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ABSTRACT. We develop a group-theoretic method to generalize the Laplace-Beltrami
operators on the classical domains. In [I1], inspired by Helgason’s paper [3], we
defined the ‘““Poisson transforms” for homogeneous vector bundles over symmetric
spaces. In [13], we defined the generalized Poisson-Cauchy transforms for homoge-
neous holomorphic line bundles over hermitian symmetric spaces and computed
explicitly the kernel functions for each type of the classical domains. In [7], making
use of the Casimir operator, we defined the “generalized Laplacians” on homogeneous
holomorphic line bundles over hermitian symmetric spaces and showed that the
generalized Poisson-Cauchy transforms give rise to eigenfunctions of the “generalized
Laplacians”. In this paper, using the canonical coordinates for each type of the
classical domains, we carry out the direct computation to obtain the explicit formulas of
(line bundle valued) invariant differential operators which we call the generalized
Laplacians and compute their eigenvalues evaluated at the generalized Poisson-Cauchy
kernel functions.

1. Introduction

We denote by Dy (resp. Dy, Dy, Dyy) the classical domain of type I (resp.
I, 1, 1v).

In [6], Hua gave the explicit formula of the Laplace-Beltrami operator for
D;. In [13], we generalized some results by Hua so that we followed his
classification about the classical domains. In this paper, we use the classifi-
cation given in [15], which means that we exchange the definition of the type II
and that of the type III.

Following Hua’s idea, it is straightforward to compute the Laplace-
Beltrami operators for Dy and Djy;. In the case of the type IV, however,
it is quite difficult to pursue Hua’s method.

In this paper, we give another method to obtain the explicit formulas of
the Laplace-Beltrami operators which can be carried out also for D;;;.  We use
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the canonical coordinate system defined by the Harish-Chandra decomposition.
This leads us to a certain ‘“‘canonical riemannian metric” (see Section 3). It
turns out that Hua’s differential operator is the Laplace-Beltrami operator
defined by this metric.

Looking closely at the explicit formula of the Laplace-Beltrami operator,
we found a way to modify the Laplace-Beltrami operator in order to obtain the
line bundle valued invariant differential operator which we call the generalized
Laplacian. (See Section 3 for the precise definition of generalized Laplacians).

In [13], we gave the explicit formulas of the generalized Poisson-Cauchy
kernel functions. We compute explicitly the value of the generalized Laplacian
evaluated at the generalized Poisson-Cauchy kernel function at the origin,
which, owing to the invariance by the group action, gives us the eigenvalue of
the generalized Laplacian.

The “generalized Laplacians” defined in [7] coincide, up to a constant
factor and scalar operators, with the generalized Laplacians defined in this
paper. Making use of the Casimir operator, we give another method to
compute the above mentioned eigenvalues.

It is easy to see that Theorem 3 in this paper still holds for (line bundle
valued) Sato’s hyperfunctions on the Shilov boundary. The image of the
generalized Poisson-Cauchy transform of Sato’s hyperfunctions on the Shilov
boundary do not exhaust all eigenfunctions of the generalized Laplacian (see
[8]). It is an interesting problem to give the characterization of this image.
Another interesting problem is to generalize the results of this paper to the case
of vector bundles (see [14]).

In [13], we followed [15] to obtain the explicit formula of the action of the
group SOy(n,2) on Djy. In this paper we use the Harish-Chandra decom-
position to get the explicit formula of the group action.

We gave the proof of each theorem (Theorem 1, 2, 4 and 5) in the separate
subsections for each type of classical domains. We showed each step of the
proof in detail but omitted the elementary calculus of matrices. (For details
see [16].)

There are some misprints in [13]. We correct them in this paper.

2. Definitions and notation

Let G be a connected non-compact Lie group admitting a finite dimen-
sional faithful representation. Let K be a maximal compact subgroup of G.
We assume that G/K is an irreducible hermitian symmetric space. We denote
by g and f the Lie algebras of G and K, respectively. Let g, be the
complexification of g. We put

p={YegB(X,Y)=0 for all X ef},
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where B denotes the Killing form of the Lie algebra g,. Then we have

g="F+p, tNp = {0}, [p,p] =, [f,p] < »p.

For any subset s of g we denote by s, the complex subspace of g, spanned by
s. Since G/K is hermitian symmetric, there exist abelian subalgebras p_ and
p_ of g, such that

Pe=ps+p_, pyNp_={0}, py=9p_, [fep]ep,, [fp]cep.

Let G, be the complexification of G with Lie algebra g.. We denote by
K. (resp. P, P_) the complex analytic subgroup of G, corresponding to f,
(resp. p,, p_). Then P.K.P_ is an open subset of G., and any element
we P.K.P_ is uniquely expressed as w= p kp_ (pr € Py, k.e K, p_e€P_).
This is called the Harish-Chandra decomposition (see [1]). Put U =K .P_.
Then U is a complex analytic subgroup of G. and P_ a normal subgroup of
U. Consider the complex homogeneous space G./U. Then G/K can be
canonically identified with an open submanifold GU/U of G./U which is the
G-orbit of the point U in G./U.

We introduce an inner product (-,-) on the complex vector space p, by

(ZlaZZ):B(ZhZ_Z) (Z],ZQGer)-

In [1], it was proved by Harish-Chandra that GU < P, U and that there
exists a unique bounded domain D in p_ such that GU = (exp D)U. For any
w in P, U, we denote by z(w) (resp. u(w)) the unique element of p_, (resp. U)
such that w = (exp z(w))u(w). For any g€ G and z e D, we denote by g[z]
the unique element of D such that g(exp z)U = (exp ¢[z])U. Then G acts on
G/K = GU/U = D by the commutative diagram: for any ¢; € G,

G/K =~ GU/U

w w w

IR
=}

gK — gU — ¢g[0]=:

! l !
919K — g1gU +— g19[0] = g1[7]

m m m
G/K = GU/U = D.

We fix a point uU € G./U such that uU belongs to the boundary of
GU/U and that the G-orbit of uU is compact. Then the isotropy subgroup at
the point uU of G./U is a maximal parabolic subgroup of G, which we denote
by P. Put ug==z(p) and u, =expup. Then clearly we get pU = u U =
(exp ug) U which implies that GNuUu' = GNpyUuy' = P.  Put

S ={ueyp,;(expu)U e GuyU}.
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Then S is the Shilov boundary of D. For any g € G and u € S, we denote by
glu] a unique element of S such that g(exp u)U = (exp g[u])U. Then G acts
on G/P= Gu,U/U =~ 8 by the commutative diagram: for any ¢, € G,

G/P = GuyU/U = S

w w w

gP —  guU —  glu]=u
| | |
g19P —  gigneU  — gigluo] = g1[u]
m m m

G/P =~ GuU/U = S.

For any representation 7 of a Lie group, we denote by dr the differential
representation of 7.

