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Abstract. We consider a class of Ruelle type operators which play an important

role in the study of singular perturbation of symbolic dynamics via thermodynamic

formalism. We study the eigenvalues of those operators with maximal modulus and

obtain necessary and su‰cient conditions for them to be semisimple.

1. Introduction

Let db 2 be an integer and S ¼ f1; 2; . . . ; dg a finite set endowed with

the discrete topology. We write an element o A SZþ as o ¼ o0o1 . . . , where

Zþ is the totality of nonnegative integers. We define a map s : SZþ ! SZþ

called the shift transformation by ðsoÞn ¼ onþ1 for o A SZþ and n A Zþ. Let

M ¼ ðMðijÞÞ be a d � d matrix whose entries are either 0 or 1. We con-

sider the set Sþ
M ¼ fo A SZþ : Mðononþ1Þ ¼ 1 for any n A Zþg and the shift

sM ¼ sjSþ
M
. The topological dynamical system ðSþ

M ; sMÞ is called a subshift

of finite type with transition matrix M. For integers mb 0, nb 1 and a

word w A Sn, put m½w� ¼ fo A SZþ : omomþ1 . . .omþn�1 ¼ wg and m½w�M ¼
m½w�VSþ

M . Such a set is called a cylinder set. A word i1i2 . . . in A Sn is

called M-admissible if Mði1i2Þ � . . . �Mðin�1inÞ ¼ 1. For nb 1, WnðMÞ denotes
the totality of M-admissible words of Sn.

Let A ¼ ðAðijÞÞ and B ¼ ðBðijÞÞ be d � d transition matrices satisfying the

following conditions.

ðS:1Þ There exists an integer n0 b 1 such that An0 > 0.

ðS:2Þ BðijÞ ¼ 1 implies AðijÞ ¼ 1.

ðS:3Þ Sþ
B is not empty.

Following the notion in [7], we can regard Sþ
B as the subshift obtained by the

collapsing of Sþ
A . We should note that the condition ðS:3Þ in the present

paper is much more general than the condition ðS:3Þ in the previous paper [7].

For y A ð0; 1Þ, we define a metric dy on SZþ so that dyðo;o 0Þ ¼ yn if
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o0o 0 and n ¼ minfn : on 0o 0
ng and dyðo;oÞ ¼ 0. The metric topology

induced by dy to SZþ coincides with the product topology on SZþ induced

by the discrete topology of S. Clearly Sþ
A is a closed subset of SZþ . Denote

by CðSþ
A Þ the totality of complex valued continuous functions on Sþ

A and by

CðSþ
A ! RÞ the totality of real valued functions belonging to CðSþ

A Þ. Sim-

ilarly, denote by FyðSþ
A Þ the totality of complex valued Lipschitz continuous

functions with respect to dy and by FyðSþ
A ! RÞ the totality of real valued

functions belonging to FyðSþ
A Þ. The spaces CðSþ

A Þ endowed with the su-

premum norm k f ky ¼ supo ASþ
A
j f ðoÞj, and FyðSþ

A Þ endowed with the norm

k f ky ¼ k f ky þ ½ f �y are Banach spaces, where ½ f �y ¼ maxi AS½ f �y; i with ½ f �y; i ¼
supfj f ðoÞ � f ðo 0Þj=dyðo;o 0Þ : o;o 0 A 0½i�A and o0o 0g for f A FyðSþ

A Þ and

i A S.

Let j A FyðSþ
A ! RÞ. We define an operator LB;j on CðSþ

A Þ by

LB;j f ðoÞ ¼
X

i AS:Bðio0Þ¼1

ejði�oÞf ði � oÞ;

where i � o denotes the concatenation of i and o, i.e. i � o ¼ io0o1 . . . in Sþ
A .

The operator can be regarded as an operator on FyðSþ
A Þ naturally. We note

that such an operator plays an important role in the study of singular

perturbation of symbolic dynamics in the previous paper [7].

The two main purposes of this paper are the following:

(I) Giving a necessary and su‰cient condition for semisimplicity of the

eigenvalues of the operator LB;j with maximal modulus in terms of the orbit

structure of the dynamics ðSþ
B ; sBÞ (Theorem 3.2).

(II) Showing a generalization of the Ruelle-Perron-Frobenius theorem for

the operator LB;j under the condition in (I) (Theorem 3.3).

As auxiliary results, we obtain a decomposition of Sþ
A by using the

pointwise exponential growth rate of Ln
B;j1 (Theorem 5.1) and the information

of detailed structure of the eigenspaces corresponding to the eigenvalues of the

operator LB;j and the dual L�
B;j of LB;j with maximal modulus (Proposition

5.3, Proposition 5.4). More precisely, we give bases of those eigenspaces under

the condition in (I).

In Section 2 we give some notions and facts which are necessary to state

the main results. The statements of the main results are given in Section 3.

In Section 4 we prove a generalization of the Ruelle-Perron-Frobenius theo-

rem for LB;j under the transitivity condition ðS:3ÞT on B. In Section 5 we

investigate the exponential growth rate of Ln
B;j1 and the detailed structure of

eigenspaces corresponding to the eigenvalues of LB;j and L�
B;j with maximal

modulus. Section 6 is devoted to the proofs of the main results. Finally we

give some examples in Section 7.
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2. Preliminaries

In this section we give some notions and facts which are necessary to state

our results. We assume the three conditions ðS:1Þ, ðS:2Þ and ðS:3Þ in the

preceding section.

For non-empty subsets S 0 and S 00 of S, let M be a aS 0 �aS 00 matrix

with entries 0 or 1 indexed by S 0 � S 00 so that MðijÞ ¼ 0 if BðijÞ ¼ 0. Let

j A CðSþ
A ! RÞ. We define an operator LM;j on CðSþ

A Þ by

LM;j f ðoÞ ¼
X

i AS:Mðio0Þ¼1

ejði�oÞf ði � oÞ:

Note that if ij A S � SnS 0 � S 00, we regard MðijÞ as 0. L�
M;j : MðSþ

A Þ !
MðSþ

A Þ denotes the dual operator of LM;j which is defined by L�
M;jmð f Þ ¼

mðLM;j f Þ for m A MðSþ
A Þ and f A CðSþ

A Þ, where MðSþ
A Þ denotes the totality

of the complex Borel measures on Sþ
A . If j is an element of FyðSþ

A ! RÞ,
then we can easily verify the inclusion LM;jFyðSþ

A ÞHFyðSþ
A Þ.

