
tþ 1

2
v � x

 !
;

where a0 0 is a constant and v A Rn, and where v � x denotes the usual inner

product of v and x in Rn.

Proof. Our starting point is Theorem 1. We have three cases (a), (b)

and (c) in Theorem 1. The cases (a) and (b) in Theorem 1 have already been

treated in the paper [8] of one of the authors. Thus the remaining case is (c).

In the case q ¼ 0 in (c), the metric g ¼ jxj�4
g0 is isometric to the Euclidean

metric g0 by inversion x 7! jxj�2
x: The Euclidean case was solved by Leutwiler

[5].

After the following preparation, the case q0 0 is reduced to Proposition 2

or 3 in § 5 according as q > 0 or q < 0. In the case q > 0 in (c), the metric g ¼
ðjxj2 þ qÞ�2

g0 is the metric induced from the sphere Sq :¼ fy21 þ � � � þ y2nþ1 ¼
1=4qg in the Euclidean space Rnþ1 by the mapping

is : x 7!
ffiffiffi
q

p

qþ jxj2
x;

ð�qþ jxj2Þ
2
ffiffiffi
q

p ðqþ jxj2Þ

 !
: M ! Sq:

In the case q < 0 in (c), the manifold ðM; gÞ is isometric to the hyperbola

Hq :¼ f�y21 � � � � � y2n þ y2nþ1 ¼ 1=4qg in the semi-Euclidean space R1;n by the

mapping

ih : x 7!
ffiffiffiffiffiffi
jqj

p
jqj � jxj2

x;
ðjqj þ jxj2Þ

2
ffiffiffiffiffiffi
jqj

p
ðjqj � jxj2Þ

 !
: M ! Hq:

In both cases in the above, by the conjugate by time scaling in Proposition 1,

we can choose jqj ¼ 1=4 (or jqj ¼ 1). r

Note that semi-Riemannian metrics actually appear in the case q < 0.

As is remarked in § 3, every rotation invariant metric is represented as

a radial metric. For reference, we restate our main theorem in radial metric

form without any normalization.
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Theorem 3. Let g ¼ rðjxjÞg0 be a radial metric on M ¼ Rnnf0g with

nb 3. If ð f ; jÞ is a non-trivial caloric morphism defined on a domain of

R�M, then one of the following cases occurs:

Case (a-1). rðrÞ ¼ prq with some constant q A Rnf�2g, p > 0, and

f ðt; xÞ ¼ ctþ d

atþ b
;

R0x

jatþ bj2=ðqþ2Þ

 !
;

jðt; xÞ ¼ C

jatþ bjn=2
exp � pajxjqþ2

ðqþ 2Þ2ðatþ bÞ

" #
;

where constants a; b; c; d;C A R satisfy bc� ad ¼ 1, C > 0 and R0 A OðnÞ.

Case (a-2). rðrÞ ¼ pr�2 with some constant p > 0 and

f ðt; xÞ ¼ ðtþ b; ceatR0xÞ; jðt; xÞ ¼ Cjxjpa=2epa2t=4:

Case (a-3). rðrÞ satisfies rðnrÞ ¼ nqrðrÞ with some constants n > 0, q A R,

and

f ðt; xÞ ¼ ðnqþ2tþ d; nR0xÞ; jðt; xÞ ¼ C;

where C > 0, d A R and R0 A OðnÞ.

Case (b-1). rðrÞ ¼ pr�2 with some constant p > 0 and

f ðt; xÞ ¼ tþ d; ceat
R0x

jxj2

 !
; jðt; xÞ ¼ C

1

jxjpa=2
epa

2t=4

where a; c; d;C A R with c;C > 0 and R0 A OðnÞ.

Case (b-2). rðrÞ satisfies rðn=rÞ ¼ ðlr4=n2ÞrðrÞ with some positive constants

n, l, and

f ðt; xÞ ¼ ltþ d;
nR0x

jxj2

 !
; jðt; xÞ ¼ C

where C > 0, d A R and R0 A OðnÞ.

Case (c-1). rðrÞ ¼ pðr2 þ qÞ�2
with q > 0, and ð f ; jÞ is a caloric morphism

induced by a time translation and an isometry F0 which is a composition of

inversions:

f ðt; xÞ ¼ ðtþ d;F0ðxÞÞ; jðt; xÞ ¼ C

where C > 0 and d A R.
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Case (c-2). rðrÞ ¼ pðr2 þ qÞ�2
with q < 0, and ð f ; jÞ is a caloric morphism

induced by a time translation and an isometry F0 which is a composition of

inversions:

f ðt; xÞ ¼ ðtþ d;F0ðxÞÞ; jðt; xÞ ¼ C

where C > 0 and d A R.

Case (c-3). g ¼ pg0 and

f ðt; xÞ ¼ ctþ d

atþ b
;
R0ðxþ tvþ wÞ

atþ b

� �
;

jðt; xÞ ¼

C

jatþ bjn=2
exp � pjaR0xþ aw� bvj2

4aðatþ bÞ

" #
; a0 0;

C exp p
jvj2

4
tþ 1

2
v � R0x

 !" #
; a ¼ 0;

8>>>>><
>>>>>:

where constants a; b; c; d;C A R satisfy bc� ad ¼ 1, C > 0, and v;w A Rn,

R0 A OðnÞ.

Finally, we remark that when n ¼ 2, we have not determined the caloric

morphism for all rotation invariant metrics.
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