Since G/K is hermitian symmetric, f contains a Cartan subalgebra [) of
g. For each linear form A on )., we denote by H, the element of b, such that
B(H,,H) = A(H) for all He}, For any two linear forms A, u we define
{J,uy = B(H;,H,). Let 4 be the set of all non-zero roots of the pair (g,,b.).
For each o € 4 we choose a root vector X, associated with the root «. It is
clear that for any « € 4 X, belongs to either . or p.. A root o€ 4 is called
compact or non-compact according to X, € f. or X, € p,, respectively. We can
choose a linear order on 4 such that if X, e p_ then o is positive. We denote
by p the half sum of all positive roots. Let 4 be an integral form. We
assume that {(A,o) =0 for all compact roots «. Then there exists a unique
character 7 of K such that dt(H) = A(H) for all Hel). Moreover 7 is
uniquely extended to a holomorphic character of U which is trivial on P_.

We regard the complex Lie group G, as the principal fiber bundle over the
complex homogeneous space G./U. We denote by E. the holomorphic line
bundle over G./U associated to 7. We denote by E, the restriction of E, to
the open submanifold G/K ~ GU/U of G./U. Then the space of all C*-
sections of E, is identified with

C*(E,) = {he C*(GU);h(wu) = (u) 'h(w) (we GU,ue U)}.

Let # be a C”-character of U such that the restriction of # to K coincides
with 7. We denote by i,? the C*-line bundle on G./U associated to . We
denote by L, the restriction of L, to the compact submanifold G/P =~ Gu,U/U
of G./U. Then the space of all C”-sections of L, is identified with

C*(L,) ={he C*(GuyU); h(wu) = n(u) " h(w) (we GuyU,ue U)}.
We define a C”-character ¢ of P by

Ep) =nluy'pig) (P eP).



Eigenvalues of generalized Laplacians 241

Put
C*(G), = {f e C*(G); f(gk) = (k) "'f(9) (g€ G,k eK)},

C”(G); ={pe C”(G);d(gp) = &(p) '#l9) (g€ G,pe P)}.
Then we obtain the following four onto-isomorphisms:
C*(Ex)sh— feC*(G),  [(9)=hg) (9€0),
C*(E;)>hw— FeC*(D), F(z) =h(expz) (zeD),
C(Ly) sy — e C?(G):,  ¢lg) =¥(gno) (9€G),

C*(Ly) >y — @eC”(S), O(u) =Y(expu) (ues).
For any ge G and he C*(E;), we define
(me(g)h)(w) = h(g~'w)  (we GU).

Then 7, is a representation of G on C*(E,).
For any g€ G and y € C*(L,), we define

(@) (W) =(g~'w)  (we GuyU).
Then 7, is a representation of G on C*(L,).
For any ge G, we define T,(g) such that the following diagram is
commutative.
C*(E;) = C*(D)

m.(9) | L Tug)
C*(E,) =

1
a
8

Then we have the following lemma.

LemMa 1. For any ge G and F € C* (D)

(T{(9)F)(z) = pul9:2) 'F(g7'[2])  (zeD),
where p,(g,z) = t(u(g~" exp z)).

Suppose now that for each r, we have a differential operator D, on D.
We denote by D, the E.-valued differential operator such that the following
diagram is commutative.
CY(E,) =~ C™(D)
D. | I D
C*(E,) =~ C*(D).

If 5; commutes with 7,(g) for all g e G, we call 5; an E -valued invariant
differential operator. It is easy to see that this is the case if and only if D,
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commutes with 7,(g) for all g € G. By abuse of the language, we shall call
also such a differential operator D, an E.-valued invariant differential operator.
For any vector space V', we denote by I the identity operator on V. We
use the following notation which are defined in [13].
N, Z, R, C, C*, R*, C*, M\(R), M,(C), GL(k,C), SL(k,C), SU(n,m),
SO(k), SO(k,C), Sp(k,C), sl(k,C), o(k,C), I, M, 4(R), My ,(C), I, ,.

2.1. Type I. Fix any n,me N such that n > m. The classical domain of
type I is defined by
D;={zeM, ,(C);z"z < I,}.
The Shilov boundary of D; is given by
S;={ue M, .(C);u'u=1,}.
We define
G.=SL(m+n,C),
G =SU(n,m),

K, = {(g g) € SL(m+n,C);0e GL(n, C),d € GL(m,C)},

p{(’o ;);zeMn,m<c>},
P_ = {(lg Ii);CEMm,n(C)}a

U=K.P_,

g, = sl(m+n, C),

i ae M,(C)
a b a* = —a,
g= <b* d)EQCQ d* — —d be Myn(C) ¢,
7 deM,(C)

a 0 a*=-—a, aeM,(C)
d*=—d, deM,(C)]J’

i
p= {(bo* z);beMn,m(C)}
i

0 0);26 M,,,m(C)}.
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The Killing form B is given by
B(X,Y)=2(n+m) Tr(XY) (X,Yeg,).

For any /€ Z and se C we define characters 7/, 7, and ¢, ¢ by

7, : U3 (Z g) — (det(d))” e C*,

My U3 (Z‘ g) - (SZ:E?;')/met(a)f eC,

$rs:Papre ﬂ/,s(ﬂalpﬂo) eC".

We identify p, with M, ,,(C) by:

P = Mn,m(C) > Dy
w w

0 z
— .
00 :

b
d> € G and z € D;, we define g[z] by

abe OzUiaaerb Uee Og[Z]U
¢ d)P\o 0)" " \¢ ezta “Plo o '

Notice that

For any g = (a
¢

(zb* +a*)(az+b) = (zd* + ¢")(cz + d).
Then we have the following lemma.

LEMMA 2. For any g€ G and z € D;, we have

glel = (az + b)(cz +d) ™ = (zb* +a*) " (zd* + ¢*) (g = (“ Z))

c

(TP = etz +d) P ) (o= (1))

4

2.2. Type II. Fix any ne N (n>1). The classical domain of type II is
defined by

Dy ={zeM,(C);z*z«I,,'z=—z}.

The Shilov boundary of Dy is given as follows.
In case n is even,

Sy = {ue M,(C);u*u=1,, 'u=—u}.
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In case n is odd,
Sy = {ue M,(C);rank(l, — u*u) = 1, 'u = —u}.
We define

0 I 0 I
G, = SL(2n, C);! "lg= "),
: {ge (2n, C); g<1n 0)9 (In 0)}

G- (_”b z) eSU(n,n);a,beMn(C)},

K. = <OC 0_1>eSL(2n,C);oceGL(n,C)},

{
(.
p;{(% Z);’Z:—z (zeMn(C))},
p_:{ v 2);%:—6 (CeMn(C))},
U=K.P,
0= {(¢ 0 )in T e},
g={<_"5 Z)eg(,;a*——a,tb:—b (a,beMn(C))},
f{(é g)eq,a*a (aeM,,(C))},
p{<°b ﬁ),’b—b <beMn<c>>},
p+={<8 g);fz_—z (zeMn(C))}.

The Killing form B is given by
B(X,Y)=2(n-1) Tr(XY) (X,Yeg,).