By virtue of the theory of nonnegative matrices, the set S can be

decomposed as S ¼ Sð1ÞUSð2ÞU � � �USðmÞ for some mb 1 and tPBP ¼

B11 B12 � � � B1m

O B22
. .
. ..

.

..

. . .
. . .

.
Bm�1m

O � � � O Bmm

0
BBBBB@

1
CCCCCA ð2:1Þ

so that for each k A f1; 2; . . . ;mg the submatrix Bkk ¼ ðBðijÞÞi; j ASðkÞ of B is

irreducible (i.e. for any i; j A SðkÞ, ðBkkÞnðijÞ > 0 holds for some nb 0), where

P is an appropriately chosen permutation matrix. Thus we may assume that B

itself has the form as (2.1). Put T ¼ f1; 2; . . . ;mg for our convenience. Note

that there exists k A T such that Bkk is not a 1� 1 zero matrix (0) by virtue

of the condition ðS:3Þ.
Put Sk ¼ 6

i ASðkÞ 0½i�
A for each k A T . Let j A FyðSþ

A ! RÞ. For each

k A T , ~llk denotes the spectral radius of the operator LBkk ;j on CðSþ
A Þ and put

~ll ¼ max
k AT

~llk:
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It is shown in Section 5 that ~ll is the spectral radius of the operator LB;j on

CðSþ
A Þ. In addition it turns out to be an eigenvalue of LB;j on FyðSþ

A Þ (see

Theorem 1.5 in [1]).

We introduce a partial order � on T as follows: k 0 � k if there exist

i A Sðk 0Þ, j A SðkÞ and nb 0 such that BnðijÞ > 0 holds. Since the matrix B

has the form (2.1), we see that k 0 � k yields k 0 a k. We define disjoint sub-

sets T0, T1 and T2 of T by

T0 ¼ fk A T : there exist k 0; k 00 A T such that k 0 � k; k � k 00 and ~llk 0 ¼ ~llk 00 ¼ ~llg

T1 ¼ fk A TnT0 : k
0 � k for some k 0 A T0g

T2 ¼ fk A TnT0 : k
0 � k does not hold for any k 0 A T0g:

Accordingly, S and Sþ
A are decomposed into the corresponding subsets

Sj ¼ 6
k ATj

SðkÞ and Sð jÞ ¼ 6
k ATj

Sk for each j ¼ 0; 1; 2; respectively:

Note that the sets T0, T1 and T2 depend on the function j.

Let C ¼ Cj be a aS0 �aS0 matrix with entries 0 or 1 indexed by S0 � S0

satisfying CðijÞ ¼ BðijÞ for each i; j A S0. Since B itself is assumed to have the

form (2.1), there exist indexes kð1Þ < kð2Þ < � � � < kðm0Þ in T such that C is

expressed as

C11 C12 � � � C1m0

O C22
. .
. ..

.

..

. . .
. . .

.
Cm0�1m0

O � � � O Cm0m0

0
BBBBB@

1
CCCCCA ð2:2Þ

so that m0 ¼aT0 and C11 ¼ Bkð1Þkð1Þ;C22 ¼ Bkð2Þkð2Þ; . . . ;Cm0m0
¼ Bkðm0Þkðm0Þ.

It is easy to see that Sþ
C is s-invariant, i.e. Sþ

C ¼ sSþ
C .

We consider the following condition on the matrix C:

ðSFÞ C has the form C ¼

C11 O � � � O

O C22
. .
. ..

.

..

. . .
. . .

.
O

O � � � O Cm0m0

0
BBBBB@

1
CCCCCA:

We see that the condition ðSFÞ holds if and only if the set fk A T : ~llk ¼ ~llg
consists of incomparable elements with respect to the order �. In particular,

ðSFÞ implies that ~llk ¼ ~ll for any k A T0.
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3. Main results

In this section, first we consider a spectral decomposition of LB;j for the

maximal eigenvalues and next we state our main results. In what follows

LðXÞ denotes the totality of bounded linear operators on a Banach space X.

We recall that the essential spectral radius of an operator L A LðXÞ is the
infimum of the set of numbers r > 0 such that if the set SpecðLÞV fl : jlj > rg
is not empty, it consists of a finite number of eigenvalues with finite multi-

plicity, where SpecðLÞ denotes the spectrum of the operator L. It is easy to

verify the following fact.

Proposition 3.1. Assume that the conditions ðS:1Þ, ðS:2Þ and ðS:3Þ are

satisfied and let j A FyðSþ
A ! RÞ. Then the essential spectral radius of the

operator LB;j on FyðSþ
A Þ is not greater than y~ll.

Proof. The proposition follows immediately from Theorem 1.5 in [1].

In fact, it is shown that for any function G A FyðSþ
A Þ, the operator MG on

CðSþ
A Þ defined by

MG f ðoÞ ¼
X

i:Aðio0Þ¼1

Gði � oÞ f ði � oÞ

turns out to be a bounded operator on FyðSþ
A Þ and satisfies that the essen-

tial spectral radius of MG on FyðSþ
A Þ is not greater than yr, where r ¼

limn!ykMn
jGj1k

1=n
y .

Putting N ¼ 6
ij:BðijÞ¼0 0½ij�A and G ¼ ejð1� wNÞ, we have MG ¼ MjGj ¼

LB;j and thus the essential spectral radius of LB;j on FyðSþ
A Þ is not greater

than yr. Furthermore, r is non-zero and becomes the spectral radius of the

operator LB;j on CðSþ
A Þ (see Proposition 5.2). Hence r ¼ ~ll.

