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ABSTRACT. This paper is concerned with discovering linear functional relationships
among k p-variate populations with mean vectors g;, i=1,...,k and a common
covariance matrix ~. We consider a linear functional relationship to be one in which
each of the specified r mean vectors, for example, u;,...,u. are expressed as linear
functions of the remainder mean vectors ,,...,s,. This definition differs from the
classical linear functional relationship, originally studied by Anderson [1], Fujikoshi [8]
and others, in that there are r linear relationships among k mean vectors without any
specification of k populations. To derive our linear functional relationship, we first
obtain a likelihood test statistic when the covariance matrix X is known. Second, the
asymptotic distribution of the test statistic is studied in a high-dimensional frame-
work. Its accuracy is examined by simulation.

1. Introduction

There are many works on linear functional relationship among variables.
For its review, see Fuller [12], Cheng and Van Ness [7] and so on. Anderson
[3] dealt functional relationship in bivariate case, and derived maximum
likelihood estimator (MLE) of functional coefficients. Fuller [11] studied
some properties of p-variate case. Gleser [13] expanded large sample theory
in p-variate case, Anderson [4] dealt the estimation problem when error
variables is independent and component correlation exists. Arellano-Valle,
Bolfarine and Gasco [5] studied MLE when component covariance matrix is
arbitrary.

This paper is concerned with the linear functional relationship between k
p-variate populations with mean vectors ;,...,q;, and a common covariance
matrix 2. There are many patterns of linear functional relationships among k
p-variate populations. The most commonly used functional relationship was
studied by Anderson [1], Fujikoshi [8] and others state that there are r linear
relationships among k mean vectors without any specification of k popula-
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tions. In this paper, however, we consider a linear functional relationship
model with some specification of k populations. More precisely, we consider a
linear functional relationship such that the first » mean vectors p,...,u, are
expressed as linear combinations of the remainder mean vectors m, q,...,#Hy.
For our linear functional relationship model, the maximum likelihood estima-
tors (MLE) of the coefficient vectors are shown to be latent vectors of a certain
matrix and the likelihood test is related to the smallest latent roots of this
matrix.

In this paper we also consider the asymptotic distributions of the smallest
latent root and the test statistic in a high-dimensional situation. Recently,
there are some results on the asymptotic distributions of latent roots, latent
vectors, and test statistics in a high-dimensional framework. Fujikoshi,
Himeno and Wakaki [10] derived asymptotic distributions of test statistics
for dimensionality in canonical discriminant analysis. Wakaki [22] derived
asymptotic for 4 in MANOVA model. For examples of other results in a
high-dimensional framework in which both the dimension and sample size are
large, see Bai [6], Johnstone [16], Ledoit and Wolf [19] and Raudys and Young
[20] etc.

Our paper is organized as follows: Section 2 defines our model, Section 3
derives the MLE of the coefficient vectors and a likelihood ratio (LR) statistic
when X' is known, Section 4 derives the asymptotic distribution of the test
statistic under large sample and high-dimensional frameworks, and Section 5
provides simulation result.

2. The linear functional relationship with some specification of 4 populations

Consider k p-dimensional normal populations I7; : N,(u;,2), i=1,... k.
Suppose that there are independent samples x;1,. .., x;, from II;. We consider
a multivariate linear functional relationship model as follows:

H o\ [
ao| =] 1)
s o, ) \ m
where d; = (0; +1,...,0: k) is unknown. The following matrix notations are

used:
A= (01,...,0) :rx(k—r),
Mi= (. oom) rxp, Ma=(fyy,.om) : (k—1) x p,
M= (my,. ) = (M{, M) -k x p.
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Then, our model is expressed in matrix form as
Hy : My = AM,. 2)

We note that the model (1) is different from the one in which there exist r
linear relationships. The model (1) refers to the relationship with some spec-
ification of k populations. When k& =2 and r = 1, the hypothesis H, becomes
to m; = o1y, which was considered by Kraft, Olkin and van Eeden [15].