For any /€ Z and se C we define characters 7, 5, ; and ¢, by

ts—1
0 U> < i g) — (det(8))’ e C*,

_ CRN( det(9) \' o
o0 (% 3) () K e

&5 Pap— o (uy'pug) € C*.
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We identify p, with {z e M,(C);'z= -z} by:
P, ~ {ze M,(C);'z= -z} oDy

w w
0 =z
— .
00 -
a b
For any g:( — _> € G and z € Dy, we define g[z] by
a b 0 z a az+b 0 g[z7]
_ U= - — U= U.
<—b a) exP(o 0) (—b —bz+d) exP(o 0
Notice that
(zb* 4 a*)(az + b) = (z'a — 'b)(—bz + a).

Then we have the following lemma.

LemmaA 3. For any ge G and z € Dy, we have

g[Z} = (GZ+ b)(—BZ+ﬁ)71 = (Zb* +a*)71(zta . Ib) <g

Il
N
\
S |
ISTRI
~~—
~~

(T, (9)F) () = (det(—bz + @) F(g™'[2]) (91=< h ))

2.3. Type Ill. Fix any ne N. The classical domain of type III is defined by
Dy ={ze M,(C);z"z < I, 'z = z}.
The Shilov boundary of Dy is given by
Sur = {ue M,(C);u'u=1I,,"'u = u}.
We define

ol

g _) SU(n,n);a,b e Mn(C)}7

a

0
g (o1 >;oce GL(n, C)},
1

{(
{(

re={(G )=z cemicon),
{(

I, 0O

v )ie=c e},
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U=K.P._,
g. = sp(n, C),

q{(g I;)egc;a*a,’bb (a,beM,,(C))},
f{(g 0>g <aeMn<c>>},
p:{(g 3);fb:b (beMn<c>>},

o= {(5 5)itz== cemion}.

The Killing form B is given by
B(X,Y)=2(n+1) Tr(XY) (X, Y eg,).

For any /€ Z and se C we define characters 7, 1, ; and ¢, by

15—1
7 Ua( i g) — (det(5))” e C*,

, w0 det(d) \ .
Nyt Ua( ; 5) — (|det((5)|) |det(9)|" e C™,

CrsiPapr Wa’,s(ﬂalpﬂo) eC”.

We identify p, with {z e M,(C);'z =z} by:

>~ {ze M,(C);'z=1z} o Dy
w

-

y

For any g:( >e G and z € Dy, we define g[z] by

;
(5 a)owlo 0)o=(5 £25)v=enlo 0o

Notice that

S~
8]

(zb* + a*)(az +b) = (z'a + 'b)(bz + a).

Then we have the following lemma.
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)
)

24. Type IV. Fix any n e N such that n > 2. The classical domain of type
IV is defined by

LemMA 4. For any g€ G and z € Dy, we have

glz] = (az + b)(bz+a) " = (zb* + a*) ' (z'a + 'b) (g = (

S
Y]

SR
S

(T, (9)F)(z) = (det(bz +a)) ' F(g~'[2]) <g1 _ (

1
Dy = {ze C":zz < 5(1 + 2z} < 1}.

The Shilov boundary of Djp is given by
Sy = {u= exeC"0<0<2n,xe S”’l},

where S"! = {xe R"; 'xx = 1}.

The definitions of G, K, G., p, and p_ in [13] are not correct. They
should be defined as follows.

Define

G = SO0(n,2),

K= {(lg :2);k1 € SO(n), ky eSO(2)}.

Then K is a maximal compact subgroup of G. The complexification of G is

given by
I, 0 I, 0\
c = 2, . .
G (O i12>S0(n+ c>(0 112)

Put

We define

G. = ch’y71 )

a 0 O
1{;{(0 6! 0)eSL(n+2,C);aeS0(n,C),5eC*},
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I, 0 =z
P, = 2z 1 'zz |;zeC"yp,
0 0 1
I, (0
P_= 0 1 0]|:;cecsy,
210 ¢ 1
U=K.P_,
I, 0 I, 0\!
= 2.C
8 (0 512>°(”+’ )<0 i12) ’
a b\ 'a= —a,
g= b g ;’df—d (a e My(R),be M,>(R),d e M>(R)) ¢,
g (@ 0), le=—a (a € My(R),d € Ms(R))
- 0 d) 'd=—d a n ) 2 )
0 n ¢
p= m 0 0[;¢neR",
&0 0
3. =787 ",
0 ¢ z
P, = 2020 0 |;z,ceC”y,
2060 0
0O 0 z
P = 2z 0 0 |;zeC"},
0 0 0
0 ¢ 0
o= 0 0 0]|;cec?,
2060 0

K.=y 'Ky, Pr =y 'Poy, P_=y""P_y, U=y"'Uy,

—1=

=y L t=ob p=ypr e =y B =7 Py
The Killing form B is given by

B(X,Y)=nTr(XY) (X, Y eg,).



Eigenvalues of generalized Laplacians 249

For any /€ Z and se C we define characters 7/, n,, and &, , by

o 0 0
1, U=KP_3y"'10 o 0 |p_— (0 eC,
0 0 o
o 0 0 5 /
nys:U=KP_3 o ot oy — <§|> lo]" e C*,
0 0 o
st Pop—n, (1 prg) € C*.
We identify p, with C" by:
Py ~ C"> Dy
w w
0 0 :z
y 22 0 0]y z.
0 00
Notice that
0 0 :z o« 0 0 I, 0 * % z0
exp[ 2z 0 0]l0 61 0 0 1 0]=|x% % zz5
0 00 0 0 o 210 ¢ 1 x k0

For any g€ G and z € Dy, we have

0 0 z (1= tz)
Il —1zz
gy lexp| 2z 0 0 |y=9""] % x (i,l)(cz+d<2 )) ?.
0 0 0

Notice that

o $(1="zz)
(z(=i,1)'b + a) (az—i—b(;l +tzz)>>

cinyd s fesal 2T,
’ (14 7zz)

Then we have the following lemma.

BI— DI~



250 Eisuke IMAMURA et al.

LeEmMMA 5. For any g€ G and z € Dy, we have

i -1
(1_IZZ) . L(l_tzz)
g[Z] = <a2+b< (1 + tZZ))) <(l71)<cz+d<§(1 + [ZZ)>>>
= ((=i,1)'b+ @)~ (z(=i, 1) 'd + ) <Cz+d< L IZZ)>>

(1 + "zz2)
(1 - 1zz) -
X((—i,l)<62+d< (1—1—’22)))) )
‘il = 1) ( ¥ d( i
a b
= (2 2))
(1 122) —
(Tg)F)(z) = ((—zy 1)<cz+d< oo >)>> Flg '),
4 _[a b
(=2 0)

3. Generalized Laplacians

D= N~
BN|— N~

BII— NI~

1= B~
i
+ |
NN
o
~
~—
//\\

L

“,_.
VR

o

N

+

[
/N
BI— b~
i
+
RS
S8
~__—
~_—
¥/|

BI|— NI~

We start with the case where 7 is trivial.
Let D be a classical domain. For any g€ G and F € C*(D), we define

T(9)F(2)=F(g"'[))  (zeD).

Let To(D) be the tangent space of D at z=0. Since K is the isotropy
subgroup at z =0, we have the linear onto-isomorphism:

p = TyD)
w w
X = dT(X)|,_.