By virtue of the proposition above, the set fl A SpecðLB;jjFyðSþ
A
ÞÞ : jlj ¼ ~llg

can be written as f~ll ¼ l0; l1; . . . ; lq�1g, where qb 1 is an integer and lj’s are

distinct eigenvalues with finite multiplicity. By the general theory of linear

operators (see [6]), we have the decomposition

LB;j ¼
Xq�1

j¼0

ðljPj þNjÞ þR ð3:1Þ

of the operator LB;j A LðFyðSþ
A ÞÞ such that the following hold:

(1) For each j, Pj is the projection onto the generalized eigenspace

corresponding to the eigenvalue lj.

(2) For each j, Nj is the nilpotent operator corresponding to the

eigenvalue lj.

(3) For each j, PjR ¼ RPj ¼ NjR ¼ RNj ¼ O and PjPi ¼ NjNi ¼ O

if i0 j, where O is the zero element in LðFyðSþ
A ÞÞ.
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(4) The spectral radius of the operator R on FyðSþ
A Þ is less than ~ll.

Recall that an eigenvalue l of an operator L is said to be semisimple

if the dimension of the generalized eigenspace of l is finite and coincides with

that of the eigenspace of l (see [6]). Now we are in a position to state our

main results.

Theorem 3.2. Assume that ðS:1Þ, ðS:2Þ and ðS:3Þ are satisfied. Let

j A FyðSþ
A ! RÞ. Then the following are equivalent.

( i ) The condition ðSFÞ holds.

( ii ) supnb1
~ll�nkLn

B;j1ky < þy.

(iii) All eigenvalues of the operator LB;j on FyðSþ
A Þ with maximal modulus

are semisimple.

(iv) The eigenvalue ~ll of LB;j on FyðSþ
A Þ is semisimple.

Note that the substantial part of the theorem is the implication (iv) ) (i).

By this theorem, if the condition ðSFÞ holds then LB;j has the form

LB;j ¼
Xq�1

j¼0

ljPj þR ð3:2Þ

and each Pj becomes the projection onto the eigenspace of lj. Moreover we

have the following:

Theorem 3.3. Assume that ðS:1Þ, ðS:2Þ, ðS:3Þ and ðSFÞ are satisfied.

Let j A FyðSþ
A ! RÞ. Then as an element of LðCðSþ

A ÞÞ, LB;j has the decom-

position (3.2). Moreover, for each j ¼ 0; 1; . . . ; q� 1, there exist a subset T0ðljÞ
of T0 and families fhðlj; kÞ A CðSþ

A Þ : k A T0ðljÞg and fnðlj; kÞ A MðSþ
A Þ : k A

T0ðljÞg such that the following hold.

(1) Pj has the form

Pjð f Þ ¼
X

k AT0ðljÞ

ð
Sþ

A

f dnðlj ; kÞ
 !

hðlj; kÞ

for f A CðSþ
A Þ.

(2) The eigenspace corresponding to the eigenvalue lj of the operator

LB;j A LðCðSþ
A ÞÞ is spanned by fhðlj; kÞ : k A T0ðljÞg.

(3) For each k A T0ðljÞ, nðlj; kÞ is an eigenvector corresponding to the

eigenvalue lj of the dual L�
B;j with

Ð
hðlj; kÞdnðlj ; kÞ ¼ 1.

(4) For each k A T0ðljÞ, supp hðlj; kÞVSð0Þ ¼ Sk and supp nðlj ; kÞV
Sð0Þ ¼ Sþ

Bkk
.

Note that the family of the functions hðl; kÞ and the family of the

measures nðl; kÞ in Theorem 3.3 are exactly defined in Section 5. If the
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condition ðSFÞ does not hold, each Pj may not be expressed by such a form

above. But we have the following auxiliary result for the eigenvalue of

LB;j : CðSþ
A Þ ! CðSþ

A Þ with maximal modulus. Recall that the period of

a nonnegative irreducible matrix M with M0 ð0Þ is defined as the greatest

common divisor of fq > 0 : Mqð jjÞ > 0 for any jg.

Proposition 3.4. Assume that ðS:1Þ, ðS:2Þ and ðS:3Þ are satisfied. Let

j A FyðSþ
A ! RÞ. Then for any eigenvalue l of LB;j with maximal modulus

there exists k A T0 with ~ll ¼ ~llk such that lp ¼ ~llp for the period p of the matrix

Bkk.

This proposition implies that there exist an integer q0 > 0 and distinct

elements p0; p1; . . . ; pq�1 of f0; 1; . . . ; q0 � 1g such that lj ¼ ~lle2p
ffiffiffiffiffi
�1

p
pj=q0 for

each j ¼ 0; 1; . . . ; q� 1.

Remark 3.5. Even if an eigenvalue l of LB;j with jlj ¼ ~ll other than ~ll is

semisimple, the condition ðSFÞ is not necessarily fulfilled. We will give such

an example in Section 7.

4. A generalization of Ruelle-Perron-Frobenius Theorem

We consider a generalization of the Ruelle-Perron-Frobenius theorem

(Theorem 4.1) under the conditions ðS:1Þ, ðS:2Þ, and the transitivity condition

ðS:3ÞT below.

ðS:3ÞT The set Sþ
B is not empty and if Sþ is the maximal s-invariant subset

of Sþ
B then the dynamics ðSþ; sjSþÞ is topologically transitive.

Note that if B has the form as in (2.1), then each matrix Bkk with Bkk 0 ð0Þ
satisfies the condition ðS:3ÞT and the maximal s-invariant subset of Sþ

Bkk
is Sþ

Bkk

itself. We will use this fact in Section 5.

In what follows we assume the conditions ðS:1Þ, ðS:2Þ and ðS:3ÞT . Let

j A FyðSþ
A ! RÞ and C be the matrix with the form given in (2.2). Since Sþ

C

is s-invariant, Sþ
C is a subset of Sþ. Furthermore, C is irreducible by the

condition ðS:3ÞT and thus Sþ
C ¼ Sþ holds. Let p > 0 be the period of the

matrix C. By the theory of nonnegative matrices, there exists a permutation

matrix P such that

tPCP ¼

O C12 O � � � O

O O C23
. .
. ..

.

..

.
O O . .

.
O

O . .
. . .

.
Cp�1p

Cp1 O � � � O O

0
BBBBBBBB@

1
CCCCCCCCA

and
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tPCpP ¼

~CC1 O O � � � O

O ~CC2 O . .
. ..