3. Maximum likelihood estimators (MLE) and LR test

In this section, we derive the MLEs of the mean matrices M, M, and the
coefficient matrix 4 under Hy, when X is known. Further, we derive a LR test
for H,.

The likelihood function L(M,A4) is given by

HH 2m) p/2|2| 12 tr{ (xlj ﬂi)(xij_:“i)/}

i=1 j=
2 2 d
= (2n) "2 exp trZ IZZ xi — p) (% — ) ¢,
i=1 j=1
where n=mn; +---+mn;. Let

1 n; k  n
— —\/
Xi=— E x;j and W= E E (x5 — X)) (x5 — X)) .
n; < y
Jj=1 i=1 j=1
Since

k n
DD (e — ) ey — )’ W+Zn —m)',
i=1 j=1

we have

—2log L(M,A) = nlog|X| +tr Z~'W

+tr 2 IZn — ;)" + np log 2x.

The MLEs of M and A4 are obtained by minimizing the above —2 log L(M, 4)
or

g(M,A4) =tr X~ ]Zn, Xi—n —u).
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Under Hy, g is a function of 4 and M,. First, we consider to minimize g with
respect to M,. Let
=2 VxR, oy = ymE VP, i=1,2,... k.
The functional model (1) can be expressed as
Hy: Iy = ZD, 3)

where

=DM X2 :rxp, D =diag(y/ni,...,/n),

I =DyMS™ V2 (k—r)x p,  Dy=diag(\/tri1,---, /1),

Z=Di4AD;" = (&) :r x (k—r),

éij:‘/ni/njéija iil,...,l’,j:r‘i’l,u-,ka
F:(FhFZ):(YI""vyk)/'

Our model may be also formulated in the term of the matrix I as

F= (1,1 = (& 1Y) = (5 1) Ts = <1Z )rz.

Put

X = (%1,...,%) 1 kxp,

Z=DX3'?:kxp,  D=diag(\/n,..., /),

A= (&1L = (I:

) tkx (k—r).
Then, under Hy we can write g(M,4) as

k

> trler = 7)(a = 7)' = (Z — AIY)(Z = AD2) = g (I, 5).

i1
For any fixed =, we have

tr(Z — Al (Z — AI) > t1(Z — AI) (Z — AD) = tr Z'(I;, — P4)Z,

where

D=A'A)"'AZ: (k—r)xp, Pi=AAA)"'A :kxk.

Here, P, is a projection matrix of the space #[A]| spanned by the column
vectors of 4. The equality holds when " = I5.
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—

Next, we consider to minimize tr Z'(fy — P4)Z with respect to =. Since
(I, — P4) is idempotent, the eigenvalues of (I — P4) are 1 or 0. Let the
column vectors of U : k x r be orthonormal eigenvectors of (fy — P4) corre-
sponding to 1. Then, considering a spectrum decomposition of [ — Py, we
have

L—Pi=UU/, and UU =I,.
Therefore
tr Z'(I — P))Z = tr Z’UU/Z = tr U/ZZ'U;.
Let
h=-20>0 )
be the eigenvalues of ZZ' = DXX~'X'D, and let
hy,... h (5)

be the corresponding eigenvectors satisfying h/h; = 1 and hjh; =0 (i # j). We
denote the latent vectors in matrix forms as

H:(H17H2)7 Hl :(hl,...,hk,r), sz(hk,r+1,...,hk), (6)

and further we decompose H, as

H12>
H, = , Hy:rxr. 7
2 (sz 12 (7)

Then, note that

min tr L{ZZ'Ly = tr H}ZZ'Hy = >  li_pi,
i=1

Li=I;