Since the Killing form B is positive definite on p, this gives an inner product on
To(D). It is clear that this inner product is invariant by the linear isotropy
representation of K, so that it defines the invariant riemannian metric on D. It
is well-known (see [2], [5]) that dT(Q) coincides with the Laplace-Beltrami
operator with respect to the invariant riemannian metric on D defined by the
Killing form B. Let N be the complex dimension of p,. Let {zt},_,_n
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denote the canonical coordinates of D. We choose a basis {Zy},_,_y of p,
such that

Py ~ Cc">D
w w
Z,ﬁilzkzk — Z.

For any k (1 <k < N), we choose Xy, Y € p such that

1

Zie =5 (X = iYy).

Then clearly, Xj, Y; (1 <k < N)isa basis of p. Forany k (1 <k < N), put
zk = Xk + iyk (X, yk € R). Then it is straightforward to check

dT(Xi)|.co=—5—| » dT(Y)

using the ‘“case by case” method for each type of the classical domains.
On the other hand, by means of matrix calculations, these equations can
be proved directly by the following observations. For any te R, we see

exp(—tXy) = exp(—tZy + a(—tZy)) = exp(—tZ;) exp(a(—tZy)) + O(1?),

where o denotes the conjugation of g, with respect to g. Since exp(a(—tZy)) €
P_, it is clear that

-

(exp(tXi))~'[0] = —1Z + O(£%),

from which the first equation follows. In the same way, the second equation is
obtained.
In the succeeding subsections, we prove the following proposition.

PrOPOSITION 1. There exist a positive constant ¢ and a number M
(0 < M < N) such that we can rearrange Xy, Yr (1 <k < N) such that

B(X/ﬂXk):B(Yk, Yk)ZC (1 SkSM),
B(Xk,Xk):B(Yk, Yk):2c (M+1SkSN).

(In case M =0, one should ignore the part (1 <k < M)).
Moreover, %Xk, % Yo (1<k<M), iA"k, \/Lz—c Y M+1<k<N)isan
orthonormal basis of p, where ¢ is given as follows:

(Type I) ¢ =4(n+m), (Type II) c=4(n-1),
(Type HT) c=4(n+1), (Type IV) ¢ =8n.
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Consider the invariant riemannian metric on D defined by % times the
Killing form. We call this the canonical riemannian metric on the classical
domain D.

Notice that

T(Q =- Py
d ( )|__0 C< 6zk62'k 2 %: azkaZk =0
We put
(0 o (2 o
o ) T awm)
Then

M 1 N 82
+5 -
Zlazkazk 2k:;+182k02k

For each type of the classical domains, we seek an invariant differential
operator 4 such that

z=0

A'z:O = aZAa;'z:O'

For any F € D, we define

N
0F (z) = ZaF( 2) dzy.

) 6zk

Then the operator 0 is independent of the choice of the coordinate system.
For any ge G, the action Daz— w=g[z]e D is a complex analytic iso-
morphism, so that w= (wl,. L WN) gives another coordinate system of D.

We denote by ﬁ
0 0
Ow=5—,...,— .
(614/1 GWN)

Then 0. = O;(’f). Fix any zoeD. Then there exists ge G such that
g[0] = zo. Puttmg 9,(z) = g[z] (z € D), we compute explicitly (p,),(0-40|._).
Then it is clear that there exists a positive definite hermitian matrix A, which
depends on g such that

(9y).(0:40;

o) = o

w |n z0°

.o (=%dT(2)|._,) is invariant by the linear isotropy represen-
tation of K, all coefficients of /1, depend only on zo, so that we write &, = /(z).
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Then it is now easy to see that /s(0) = 4 and that 0. - h(z) - 07 is an invariant
differential operator, which at the point z = 0 coincides with 0.40|,_,. (Here
the notation -” means that any function between two dots should not be
differentiated.)

This means that 0. - i(z) - 9 is the Laplace-Beltrami operator with respect
to the canonical riemannian metric.

It is clear that /i(z) satisfies the following assumption.

ASSUMPTION 1. For any g€ G and z€ D,

hw) = 5(()) W) (5;())) (w = gl2]).

(Remark that the inverse matrix of the Hessian of the Bergman kernel function
satisfies this assumption.)

Conversely, if a positive definite hermitian matrix valued C*-function /(z)
satisfies this assumption, then it is obvious that 0. - A(z) - 0
differential operator on D. Hua’s method is based on this fact.

Next we modify the Laplace-Beltrami operator in order to obtain the line
bundle valued invariant differential operator.

Recall (see Lemma 1) that for any g€ G and F € C* (D), we have

(T(9)F)(2) = pe9,2) ' Flg'[2])  (zeD).

Suppose that a positive C* function r, on D satisfies the assumption:

1S an invariant

ASSUMPTION 2. For any g€ G and z€ D,
rew) = |pe(9,2)[ Pre(z)  (w=g¢7"[2).
We define
A:(2) = ro(2) " 0re(2) - h(z) - 07
For any g€ G, put w=g~![z]. Then we have

AT(W): ( ) aurr(w) ( )

= |p.(9,2)|*r:(2) " 0:1p. (g, 2)| Pre(2)

) ol (2)
= po(g,2)re(2) " 0 (2) - h(z) - 0,9, 2) !

Here, we used the fact that

0:-p.(9,2)" =0, 0:p.(g9,z) =0.
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Thus for any g€ G and F € C* (D), we obtain
(Te(9)4:F)(2) = po(9,2) " Ac(w)F(w) = 4:(2) Te(9) F(2).

This shows that 4, defines an E -valued invariant differential operator which
we call the generalized Laplacian.

For the notation ¢, in the following theorem, the reader is referred to the
succeeding subsections. For simplicity we denote 4., by 4,.

THEOREM 1. For each type of the classical domains, the generalized
Laplacian A, is explicitly given as follows.

(Type I)  Tr(det(l,, — z*z) (I, — z*2)0. det(l,, — z*z)" - (I, — zz*) - &%),
(Type IT)  Tr(det(l, — z*z) " (I, — z*2)d. det(l, — z*z)" - (I, — zz*) - 87),

(Type HI) Tr(det(l, —z*z)~" (I, — z*2)0. det(l, — z*z)" - (I, — zz*) - ),
(

Type IV) (14 |'zz]* = 2z°2) " o.(1 + |'zz)* — 2z%2)”

w1 — 22 1 2(In —zz )zz2 (I, —zz*) o,
(14 |'zz|" = 2z*z)

where the function between two dots - should not be differentiated.
We prove this theorem in the following subsections for each type of

classical domains.

3.1. Type I. For any z = (z;) € D; = M, ,,(C), we put 0. = ’(({7) In [6],
Hua gave the following invariant differential operator:

A=Tr((I, —z"z)0: - (I, — zz") - 07).

Here, we modified the coordinate system defined by Hua, so that we have the
canonical isomorphism:

P Mn,m(C) > Dy

w w

0 z
— .
0 0 -
(See Section 2.1).

For any i, j (1 <i<n,1 <j<m), we put

v (0 E v 0 iE
TT\E o) TT\-iE; 0 )

I
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Then we have

B(Xy, Xy) =4(n+m),  B(Yy, Yy) =4(n+m).