.

..

.
O ~CC3

. .
.

O

O . .
. . .

.
O

O O � � � O ~CCp

0
BBBBBBBB@

1
CCCCCCCCA

ð4:1Þ

so that each submatrix ~CCj is aperiodic. Therefore we may assume that C itself

has the form as the former matrix of (4.1). Denote by S0; j the index set of

the matrix ~CCjþ1 and put X ð jÞ ¼ 6
i AS0; j

0½i�A for each j ¼ 0; 1; . . . ; p� 1. Then

we have Sð0Þ ¼ 6p�1

j¼0
Xð jÞ, Sþ

C ¼ ðXð0ÞUX ð1ÞU � � �UXðp� 1ÞÞVSþ
C and

sCðX ð jÞVSþ
C Þ ¼ Xð j þ 1ÞVSþ

C ðmod pÞ for each j ¼ 0; 1; . . . ; p� 1

by the form (4.1).

Now we give the statement of the theorem.

Theorem 4.1. Assume that ðS:1Þ, ðS:2Þ and ðS:3ÞT are satisfied. Let

j A FyðSþ
A ! RÞ. Then we obtain the spectral decomposition

LB;j ¼
Xp�1

j¼0

lB; jPB; j þRB ð4:2Þ

of LB;j A LðFyðSþ
A ÞÞ such that the following hold.

(1) There exists lB > 0 such that lB; j ¼ lBe
2p
ffiffiffiffiffi
�1

p
j=p for each j.

(2) For each j, PB; j is the projection onto the one-dimensional eigenspace

corresponding to the eigenvalue lB; j which is given by

PB; j f ¼
ð
Sþ

A

f dnB; j

 !
hB; j :

Here nB; j A MðSþ
A Þ is an eigenvector corresponding to the eigenvalue lB; j of

the operator L�
B;j and hB; j A FyðSþ

A Þ is an eigenfunction corresponding to the

eigenvalue lB; j of the operator LB;j with
Ð
Sþ

A

hB; j dnB; j ¼ 1. In particular, nB ¼
nB;0 is a Borel probability measure supported on Sþ

B and hB ¼ hB;0 is a nonneg-

ative function supported on Sð0ÞUSð1Þ. Moreover, nB; jjSð0Þ ¼
Pp�1

k¼0 nBjX ðkÞk
kj

and hB; jjSð0Þ ¼
Pp�1

k¼0 hBjX ðkÞk
�kj hold, where k ¼ e2p

ffiffiffiffiffi
�1

p
=p.

(3) PB; jRB ¼ RBPB; j ¼ O for each j and PB; iPB; j ¼ O if i0 j.

(4) The spectral radius of the operator RB on FyðSþ
A Þ is less than lB.

(5) As an element of LðCðSþ
A ÞÞ, LB;j has the decomposition (4.2). In

particular, for any f A CðSþ
A Þ

lim
n!y

l
�pn
B L

pn
B;j f �

Xp�1

j¼0

nB; jð f ÞhB; j

�����
�����
y

¼ 0:
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We also obtain the following corollary to Theorem 4.1 for the triplet

ðlB; hB; nBÞ. We denote by LC;jC the Ruelle operator on CðSþ
C Þ of the

potential jC ¼ jjSþ
C
. Put ~hhC ¼ hBjSþ

C
and ~nnC ¼ nBjSþ

C
.

Corollary 4.2. We assume the same conditions as in Theorem 4.1. Then

LC;jC
~hhC ¼ lB~hhC, L�

C;jC
~nnC ¼ lB~nnC and ~nnCð~hhCÞ ¼ 1 hold. Consequently, log lB

and hBnB become the topological pressure of jC and the Gibbs measure on Sþ
C

of the potential jC, respectively.

Our theorem might be a sort of folklore theorem but it is hard to find

the literature with a complete proof for such a general case as we need. The

special case of the theorem was proved in our previous paper [7], where we

imposed the mixing condition ðS:3ÞM below instead of ðS:3ÞT .
ðS:3ÞM Sþ

B is not empty and if Sþ is the maximal s-invariant subset of Sþ
B

then the dynamics ðSþ; sjSþÞ is topologically mixing.

Stoyanov [10] also consider the special case when the transition matrices A

and B are identical and irreducible.

In order to prove Theorem 4.1, we need some auxiliary results.

For the sake of convenience, for each k; k 0 A Z, we write Ckk 0 ¼ Cjj 0 if

k1 j ðmod pÞ and k 0 1 j 0 ðmod pÞ for some j; j 0 A f0; 1; . . . ; p� 1g. Simi-

larly, for each k A Z, we write XðkÞ ¼ X ð jÞ and S0;k ¼ S0; j if k1 j ðmod pÞ
for some j A f0; 1; . . . ; p� 1g.

As in [7], we can write S0, S1, S2 and Sð0Þ, Sð1Þ, Sð2Þ in Section 2 as

S0 ¼ fi A S : 0½i�C 0qg;
S1 ¼ fi A SnS0 : there exist nb 1 and j A S0 such that Bnð jiÞ > 0g;
S2 ¼ fi A SnS0 : for any nb 1 and j A S0;B

nð jiÞ ¼ 0g;

and Sð jÞ ¼ 6
i ASj

0½i�A for each j ¼ 0; 1; 2. It is easy to see the following:

Lemma 4.3. Let o ¼ o0o1 . . .on�1 be B-admissible. Then we have the

following.

(1) If o0;on�1 A S0, then o1;o2 . . . ;on�2 A S0.

(2) If o0 A S1, then o1;o2; . . . ;on�1 A S1 and n < d.

(3) If on�1 A S2, then o0;o1; . . . ;on�2 A S2 and n < d.

(4) If nb d, then o0 A S0 US2 and on�1 A S0 US1.

(5) Sþ
C ¼ sdSþ

B .

Proof. For the proof see Lemma 2.2 and Proposition 2.4 in [7].