(see, e.g., Seber [21]). Thus, we have

mI}n{—Z log L} = np log 2n +nlog|X| + tr Z'W + Z lie—rti-
i=1

In order to complete the above result, we need to show that there exists
an A= (&', I;)" such that I — Py = UyU| or (I — P;j)H, = H>. Next, we
seek 4, and M,. Note that H, satisfies (Iy — P;)H, = H,. The equation
(Ix — P;)H, = H, is expressed as Hy;4A = 0. Since 5 = D1AD2’1 and

=y ([

) =H,5+Hjy = 0.
k—r
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Further, it holds with probability 1 that
A0 : Hy, is nonsingular. (8)
This result has been shown by Gleser [13]. By using this property, we have

A= —-D;'(HnH') ' D,.
Similarly,

We can thus derive the following theorem:

THEOREM 1. When X is known, the MLE of M, and A under the model
hypothesis Hy : M1 = AM, are given as follows:

Ad=-Di'(HpH,")'D,,  Hy=(H{, Hyp,)'
MZ = Dzil(/i/z‘i)ilAA/D)?7 AA = (‘EA’laI/C*r)/7 ‘é’ = 7(H22H1721),’

where Hyy, Hyy are the submatrices of H, (see (7)) partitioned with the smallest
r eigenvalues of DXX~'X'D, that is, H, = (H{,, H3,)".

On the other hand, we note that the maximum likelihood for the no
restriction model is

min{—2 log L} = np log 2n + n log|Z| + tr Z~'W.
The LR statistic is given by the following theorem:

THEOREM 2. A likelihood ratio (LR) statistic is

LR=Y "l ryiy
i=1

where {y > --- > (i are the eigenvalues of ZZ' = DXX'X'D.

The LR statistic is the summation of the smallest eigenvalues /i .1,
lk—ri2,---,¢r and does not depend on a set of specified r populations. Thus
we show that the LR statistic gives the same result for testing the dimension-
ality model.

4. Asymptotic distribution of LR test under high-dimensional framework

In this section, we derive the limiting distribution of LR test statistic under
a high-dimensional framework

Al:n— o0, k:fix, p—oow, n—p—ow, c=p/n—ce(0,1).
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We use & ~ N,(#;,5 %), and
X=(X,....%) ~Ne,(M,D?® %),
where D = diag(./n1,...,/nx). Therefore,
Z=DXX "2~ N, ,(DMZ 'V I, ®1,),
and it is easy (see, e.g., Gupta and Nagar [14]) to see that
ZZ' = DXX'X'D ~ Wi(p,I;; DMZ'M'D).

Under the linear relationship model Hy: M| = AM,, M = (A’ I;_,)' M, and
rank(M) = k — r. Therefore,

rank(DMX'M'D) =k —r.

Moreover, since the LR statistic is a function of the eigenvalues of ZZ’,
we may use HZZ'H in stead of ZZ'. Now we use an orthogonal matrix
H : k x k such that

HZZIH/ ~ Wk(p,lk;n.Qo), .Q() = diag(wl, vy Dfe—y, 0, .. .,0) ck % k,

where w; > --- > wy_, are the nonzero eigenvalues of DMX~'M'D. 1In the
derivation of our asymptotic distribution, we assume

A2: w > >0 >0 == =0,
w; = 0(1), i=1,....k—r.

Therefore, we may start from the following set-up: ¢/ >--- >/, are the
eigenvalues of HZZ'H', LR statistic is

LR = i /k71‘+i7
i=1

and

HZZ'H' ~ Wi (p, Ix; n€2), Qo = diag(wy, ..., 0k, 0,...,0) : k x k.

Under the assumption Al, we will study the approximation for

W ~ Wi(p, I;nQ), Q = diag(wy,..., o)  k x k and Q= Q.
Put

1
P
We thereby use the following lemma (see, e.g., Gupta and Nagar [14]):

U {W — (pIx + n)}.



222 Yasutomo MAEDA

LemMA 1. Suppose that V ~ W,(n,X;Q), then the characteristic function
of V is

11
Cy(T) = |1, - 2iTx|"? etr{—EQ +5Q(l, - 2iTx)™! }

where T is real symmetric matrix with the (i, j) element given by (1 +6;)t;,
and 90 is Kronecker delta.