. . 1 . ] o . .
Moreover, it is easy to check that i Xi, i Yy (I1<i<nl<j<m)
is an orthonormal basis of p. Notice that

~2

* g
A‘Z:O = Tr(azaz)|z:0 = Z

lSiSm]S_iSmaZﬁazij

z=0

(A/ljz + }fijz')|z:0 = (I’l + m)dT(Q)|z:0

I<i<n l<j<m

1
4

This shows that 4 is the Laplace-Beltrami operator with respect to the canonical
riemannian metric.
Now we carry out our method to obtain this Laplace-Beltrami operator.
From Lemma 2, for any g € G, we have

ol =bd o= ol a0 (o= (4 7))

Moreover, since g*1I, g = I, m, We obtain
Ln—glz'gle) = (2 +d)) " (In — 2" 2) ez + )
which implies
(dd™)™" = I, — g[0]"g[0].

Further we observe that

Tr(0:07)|._g = Tr(d " dy(a — g[0]c)(a — g[0]) 05 (d") " )]\—ypo
= Tr((dd") ™' 0 (1, — g[0]g[0]" — (b — g[0]d) (b — g[0]d)")o})|
= Tr((Ln — 9[0]"9[0])d, (£, — 9[0]g[0]")0;,)

This shows that

w=g[0]

w=g[0]"

Tr((Ly — z72)0- - (I, — zz¥) - 0])

is the Laplace-Beltrami operator with respect to the canonical riemannian
metric.

b
For any geG, put w=g [ = (az +b)(cz +b) "' (g“Z(Cf d))
From the above formula, it is clear that ¢

det(l, — w*w) = |det(cz + d)| 2 det(I,, — z*2).
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In view of Lemma 2, this satisfies Assumption 2, so that
Tr(det(, — z*z) ' (I,, — z*2)d. det(l,, — z*z)" - (I, — zz*) - &)

defines an E.-valued invariant differential operator.

3.2. Type II. Let us recall the canonical isomorphism:

P ~ {ze M,(C);'z=—z} > Dy
w

w
0 z
— .
0 0 -
(See Section 2.2).

For any z = (z;) € Dy < M,(C), we see that z; = —z;. Thus the canon-
ical coordinates of Dy is given by {z;}_; ;-
For any i, j (1 <i< j<mn), we put

Yo — 0  Ej-E; Y. — 0 i(Eyj — Ej)
Y\Ej-E 0 ) '\ ~i(Ey — E) 0 '

Then we have

B(Xy, Xy) =8(n—1),  B(Yy Yy)=8(n—1).

1 ; 1
\/S(nfl)XU’ \/8(n—1)
orthonormal basis of p. We define 0, by:

Moreover, it is easy to check that Yy 1<i<j<n)isan

—3% (<)
(i, j) — component of 0. =

(e
[
I

Notice that

(n=1)dT(R)].—o = ¢ Y (G Yl
1<i<j<n
1 o’
=5 —|  =Tr(0:0])|.
2| S5 <n 92i9%5 |0

From Lemma 3, for any g € G, we have

_ _ — a b
o0l =ba, ol =atallard0f) (o= (% 1))
Moreover, since g*I, ,g = I, ,, We obtain

L — gl glz) = (=bz+a)") (I, — z"z)(=bz+a) ",
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which implies

Further we observe that

Tr(0:07)|.—p = Tr(@ ' du(a + gl0}b) (@ + g[0]5) “0,(@") ™)y

= Tr((@(@)") ™ 2,1, — gl0)g[0]" — (b — gl0)a) (b - 9[0)a) )50
= Tr((1, — 910)"g[0))d (1, — g[0)g[0] )2,y
This shows that
A =Tr((l — 2°2)0. - (I, — zz%) - 07)

is the Laplace-Beltrami operator with respect to the canonical riemannian
metric.

- b
For any g€ G, put w =g '[z] = (az + b)(~bz +a)" (g—‘ = ( “ _))
From the above formula, it is clear that

det(I, — w*w) = |det(—bz + @)| > det(I, — z*z).
In view of Lemma 3, this satisfies Assumption 2, so that
Tr(det(l, — z*z) ' (I, — z*2)d. det(l, — z*z)" - (I, — zz*) - &)

defines an E -valued invariant differential operator.

3.3. Type III. Let us recall the canonical isomorphism:
P, ~ {ze M,(C);'z=z} > Dy

w w

0 z
= .
0 0 -
(See Section 2.3).

For any z = (z;) € Dyy = M,(C), we see that z; = z;. Thus the canon-
ical coordinates of Dy is given by {zj;}, ;- i<
For any i, j, k (1 <i<j<n,1 <k <n), we put

0 Ekk 0 iEkk
X = Y =
kk (Ekk 0 )u kk (_l.Ekk 0 >7

0 E,'j + Eji 0 i(El']' + Ejz)
El'j +Ejj 0 —I(Ejj +Ejj) 0

Then we have



258 Eisuke IMAMURA et al.

B(Xi, Xiw) =4(n+1),  B(Yik, Yiu) = 4(n+1),
B(‘levX)_S(n—’_l)a B(YljaY)_g(n+1)

Moreover, it is easy to check that

1 1

Xk Y, 1 <k<n),

At D) e ( )
1 |

Yi' l<i
V3( n+l " /8 ’

is an orthonormal basis of p. We define 0. by:
(i, ]) — component of 0. =< =

Notice that

1 1
(n+1)dT(Q)|.y = 2 Z (X + Yi)l-—o T3 Z (X} + Yo

1<k<n I1<i<j<n
o 1 o
= a a + 5 a a— = Tr(aza;”Z:O
| <k <n OFkkOZkk |2=0 1<icj<n 9%i9%ij |z=0

From Lemma 4, for any g € G, we have

=t ol =a (e a0B) (a=(5 1))
Moreover, since g*Iy,g = I, we obtain
b= gl = (B +2)) (U — = 2) Bz +2)
which implies
(@@ = 1, — gl0]"gl0].

Further we observe that
Tr(0.00)].-o = Tr(a 2wl — g101B)(a — 91015)"05((@)") )y

= Tr((@(@)") " u(ty — 9101910]" — (b — g[0Ja) (b — g0la) )03,y

= Te((h — g10]" 601U, — 9101910)")25) -
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This shows that
Tr((l, — z°2)0; - (I, — zz") - 02)

is the Laplace-Beltrami operator with respect to the canonical riemannian
metric.

_ b
For any geG, put w=g '[z] = (az+ b)(bz+a)" (g_l = (Z _)>
From the above formula, it is clear that “

det(I, — w*w) = |det(hz + a)| > det(1, — z*z).
In view of Lemma 4, this satisfies Assumption 2, so that
Tr(det(l, — z*z) ' (I, — z*2). det(l, — z*z)" - (I, — zz*) - &)

defines an E.-valued invariant differential operator.