For f A CðSþ
A Þ, we write fC ¼ f jSþ

C
. We also need the following:

Lemma 4.4. (1) For any f A CðSþ
A Þ, we have Ln

B;j f ðoÞ ¼ 0 for any nb d

and o A Sð2Þ.
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(2) If f A CðSþ
A Þ satisfies LB;j f ¼ lf on Sð0ÞUSð2Þ for some l A C with

l0 0, then LB;j f ¼ lf on Sð1Þ if and only if f ¼ l�dLd
B;jð f wSð0ÞÞ on Sð1Þ.

(3) If f A CðSþ
A Þ satisfies LB;j f ¼ lf on Sþ

A for some l A C, then

LC;jC fC ¼ lfC.

Proof. The assertions (1) and (3) follow from Lemma 3.3 (1) and (4) in

[7], respectively. It remains to show (2). Assume that LB;j f ¼ lf on Sð0ÞU
Sð2Þ for some f A CðSþ

A Þ and l A Cnf0g. Since Ln
B;j f ¼ lnf on Sð0ÞUSð2Þ

for any nb 1, we have f ¼ 0 on Sð2Þ by (1). Furthermore, for nb d and

o A Sð0ÞUSð1Þ, Ln
B;j f ðoÞ ¼ Ln

B;jð f wSð0ÞÞðoÞ by Lemma 4.3(4). Thus we

have only to show that the fact f ¼ l�dLd
B;jð f wSð0ÞÞ on Sð1Þ yields the equa-

tion LB;j f ¼ lf . We have that for o A Sð1Þ, lf ðoÞ ¼ l�dLd
B;jðlf wSð0ÞÞðoÞ ¼

l�dLd
B;jððLB;j f ÞwSð0ÞÞðoÞ ¼ l�dLdþ1

B;j f ðoÞ ¼ LB;j f ðoÞ. Therefore the asser-

tion (2) is valid.

For cb 0, we define a family Lc of functions by

Lc ¼ f f A CðSþ
A Þ : 0a f a 1 and if o0 ¼ o 0

0 then f ðoÞa f ðo 0Þecdyðo;o 0Þg:

By the standard technique in thermodynamic formalism ([7], [8]), we see that

for cb c1 ¼ ½j�yy=ð1� yÞ there exist lB > 0 and gB A Lc such that LB;jgB ¼
lBgB and kgBky ¼ 1. We state the outline of the proof. Choose any c

with cb ½j�yy=ð1� yÞ. For each nb 1, we can define a continuous operator

Ln : Lc ! Lc by Ln f ¼
LB;j f þ 1

n

� �
LB;j f þ 1

n

� ��� ��
y

. Note that Lc is a compact convex

subset of CðSþ
A Þ. By the Schauder-Tychono¤ theorem, Ln has a fixed point

gn in Lc. Namely, we have LB;j gn þ 1
n

� �
¼ lngn and ln ¼

��LB;j gn þ 1
n

� ���
y
.

Note that kgnky ¼ 1. Choose any subsequence ðnkÞ and gB A Lc such that

gnk ! gB as k ! y in CðSþ
A Þ. It is easy to check that limk!y lnk ¼

kLB;jgBky ¼ lB, LB;jgB ¼ lBgB and kgBky ¼ 1. The fact lB > 0 follows

from the inequality ln b e�kjky for any nb 1.

By virtue of Lemma 4.4 (1) and (2), we have supp gB ¼ Sð0ÞUSð1Þ. We

write g0 ¼ gB þ wSð2Þ, ~jj ¼ j� log g0 � sA þ log g0 � log lB and ~LL ¼ LB; ~jj. Put

kj ¼ expð2p
ffiffiffiffiffiffiffi
�1

p
j=pÞ;

xj;0 ¼ wXð0Þ þ k�1
j wXð1Þ þ � � � þ k

1�p
j wXðp�1Þ and

xj ¼ xj;0 þ k�d
j ð ~LLdxj;0ÞwSð1Þ

for each j A Z. We have the following:

Lemma 4.5. For each j ¼ 0; 1; . . . ; p� 1, kj is an eigenvalue of ~LL on CðSþ
A Þ

and xj is an eigenfunction corresponding to kj . Furthermore, if f A CðSþ
A Þ with
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f 0 0 and h A C with jhj ¼ 1 satisfy ~LLf ¼ h f , then there exist 0a j < p and a

constant c A C such that h ¼ kj and f ¼ cxj .

Proof. Note that if i1; i2 A S0 satisfy Bði1i2Þ ¼ 1 then i1 A S0; j and

i2 A S0; jþ1 for some j. Therefore for each j ¼ 0; 1; . . . ; p� 1, ~LLwX ð jÞðoÞ ¼
wXð jþ1ÞðoÞ holds for o A Sð0Þ. It is easy to check that LB;jxj ¼ kjxj on

Sð0Þ. On the other hand, ~LLxj ¼ kjxj on Sð1Þ by Lemma 4.4(2). Thus xj is

an eigenfunction corresponding to the eigenvalue kj for each j.

Next we show that if f A CðSþ
A Þ with f 0 0 satisfies ~LLf ¼ kj f for some j,

then there exists a constant c A C such that f ¼ cxj . Let g ¼ Re f . Since ~LL

is a positive operator, ~LLpg ¼ g holds. Choose any o1;o2 A XðkÞ such that

info AX ðkÞ gðoÞ ¼ gðo1Þ ¼ c1ðkÞ and supo AX ðkÞ gðoÞ ¼ gðo2Þ ¼ c2ðkÞ. Then for

each i ¼ 1; 2 and nb 1, we have

0 ¼ gðo iÞ � ciðkÞ ¼
X

u AS np:u�o i
0
AWnpþ1ðBÞ

eSnp ~jjðu�o iÞðgðu � o iÞ � ciðkÞwSð0Þðu � o iÞÞ

¼
X

u AS np:u�o i
0
AWnpþ1ðCÞ

eSnp ~jjðu�o iÞðgðu � o iÞ � ciðkÞÞ; ð4:3Þ

where Snp ~jj ¼
Pnp�1

k¼0 ~jj � sk
A. Since the function gðu � o iÞ � ciðkÞ is nonnegative

if i ¼ 1 and is nonpositive if i ¼ 2, we have g ¼ ciðkÞ on 6y
n¼1

s
�np
B fo ig and

so g ¼ ciðkÞ on Sþ
C VX ðkÞ. We notice c1ðkÞ ¼ c2ðkÞ. Therefore g ¼ Re f is

constant on X ðkÞ. By a similar argument, we have that Im f is constant on

XðkÞ. Thus we see that f is constant cðkÞ A C on XðkÞ for each k. Now

we show f ¼ cð0Þxj . We note that LC; ~jjC fC ¼ kj fC holds. By a basic prop-

erty of the operator LC; ~jjC , we have cðkÞ ¼ cð0Þk�k
j for each k ¼ 1; 2; . . . ; p� 1

(see [10]). Therefore f ¼ cð0Þxj on Sð0Þ. The equation f ¼ cð0Þxj on Sð1Þ
follows from Lemma 4.4(2).