Since
1 1 . 1 . _1
—§Q+§Q(1p—2zT2) ZEQ{—II,—&—(IP—ZzTZ) }

= %Q{—(I,, —2T%) + L}(I, - 2iTX) "

= iQTX(I, - 2iTX) ",
we can write the characteristic function Cy(T) as
Cy(T) = |I, — 24TE|"? et {iQTX(I, — 2iTX) "'}
Using Lemma 1, the characteristic function U is

Cy(T) = Elexp(i tr TU)]

= exp(— \/Lﬁ tr(pl + nQO)) E [exp (ﬁ tr TW)}

i
=exp| ——— tr T(pl; + nQ )
P( Vi (Pl 0)

2 |72 i 2 \7!
X\ ——T etr —nQQT(lk——T> .
VP VP VP
Since
26 |7 p 2i
loglk——T = ——= Ik—f ‘
VP 2 VP
= pitr T —tr T2+4—i3trT3+0(p*1),
3vp
we have
2i |77 - |
I, ——T :exp< pitt T—tr T+ —tr T° + O(p~ )
7 VP 35 (r)

=exp(y/pi tr T) x exp(—=T?) + O(p~'/?).
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Moreover, using

2i 2i 42
I ——T) — L+ LTI 0,
( VP N/
we get
2i !
etr —I’lQoT(Ik - — T)
{ﬁ P
= etr(LnQoT> etr(—anoT2> +0(p~'7?).
VP P
Therefore,

= etr(—(Ir +2¢Q0)T?) + O(p~'/?).
It is easy to see that

tr(l +2c2)T? = Z (1 + 2cawy)t3 + Z t

I<i<k—r k—r+l1<i<k

14+ 2cw;
. ﬂ,{zj

1<i<j<k—r 2

N Z (1 + cwy) t; i Z %li

I<i<k-rk—r+1<j<k k—r+l1<i<j<k
We obtain the limiting distribution of u; is

0,2(1 4 2cwy)), l<i<k-—r,
2), k—r+l1<i<k,

N(

N(0,

N(0,1+ 2cw;), i#j,1<i<j<k-—r,

N(0,1 + cw;), i#1<i<k-rk—-r+1<j<k,
N(0,

), i#jk—r+l<i<j<k,
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whereby the u;’s are independent. Suppose that W = HZZ'H', we get
1 1
R=—W=L+cQy+—U.
P VP

Under assumption A2 we can see by using Lawley [17] [18], Anderson [2]
and Fujikoshi [9], the smallest k — r eigenvalues of R are approximated by
those of

1
Q:L'+7ﬁU22 +0(p7h,

where Uy, is a submatrix of

Uy Up
U= Up: (k- .
<U21 Uzz)’ 12 ( r)xr

Now we consider a standardized statistics

1 <
Tir = ﬁ(psz—rﬂ' - ”)7
i1

which is written as

1 r
Tir = ﬁ(pszrﬂ - V> = tr Uap.
i—1

Since u;; 4 N(0,2), k—r+1<i<k, we have
TLR i N(O,ZV)

THEOREM 3. Let
Tir= ﬁ(%;fkﬂri - V)-
Then, under Hy and the assumptions Al and A2,
%Lﬁ NO, D, o=

d . Lo .
where — means the convergence n distribution.

5. Simulation result

We simulate an experiment to examine the accuracy of our normal
approximation of Ty g. For the cases of (a) k=2 and r=1, (b), (c) k=3
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and r=1,2 and (d)~(f) k=4 and r=1~3, we obtain the accuracy of the
normal approximation for the nominal probability 0.05 (Table 1~Table 6) for
p,nj =10 and p,n; =200. The simulation with 100,000 repeatitions was
performed.