3.4. Type IV. Let us recall the canonical isomorphism:

P ~ C"> Dy
w w
0 0 z
y 2z 0 0]y — z
0 0 0

(See Section 2.4).
We denote by Ej the column vector € C" such that the k-component is 1
and other components are all zero. For any k (1 <k <n), we put

0  Ex Ex 0 —iE;  iEj
Xe=y"12E. 0 0 [y Ye=y"'| 2i'E; 0 0 |y.
2E, 0 0 —2i'E, 0 0

Then we have
B(Xk,Xk) = 871, B(Y/(, Yk) = 8n.

Moreover, it is easy to check that \/%Xk, ﬁ Yr (1 <k <n) is an orthonormal

n
basis of p. We define 0, = (FLI, ¢ Notice that

Y 0z

2ndT(2)].— = (XE + Y. = 0:0:

z=0"

For any g € G, we put
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Then from Lemma 5, for any g € G, we have

a1l i R . .
01 =07 55(1 ) oo = Aelucgod (@ 0110,

Moreover, since ‘gl, 29 = I, 2, we obtain

1+ |'glzlglz]* — 2g[2] " g[2]

, 11— 1zz2)
= ‘((—z,l)(cz—f—d(i(l+,ZZ)>>>

which implies

-2
(14 |'zz|* = 2z*z),

0172 = 1+ |"g[0]g[0]|* — 24[0] “g[0].
Further we observe that

0:0:].—g = (w101 (a = g[0](—i, 1)e) (a — g[0)(—i, 1)) 2], —yiq

= (0l (L, — 29[0)g[0]" + (b — g[0)(~i, 1)d)

% (b = gl0}(~1, 1)d) )0} g0
We notice that

(b — gl0)(—i, 1)d) ( 1) _ z@b( 1) - gm(s) o,

From Lemma 5, we have

Thus we have
(b_g[o](—i,l)d)<_1i> :2<;b(_li> —g[o}(—i,l);d(_li»

Since

it follows that
(b — g[0)(—i, 1)d) (b — g[0](—i,1)d)"

= 200(Ly — g[0)"g[0])g[0] (£, — g[0]"g[0])g[0])".
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Hence
aza; |z:0
= (1+'g[0]g[0]|* — 240] “g[0])2.

(I — g[0]g[0])g[0g[0]" (1, — g[mgm*)) .
(1 + |7g[0]g[0]|* — 24[0]g[0]) "

X (I,, — 2¢g[0]g[0]" + 2
-

This shows that

(14 |'zz]* = 2z%z) :
is the Laplace-Beltrami operator with respect to the canonical riemannian

metric.
For any g € G, put

In - *)zz* In B ) *
(14 |'zz|* = 2z*z2)é. - <I,, —2zz* +2( )zt = == )> -0

w=g [

_ <az+b<8:3>> ((-i,l)&wd(ﬁliii)))1,
(g—lz(‘c’ Z),zep,y).

From the above formula, it is clear

) ’ (1= 'z2)
<(_l,1><cz+d< (H,ZZ))))

In view of Lemma 5, this satisfies Assumption 2, so that

BI— N~
BI— N~

-2

1+ ['ww)? = 2w*w = (1+4|'zz]* = 2z*2).

B|— B~

(14 |'zz]* = 22°2) " o.(1 + |'zz)* — 2z*2)°

(I, — zz*)zz*(I, — zz*¥) o
(14 |'zz]* = 2z%z) :

. (I,, —2zzF 42
defines an E -valued invariant differential operator.

4. Eigenvalues of the generalized Laplacian

Let D be a classical domain, S its Shilov boundary. Let K. ,(z,u)
(ze D,ueS) be the generalized Poisson-Cauchy kernel function given in [13].
Then clearly, K, ,(0,u) =1. Let 4, be the generalized Laplacian defined in
the previous section.
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The following proposition shows a way to prove the next theorem.
ProrosITION 2. Put
oy = A Ko y(z,u)| .-
If ¢, is independent of ue S, then
A K. y(z,u) = c; K (z,u) (ZeD,ueS).

We prove this proposition, making use of the representation 7, as follows.
For any ze D, ueS, we choose g e G such that g~'[z] =0. Then

T:(9)4:(2)K< y(z,u) = pr(g,z)flAr(W)KT‘”(w, u)
= CT77/pr(gvz)71KT~,l7(1V)u)
= ¢,y Te(9) K (2, u).

If we apply T:(¢7!) to the both sides of this equation, the proposition follows

at once.
Applying this proposition to each type of the classical domains, we obtain
the following theorem, where for simplicity we denote ¢, ,, = by ¢/ .

THEOREM 2. For each type of the classical domains, the eigenvalue c; s is
given as follows.

m(s —£)(s+ ¢ — 2n),

A=

Type I)

Type II, n:even) in(s—{)(s+/—n+1),

(
(
(Type II, n:odd) {(n—1)(s—{)(s+¢—n),
(Type III) In(s=O)(s+/—-n-1),
(Type IV) (s—0)(s+7/—n).

We prove this theorem in the following subsections for each type of
classical domains.

4.1. Type I. The generalized Poisson-Cauchy kernel function for Type I is
given by

n—({+s)/2
1 det(l, — z*z)
KT/,U/,.Y(Za u) = ( - |2> ’

(det(L,, — u*z))’ \|det(l, — u*z)
(Theorem 2 in [13]).
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Using Theorem 1, we get

62
=0 = Z =K+, (2,0)

A/KT/J?/)S(Z? H) 6262—
yrey

z=0

sisnlsj=s

— Z <n—%j><(/+n—(fgs))@u@/—1)

1
= gmls = O)(s+/ = 2m).

Here we used the following property of u € S;

E Ujju; = m.

4.2. Type II.

4.2.1. (n:even). The generalized Poisson-Cauchy kernel function for Type 11
(Type III in [13]) for even n is given by

(n—1-¢—s)/2
1 det(Z, + zz)
(det(1, + @z))” \ |det(1, + iiz)|? ’

KT/*,”/.A (Z’ u) =

(Theorem 4 in [13]).
Using Theorem 1, we get

1 0*
T, 5 =0 — A iKr 3
A/K /-,’7/,.\-(2 T/l)|470 21<;j<nazijazij /s”//,.\(z M) o
= Y (n—1-/-9))2)
1<i<j<n

X((£+(n—1—¢—1s)/2)2mu; —1)
:%n(s—{)(s—i-/—iﬂ—l).

Here we used the following property of u € Sy
_ n
Z Uity = 5 -
I1<i<j<n

4.2.2. (n:o0dd). The generalized Poisson-Cauchy kernel function for Type 11
(Type III in [13]) for odd n is given by
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1 det(r, + 22 \"
K,y (z,u) = 7 s ’
(det(l, 4+ az))" \|det(L, + az)|

(Theorem 5 in [13]).
Using Theorem 1, we get

1 o
A/K‘[/J?/._\-(Z u)|::0 - §1<;<n%1(1/‘771.s(27 7/1) o
= > ((n=0=9/2)((/ + (n = = 5)/2)2u50; — 1)
I1<i<j<n

:%(n—l)(s—/)(s+/—n).

Here we used the following property of u e Sy

1<i<j<n
4.3. Type III. The generalized Poisson-Cauchy kernel function for Type III
(Type II in [13]) is given by
n+l—-/—s)/2
1 < det(, —z2) \""
| )

(det(l, — @iz))" \ |det(1, — iz)|?