Finally, we show that if h A C is an eigenvalue of ~LL satisfying jhj ¼ 1 then

hp ¼ 1. Assume that f A CðSþ
A Þ with f 0 0 and h A C with jhj ¼ 1 satisfy

~LLf ¼ h f . By virtue of Lemma 4.4(1)(2), we have f jSð2Þ ¼ 0 and f jSð0Þ 0 0.

Note that j f ja ~LLnj f j for any nb 1. Using a similar method to (4.3), we

have that j f j ¼ supo ASð0Þj f ðoÞj on Sþ
C . Thus fC 0 0. By the (usual) Ruelle-

Perron-Frobenius theorem (see [1], [2], [8], [10]) for the operator LC; ~jjC , the

equation LC; ~jjC fC ¼ h fC yields hp ¼ 1.

Lemma 4.6. (1) There exists a constant c2 > 0 such that for all f A CðSþ
A Þ

and nb 1, k ~LLnf ky a c2k f ky.

(2) There exist constants c3; c4 > 0 such that for any f A FyðSþ
A Þ and

nb d,

½ ~LLnf �y a c3y
n½ f �y þ c4k f ky:
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The proof is quite similar to that of Lemma 3.7 in [7]. So we omit it.

Now we are in a position to be able to apply the Ionescu Tulcea-

Marinescu theorem in [5] to the operator ~LL by virtue of Lemma 4.6. By

Lemma 4.5, we have the decomposition

~LL ¼
Xp�1

j¼0

kj ~PPj þ ~RR ð4:4Þ

of the operator ~LL A LðFyðSþ
A ÞÞ, where (1) for each j, ~PPj is the projection onto

the one-dimensional eigenspace corresponding to the eigenvalue kj which has

the form ~PPj ¼ limn!yð1=nÞ
Pn�1

k¼0ðkjÞ
k ~LLk, (2) ~PPj

~RR ¼ ~RR ~PPj ¼ O for each j and
~PPi

~PPj ¼ O if i0 j, and (3) the spectral radius of the operator ~RR on FyðSþ
A Þ is

less than 1. Since the Banach space ðFyðSþ
A Þ; k � kyÞ is densely embedded into

the Banach space ðCðSþ
A Þ; k � kyÞ, the operator ~LL as an element LðCðSþ

A ÞÞ
has the decomposition as (4.4). By the simplicity of kj , for any f A CðSþ

A Þ
there exists a number mjð f Þ A C such that ~PPj f ¼ mjð f Þxj and mjðxjÞ ¼ 1. We

see that mj is a bounded linear functional on CðSþ
A Þ. Therefore, mj can be

regarded as a complex Borel measure on Sþ
A by the Riesz Representation

theorem. These measures have the following properties.

Lemma 4.7. For each j ¼ 0; 1; . . . ; p� 1, we have the following.

(1) ~LL�mj ¼ kjmj.

(2) The measure m0 is positive and supp m0 ¼ Sþ
B holds.

(3) mjð f wX ðkÞÞ ¼ kk
j m0ð f wX ðkÞÞ for each k ¼ 0; 1; . . . ; p� 1 and f A CðSþ

A Þ.

Proof. (1) By the decomposition (4.4), kjmjð f Þxj ¼ kj ~PPj f ¼ ~PPjðkj ~PPj f Þ ¼
~PPjð ~LLf Þ ¼ mjð ~LLf Þxj for any f A CðSþ

A Þ. Thus we have ~LL�mj ¼ kjmj .

(2) Note that ð1=nÞ
Pn�1

k¼0ðkjÞ
k ~LLk converges to ~PPj in LðFyðSþ

A ÞÞ as

n ! y. Since ~LL is a positive operator and k0 ¼ 1 holds, ~PP0 is positive and

thus so is m0. We show supp m0 ¼ Sþ
B . For o A Sþ

A nSþ
B with Bðononþ1Þ ¼ 0

for some nb 0, we have m0ð0½o0 . . .on�AÞ ¼ m0ðLnþ1
B;j w

0½o0...on�AÞ ¼ 0. Therefore

supp m0 HSþ
B . We show the converse inclusion. By m0ðx0Þ ¼ m0ðx0wSð0ÞÞ ¼ 1,

we see that m0ð0½i�
AÞ > 0 for some i A S0. Choose any o A Sþ

B and nb d.

Note that on�1 A S0 by Lemma 4.3. By Cn1þ1ðon�1iÞ > 0 for some n1 b 0,

m0ð0½o0 . . .on�1�AÞ ¼ m0ð ~LLnþn1w
0½o0...on�1�AÞ b e�ðnþn1Þk~jjkym0ð0½i�

AÞ > 0. There-

fore o A supp m0. Hence Sþ
B H supp m0.

(3) Note that mjð f wSð1ÞÞ ¼ 0 for any f A CðSþ
A Þ by the definition of

Sð1Þ. Therefore, by putting ~mmj ¼ mjjSþ
C
, L�

C; ~jjC
~mmj ¼ kj ~mmj holds for each j ¼

1; 2; . . . ; p� 1. Thus, the Ruelle-Perron-Frobenius theorem for the operator

LC; ~jjC yields the assertion (3) (see [10]).