Table 1. (a) The accuracy of the normal approximation for the nominal probability 0.05 for

k=2 and r=1
)4

n; 10 20 50 100 150 200

10 0.03904 0.04346 0.04714 0.04984 0.04839 0.04866
20 0.04251 0.04616 0.04849 0.04964 0.04948 0.05083
50 0.04306 0.04696 0.04776 0.04935 0.04953 0.05058
100 0.04242 0.04680 0.04840 0.04978 0.04884 0.04918
150 0.04238 0.04621 0.04768 0.04931 0.04921 0.04998
200 0.04273 0.04553 0.04956 0.04870 0.05074 0.05163

Table 2. (b) The accuracy of the normal approximation for the nominal probability 0.05 for

k=3and r=1
p

nj 10 20 50 100 150 200

10 0.00224 0.01570 0.02199 0.03392 0.03802 0.03956
20 0.00839 0.02515 0.03548 0.03800 0.04038 0.04314
50 0.02363 0.03049 0.03838 0.04203 0.04251 0.04416
100 0.02088 0.03341 0.03922 0.04138 0.04432 0.04546
150 0.02472 0.03267 0.03864 0.04308 0.04451 0.04403
200 0.02602 0.03310 0.03983 0.04303 0.04358 0.04558

Table 3. (c) The accuracy of the normal approximation for the nominal probability 0.05 for

k=3 and r=2
P

n; 10 20 50 100 150 200

10 0.03215 0.03787 0.04171 0.04489 0.04574 0.04664
20 0.03313 0.03750 0.04334 0.04441 0.04609 0.04522
50 0.03328 0.03730 0.04323 0.04456 0.04600 0.04616
100 0.03307 0.03892 0.04290 0.04523 0.04703 0.04587
150 0.03251 0.03924 0.04259 0.04488 0.04679 0.04718

200 0.03346 0.03831 0.04302 0.04518 0.04752 0.04637
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Table 4. (d) The accuracy of the normal approximation for the nominal probability 0.05 for
k=4 and r=1
P
n 10 20 50 100 150 200
10 0.00004 0.00329 0.01328 0.02138 0.02626 0.02880
20 0.00050 0.01016 0.02236 0.03057 0.03311 0.03478
50 0.00883 0.01938 0.02866 0.03424 0.03670 0.03829
100 0.01006 0.02141 0.02895 0.03598 0.03818 0.03983
150 0.01282 0.02240 0.03118 0.03673 0.03795 0.03974
200 0.01121 0.02175 0.03271 0.03547 0.03864 0.04018
Table 5. (e) The accuracy of the normal approximation for the nominal probability 0.05 for
k=4 and r=2
p
n; 10 20 50 100 150 200
10 0.00128 0.00670 0.01880 0.02711 0.02942 0.03116
20 0.00469 0.01553 0.02406 0.03193 0.03406 0.03512
50 0.01230 0.01937 0.03019 0.03561 0.03625 0.03814
100 0.00956 0.02334 0.02872 0.03587 0.03754 0.03999
150 0.01507 0.01965 0.03130 0.03625 0.03807 0.03856
200 0.01451 0.02353 0.03153 0.03691 0.03855 0.03963
Table 6. (f) The accuracy of the normal approximation for the nominal probability 0.05 for
k=4 and r=3
p
n; 10 20 50 100 150 200
10 0.02643 0.03067 0.03771 0.04291 0.04322 0.04404
20 0.02701 0.03293 0.03897 0.04223 0.04340 0.04506
50 0.02716 0.03336 0.04049 0.04154 0.04420 0.04530
100 0.02743 0.03405 0.03950 0.04184 0.04371 0.04390
150 0.02728 0.03334 0.03951 0.04271 0.04326 0.04486
200 0.02761 0.03357 0.03898 0.04294 0.04425 0.04507

Clearly the case (a) is good approximate than the other cases.

As the number

k of groups are increased, the approximations become bad. However, for all
the cases, we can find to be near 0.05 as n and p are larger if not satisfied
n > p under Al and A2.
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