K1/7'7/.S(Z, u) =

(Theorem 3 in [13]).
Using Theorem 1, we get

0? 1 02
o 1 K ’
021k OZ1k "3 az,;,az—) s, (2, 1)

1<i<j<n

A/Kr/,m.l(za””z:o = ( Z

1<k<n

z=0

= > ((n+1=/=9/2((¢+ (n+1 =7/ —9)/2)ilgue — 1)

1<k<n

+ > ((n+1-7—-5)/2)

1<i<j<n

X(({+m+1—=¢—15)/2)2u5u; — 1)
1
:Zn(s—/)(s—f—/—n— 1).

Here we used the following property of u e Sy

E W uyge + 2 E U = .

1<k<n 1<i<j<n
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4.4. Type IV. The generalized Poisson-Cauchy kernel function for Type IV is
given by

. —/—5)/2
% (z,u) = e "1+ |'zz|* — 2z*z ey
2= =2 w—2)) |- ) — o) ’

(Theorem 6 in [13]).
Using Theorem 1, we get

82
A/K+, y, (2,u)]._g = =K, (zu)
" I;Sn Oziazi ’ z=0
= > (0= =9/2)((0 + (n = = 5)/2)4u; — 2)
1<i<n

=(@6—-)(s+/—n).

Here we used the following property of u e Sy

1<i<n

5. The Casimir operator on various homogeneous line bundles

Let P = MAN be the Langlands decomposition of P and let m (resp. a, n)
be the Lie algebras corresponding to M (resp. A, N). Then MA is the
centralizer of 4 in G and N a normal subgroup of P. Moreover m is the
orthogonal complement of a in the centralizer of a in g with respect to
the Killing form. Let 3,, be the center of m. Then we can show that 3, < f
(see the following subsections). Since m is reductive, we have

m =3, + [m,m] (direct sum).
There exists a Cartan subalgebra f) of g such that
h=a-+3,+bN[mm] (direct sum).

For each linear form / on B(,, we denote by H, the element of f)(, such that
B(H;,H) = A(H) for all Heb,. Let 4 be the set of all non-zero roots of the
pair (g.,b,). For each &€ 4 we choose a root vector X; associated with the
root 4. We can choose a linear order on A such that if X; en, then & is
positive. Let 0 denote the Cartan involution. Then it is easy to see that we
can normalize X; so that B(AA’&,QY&) = 1. This implies that [X&,QY&] = H;.
For each 4 e A we see that

0(H;) = 0([X;, 0X3)) = [0X5, X3] = —[X5, 0X;) = —H;,
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which implies H; € p. Since we assumed that G/K is irreducible, we have
dim a = 1. We can choose H € a such that for any root & € 4, a(H) > 0 if and
only if X; en.. We put jp, = 32 gm0 % Notice that Hy = D a(H)>0 H;ep
and that 3, = f. Then there exist constants a,b € R and X € hN[m, m] such
that lqzﬁ+ =aH +bX. Since X e[mm], dé(Hy )=adi(H). Moreover
since X € m, we have 2p (H) = B(I—AIzm,H) = aB(H,H), which implies that

o 2.(H)
dé(Hy, ) = ——~— dE(H).
Ey) = gl 4ECH)

We denote by Q the Casimir operator (see [5], [17]). It is easy to see that
the Killing form B is non-degenerate on m. We denote by €,, the Casimir
operator of m defined by the restriction of B to m. Put b,, = 3, + N [m,m].
Then it is easy to see that e =3 ;). X; and that

me = (Bm)c + Z (CX& + CHX&)

>0,6(H)=0
We put

1
“TBH,H)
Then it is clear that cq is independent of the choice of H. Let £: be the
restriction of Q@ on C*(G).. Owing to the definition of C*(G)., for any

<
Xem+a+n and ¢ e C”(G):, we have

(dE(H)? = 2. (H)dE(H)) + dE(Qu).

&
X¢ = —di(X)4.

Since [a,n]=n, X$=0 for all X en. Moreover, since ¢ is a character,
d&(m,m]) = {0}. Bearing these facts in mind, we see that

1
2=\ gm™+ > (XX + 0X,X;) + Qe
( ) a(H)>0 Cc*(G)

¢

8(H)>0

1 2 § :
(73(1‘1 H)H + XMHX] m)
Cc”(6)

1 R
=(———H*+H,;, +Q
@ww>*‘%+m)

C*(6):

= CfIC‘7 (G): .
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For any g€ G and ¢ € C*(G),, we define

(me(9)d)(x) = d(g7'x)  (xeG).

Then = is a representation of G on C™(G).. For any ge G, X €g and

peC”(G)

c
& we have

d d
X§(g) =549 exp 1X)] g = 5 dlexp (4d(9) X)g) .y = dre(~Ad(9) X)d(9)

Notice that the Killing form B is invariant by the adjoint action of G.
Then it is easy to prove the following proposition, which is crucial in our
method.

ProprosITION 3.

dne(Q) = Q¢ = cel o= (), -

¢

For any ge G, we define 7,(g9) such that the following diagram is
commutative.

C?(G); = C*(L;) = C*(S)
n:(g) l m(9) ! ! T,(9)
C”(G): = C*(L) = C*(S)

It follows from Proposition 3 that
dTﬂ(.Q) = chC"‘(S‘)'

The next theorem follows now from the fact that the generalized Poisson-
Cauchy transform P, , is an intertwining operator between the representations
T, and T:.

THEOREM 3. For any @ e C*(S), define
F(z) = J K. ,(z,u)®(u)du (ze D).
N

Then we have
dT(Q)F(z) = ¢:F(z) (ze D).

Before we go into the argument for each type of the classical domains, we
would like to correct the statement about o on page 76 and p(H) on page 77 in
[13]. In general, o is not a root but a linear form on a. One should define
p(H) =1 Tr(ad(H)|,) in [13]. However, in this paper, we use the notation p
for the half sum of positive roots of the pair (g,,b,). Instead of p in [13],
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we use the notation p, in this paper, so that p,(H) =3 ;-0 %(H) =
| Tr(ad(H)],).

We remark that if we choose H as in [13] and choose a linear form o on a
such that a(H) = 1, then it is clear that p, (H) = 1(dim n; + 2 dim 1) (see [13],
for the definition of n;, n, and the value: dim n; + 2 dim ny).

In the succeeding subsections, we use the same H as in [13] and the
following facts, which were proved in [13].

LEMMA 6. For each type of the classical domains, 2p (H) is given as
follows.

(Type I) 2mn, (Type II) n(n—1), (Type III) n(n+1), (Type IV) n.

The explicit formula of the eigenvalue c: is now given by the following
theorem.

THEOREM 4.  For each type of the classical domains, c¢,  is given as follows.

(Type I) ﬁ(sz—ZmW—Z;—Z/z),
(Type II, n: even) 4(nni 0 (s—n+1),

(Type II, n: odd) 4<n_1)((nfl)s27n(nfl)s+/2),
(Type III) Miil)(sfn* 1),

(Type IV) %(S—n).