Now we can prove Theorem 4.1 and Corollary 4.2.
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Proof of Theorem 4.1. Put

PB; j f ¼
ð
g�1
0 f dmj

� �
g0xj; RB f ¼ lBg0 ~RRðg�1

0 f Þ;

nB; j ¼
ð
g�1
0 dm0

� ��1

g�1
0 mj; hB; j ¼

ð
g�1
0 dm0

� �
g0xj;

lB; j ¼ lBkj

for each j ¼ 0; 1; . . . ; p� 1 and f A CðSþ
A Þ. Then we can easily see the

validity of the assertions (1)–(5) in the theorem.

Proof of Corollary 4.2. Note that hBnBð f Þ ¼ ~hhC~nnCð f Þ for any f A
CðSþ

A Þ and ~nnCð~hhCÞ ¼ nBðhBÞ ¼ 1. The assertion follows immediately from

Proposition 4.4(3) and the general theory of the thermodynamic formalism

(see [2]).

We prove the following for our later convenience.

Proposition 4.8. Under the assumptions as in Theorem 4.1, we have the

following.

(1) For each o A Sð0ÞUSð1Þ, limn!yðLn
B;j1ðoÞÞ

1=n ¼ lB.

(2) If n A MðSþ
A Þ and l A C with jlj ¼ lB satisfy L�

B;jn ¼ ln, then there

exist c A C and 0a j < p such that n ¼ cnB; j .

Proof. (1) Note that Ln
B;j1 ¼ Ln

B;jwSð0ÞUSð1Þ for any nb d. From the

inequality

ln
BhB

khBky
¼

Ln
B;jhB

khBky
aLn

B;jwSð0ÞUSð1Þ a
Ln

B;jhB

infSð0ÞUSð1Þ hB
¼ ln

BhB

infSð0ÞUSð1Þ hB
;

the assertion is valid.

(2) Put n0 ¼ g0n and k ¼ l=lB. We have ~LL�n0 ¼ kn0. Assume that

kp 0 1. Since knpn0ð f Þ ¼ n0ð ~LLnpf Þ ¼
Pp�1

i¼0 mið f Þn0ðxiÞ þ n0ð ~RRnpf Þ converges

to
Pp�1

i¼0 mið f Þn0ðxiÞ as n ! y for any f A CðSþ
A Þ, n0 must be 0. On the

other hand, we assume k ¼ kj for some 0a j < p. Note that n0ð f wSð1ÞÞ ¼ 0

for any f A CðSþ
A Þ and n0ðX ðkÞÞ ¼ kk

j n0ðX ð0ÞÞ for any k. Moreover, it is easy

to see that n0ðxjÞ ¼ pn0ðXð0ÞÞ and n0ðxiÞ ¼ 0 if i0 j. Thus we obtain that

for any f A CðSþ
A Þ,

n0ð f Þ ¼ n0ðk�n
j

~LLnf Þ ¼
Xp�1

i¼0

ðkik�1
j Þnmið f Þn0ðxiÞ þ k�n

j n0ð ~RRnf Þ

¼ pn0ðXð0ÞÞmjð f Þ þ k�n
j n0ð ~RRnf Þ ! pn0ðXð0ÞÞmjð f Þ

as n ! y. Hence n ¼ cnB; j with c ¼ n0ðXð0ÞÞpm0ðg�1
0 Þ.
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5. Auxiliary results

In this section, using the pointwise exponential growth rate of Ln
B;j1,

we obtain a decomposition of the space Sþ
A and the detailed structure of

eigenspaces of LB;j and L�
B;j with maximal modulus. Those results will be

used to prove the main results.

First we state the following theorem.

Theorem 5.1. Assume that ðS:1Þ, ðS:2Þ and ðS:3Þ are satisfied. Let

j A FyðSþ
A ! RÞ. Then there exist a decomposition of Sþ

A as Sþ
A ¼ Y ð0ÞU

Yð1ÞU � � �UY ðrÞ and numbers h0 > h1 > � � � > hr b�y such that the following

are valid.

(1) Each set YðiÞ is an open and closed subset of Sþ
A .

(2) For any o A Y ðiÞ, lim
n!y

1

n
log Ln

B;j1ðoÞ ¼ hi , where log 0 is regarded

as �y.

Recall that for each k A T , ~llk denotes the spectral radius of the operator

LBkk ;j on CðSþ
A Þ and Sk ¼ 6

i ASðkÞ 0½i�
A, where SðkÞ is the index set of the

matrix Bkk. We put ~ll ¼ maxk AT ~llk. As we mentioned in the preceding

section, Theorem 4.1 is applicable to LBkk ;j in the case when Bkk 0 ð0Þ.
We denote by lBkk

the resulting eigenvalue. Notice that for each k, ~llk ¼ lBkk

if Bkk 0 ð0Þ and ~llk ¼ 0 if Bkk ¼ ð0Þ. In order to prove Theorem 5.1, we need

the following:

Proposition 5.2. Assume that ðS:1Þ, ðS:2Þ and ðS:3Þ are satisfied. Let

j A FyðSþ
A ! RÞ. Put TðkÞ ¼ fk 0 A T : k 0 � kg for each k A T and define

lð�Þ : T ! ½0;yÞ by lðkÞ ¼ maxk 0 ATðkÞ ~llk 0 . Then

lim
n!y

1

n
log Ln

B;j1ðoÞ ¼ log lðkÞ ð5:1Þ

holds for each k A T and o A Sk.

Once Proposition 5.2 is established, it is easy to prove Theorem 5.1. In-

deed, let h0 > h1 > � � � > hr be the distinct values of log lðkÞ’s. Put Y ðiÞ ¼
6

k ATfSk : hi ¼ log lðkÞg for each i ¼ 0; 1; . . . ; r. Then the assertions (1) and

(2) in Theorem 5.1 follow.

Proof of Proposition 5.2. We write LB ¼ LB;j for simplicity. First

we consider the case when lðkÞ ¼ 0. In this case it is obvious that for any

k 0 A TðkÞ, ~llk 0 ¼ 0 and so Bk 0k 0 ¼ ð0Þ. Therefore Ln
B 1ðoÞ ¼ 0 for any nb d

and o A 6
k 0 ATðkÞ Sk 0 . Thus (5.1) holds for any k A T with lðkÞ ¼ 0.