We prove this theorem in the following subsections for each type of
classical domains. The computations in proof are straightforward and ele-
mentary calculus of matrices, so that we omit the details.

5.1. Type 1. Put

0 0 I, 1, 0 1,
H=|0 0 0|, o=\ 0 L, O
In 0 0 0 0 Iy
Clearly
dé, ((H) = d’?/,s(ﬂo_lHﬂo) =5 Tr(L,) = ms.
Thus

B(HaH) =4m(n+m), dé/,s(H) = ms, 2ﬁ+(H) = 2mn.
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If n=m, then we can prove that 3, = {0}, d&, (@) =0. If n>m, put

i(n—m)l, 0 0
Z = 0 —2iml,,_,, 0
0 0 i(n—m)l,

Then we can prove that 3, = RZ ct
Clearly

dé, (Z) = dn, (15" Zg) = £ (n — m)i Tr(1,) = im(n — m)/.

Thus
B(Z,Z) = —4m(n+m)*(n—m),  d&, (Z) = im(n —m)?,
m(n —m)/>
dé/,s(gm) = ( )2
(n+m)
Hence
m ) n—m ,
o= -2 /.
s 4(n+ m) (S ns+n+m/)
5.2. Type IL

5.2.1. (n:even, m=1%). Put
0 1, H 0 o I, o
g = = = .
1, 0) ¢ 0) M= o I

dé; (H) =dn, (1" Huy) = s Tr(—a”) = ns.

Clearly

Thus
B(H,H) =4n(n—1), dé, (H) = ns, 25, (H)=n(n-1).
We can prove that 3, = {0}, d&, (2,,) = 0.

Hence
ns
¢, = 4n—1) (s—n+1).
52.2. (n:odd, m=5t). Put

0o 0 I,

0 o
o= 0O 0 0], H= < >

-0 0

I, 0 0
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Clearly
e o(H) = dn, (15" Hpg) = s Tr(=0”) = 2m = (n = 1)s.
Thus
B(H,H)=4(n—-1)%  dé, (H)=(n—-1)s,  2p,(H)=n(n-1).

Put
0 0 O
0 —i 0 0
0 0 O
Z:
0 00
0 0 7 0
0 00
Then we can prove that 3,, = RZ c L.
Clearly
0 00
de, (H) = dn, (15" Zpo) = £ Te[ 0 0 0 | =i
0 00
Thus
. y 1
B(Za Z) = _4(n - 1); di/s(z) = lfv dg/,s“?m) = mfz

Hence

1

ce, = m((ﬂ —1)s® —n(n—1)s+7/2).

53. Type Il Put
g (0 D (L
“\r, o) 7 \o 1)

dé, (H) =dn, (uy" Huy) = s Tr(1,) = ns.

Clearly

Thus
B(H,H) =4n(n+1), dé; (H) = ns, 2p,(H) =n(n+1).
We can prove that 3, = {0}, d¢&, (Q,,) =0.
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Hence
ns
Cq’mzm(s—”—l)
5.4. Type IV. Put
In 0 In 0 Up
=l (1 Y| me=v[2m 1 1y
—i 1 0 0 1
0 0 1
H=]10 0 0|eM,(R).
1 00
Clearly
0 %I/l() 0
dfm(H):dﬂ/,s(ﬂ(;lHﬂo):dW,s o —1 o0fy]=s
tuo 0 1
Thus

B(H,H)=2n,  d& (H)=s, 2 (H)=n.

We can prove that 3, = {0}, d&, (Q) =0.
Hence

6. The Casimir operator and generalized Laplacians

We keep the notation of the previous sections. Since we assumed that
G/K is irreducible, it is easy to show that there exist constants @ and b such
that

dT‘L—(.Q) = CZA-[ + bICf<D)

From Theorem 4.1 in [12], considering the case where ¢ = 0 (namely, differ-
ential forms of degree zero), we obtain the following lemma.

Lemma 7. Let [° denote the E.-valued complex Laplacian defined on
C”(E;) (see [12]). Then

dn(Q) = —20° + <A+ 2p, ADI = (..
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Recall that the representations 7z, and T satisfy the following commutative
diagram.

C”(E,;) = C*(D)
m(9) | L T(g)
C*(E,) = C*(D).
We define [1° such that the following diagram is commutative.
C*(E;) = C*(D)
0% Lo
C“(E,) C” (D).

I

Then clearly

dT(Q) = —200° + {4 + 2p, AV c=(py.

Notice that
0° = 99,
where 4 is the adjoint operator of 6. Remark that for any F e C*(D), by
definition, 0F(z) = >, _, Na{;_g;)dz (ze D). Applying dT,(Q) to the constant
function 1 on D, from the above two formulas we have
b=<{A4+2p, 4.

Thus we obtain the following Proposition.

PROPOSITION 4. There exists a constant a such that
dT.(Q) = ad. + <A+ 2p, AYI c= (py).

It is obvious that the value of « in this proposition can be obtained from

the value ¢ in Proposition 1, namely a =4

P

This gives the explicit formulas of « in the following theorem.

THEOREM 5. For each type of the classical domains, a and {A + 2p, A) are
given as follows.

1 mnl({ —n—m)
Type I) a= : A+2p, Ay =1 TR
(Type 1) tm < p, A 2w

e ol —n+ 1)

(Type II) a=-— <A+2p,A>—74(n71) ,

1 nl({—n—1)
T I = A+2p, 4> =——F———=
(Type MI) a=——~,  {A+2p,4) S 1)

1 A
(Type IV) a=—, <A+2p,A>:M.

2n
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We prove this theorem in the following subsections for each type of
classical domains.

REMARK. It is clear that c¢, = acs + <A +2p,A). This shows that
Theorem 2 follows from Theorem 4 and Theorem 5, namely the eigenvalue
¢/,s is determined by 1(c;, —<A+2p, 4)).

In the following subsections, we use the list of root systems given at

Appendix on page 20 in [17].

6.1. Type I. The type of the Lie algebra g is (A;), where I =n+m— 1.
It is easy to see

! —-ml, 0
A=~/ . Hij=—" .
(e1 4+ +ey), A 2(n+m)2< 0 nlm>
Thus
mnl({ —n—m)

Ut 2y =5 s

6.2. Type II. The type of the Lie algebra g is (D;), where I =n.
It is easy to see

-/ I, 0
A=—lley+ - +ey), HA:4(n—1) o 1)
Thus
nl({ —n+1)
A+2p, 4> =—— =
A+ 2p, 4) A= 1)

6.3. Type III. The type of the Lie algebra g is (C;), where I = n.
It is easy to see

—/ (I, 0
A=—lley+--+en), HA_W(O 1;1)
Thus
nt({—n-—1)
A+2p,4) = ————

6.4. Type IV. If n is even, the type of the Lie algebra g is (D;), where
/ =#. If n is odd, the type of the Lie algebra g is (B;), where / :%.
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It is easy to see

Thus

(8]

9]
[10]
1]
[12]
[13]
[14]
[15]
[16]

(17]

y 1 0 O
A:—/eh HA:— 0 0 0
2n
0 0 -1
(4 —n)
A+2p, 4> =——-—=.
A+ 2p, 45 "
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