Next we consider the case when lðkÞ > 0. We prove the following

inequalities which yield the validity of the assertion:
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lim inf
n!y

1

n
log Ln

B 1ðoÞb log lðkÞ for each o A Sk; and ð5:2Þ

lim sup
n!y

1

n
max
o ASk

log Ln
B 1ðoÞa log lðkÞ: ð5:3Þ

The inequality (5.2) is proved as follows. Note that limn!yð1=nÞ log Ln
Bkk

1ðoÞ
¼ log ~llk for each o A Sk by replacing B and Sð0ÞUSð1Þ with Bkk and Sk,

respectively, in Proposition 4.8(1). Choose any k A T and k 0 A TðkÞ satisfying

lðkÞ > 0 and ~llk 0 ¼ lðkÞ. Then for any o A Sk and o 0 A Sk 0 there exists a

word w A Sd�1 such that o 0
0 � w � o0 is B-admissible. Therefore we have

Lnþd
B 1ðoÞ ¼ Ld

B ðLn
B 1ÞðoÞb c5L

n
B 1ðo 0

0 � w � oÞb c5L
n
Bk 0k 0

1ðo 0
0 � w � oÞ;

where c5 ¼ e�dkjky . Furthermore,

1

nþ d
log Lnþd

B 1ðoÞb 1

nþ d
log c5 þ

1

nþ d
log Ln

Bk 0k 0
1ðo 0

0 � w � oÞ

! log ~llk 0 ¼ log lðkÞ

as n ! y. Thus the inequality (5.2) is valid.

The inequality (5.3) is proved for each k A T inductively, as follows.

If k ¼ 1 A T , k 0 � k yields k 0 ¼ k ¼ 1. This implies that lð1Þ ¼ ~ll1 and

Ln
B 1ðoÞ ¼ Ln

B11
1ðoÞ for any o A S1 and nb 1. Therefore we see that

lim supn!yð1=nÞ log maxo AS1
Ln

B 1ðoÞ ¼ lim supn!yð1=nÞ log maxo AS1
Ln

B11
1ðoÞ

¼ log lð1Þ. The inequality (5.3) is valid when k ¼ 1.

Next we prove that if (5.3) holds for each 1a k 0 < k, then so does for

k. Let B1 be a d � d matrix with entries 0 or 1 such that B1ðijÞ ¼ BðijÞ if

i A Sk U � � �USm and B1ðijÞ ¼ 0 otherwise. Put B2 ¼ B� B1. Then LB has the

form LB ¼ LB1
þLB2

. Since B1B2 ¼ O, we have LB2
LB1

¼ O. Furthermore,

Ln
B1
1ðoÞ ¼ Ln

Bkk
1ðoÞ for any o A Sk and nb 0. We have that for any o A Sk,

Ln
B;j1ðoÞ ¼ ðLB1

þLB2
Þn1ðoÞ ¼

Xn
j¼0

L
n�j
B1

L
j

B2
1ðoÞ

a
Xn
j¼0

L
n�j
Bkk

1ðoÞ max
~oo ASk

L
j
B2
1ð ~ooÞ:

Note that kLn
Bkk

1ky a c6lðkÞn holds for any nb 0 and for some constant

c6. Indeed, if ~llk > 0, then it follows from the uniform boundedness of
~ll�n
k kLn

Bkk
1ky for n. If ~llk ¼ 0, then Ln

Bkk
¼ O for any nb d and thus it is

valid by putting c6 ¼ max0ajadðkL j
Bkk

1kylðkÞ�jÞ. On the other hand, we

claim that for any e > 0 there exist numbers n0 b 1 and c7 > 0 such that
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Ln
B2
1ðoÞa c7ðlðkÞe eÞn for any nb n0 and o A Sk. Indeed, note that for

k 0 A TðkÞnfkg, the inequalities (5.3) and lðk 0Þa lðkÞ are satisfied. We can

choose n1 b 1 so that Ln
B 1ðo 0Þa ðlðkÞe eÞn for any k 0 A TðkÞnfkg, nb n1 and

o 0 A Sk 0 . Note that if B2ðijÞ ¼ 1 for some j A SðkÞ then i A Sðk 0Þ for some

k 0 A TðkÞnfkg. Therefore we put n0 ¼ n1 þ 1 and c7 ¼ lðkÞ�1kLB2
1ky. Con-

sequently, we obtain

1

n
log max

o ASk

Ln
B 1ðoÞa

1

n
log

Xn0�1

j¼0

c6kL j
B2
1kylðkÞn�j þ

Xn
j¼n0

c6c7lðkÞneej
 !

a log lðkÞ þ 1

n
log c8 þ

1

n
log

Xn
j¼0

eej

 !

! log lðkÞ þ e

as n ! y, where c8 is a su‰ciently large number depending on n0. Therefore

we have that the inequality (5.3) is valid for each k A T . Now the proof of

(5.1) is complete.

In the rest of this section, we give auxiliary results on eigenfunctions

of LB;j and eigenvectors of L�
B;j with maximal modulus by using Proposi-

tion 5.2. Assume that two matrices A and B satisfy the conditions ðS:1Þ–
ðS:3Þ and B has the form (2.1). Let j A FyðSþ

A ! RÞ. For each k A T with

Bkk 0 ð0Þ, pk denotes the period of the matrix Bkk. Consider the triplet

ðlBkk ; j; hBkk ; j; nBkk ; jÞ A R� CðSþ
A Þ �MðSþ

A Þ for j ¼ 0; 1; . . . ; pk � 1 obtained by

putting B ¼ Bkk in Theorem 4.1. Then supp hBkk ; j ¼ Sk and supp nBkk
¼ Sþ

Bkk

hold. We need the following notation in the sequel. For each k A T0 and

h A C with jhj ¼ ~ll, we put

ðh0ðh; kÞ; n0ðh; kÞÞ ¼
ðhBkk ; j; nBkk ; jÞ if h ¼ lBkk ; j for some 0a ja pk � 1

ð0; 0Þ otherwise.

�

Note that for any k A T1 UT2, the spectral radius ~llk of the operator

LBkk ;j on CðSþ
A Þ is strictly less than ~ll. We write T1 as fk1; . . . ; ksg with

k1 < � � � < ks. For each k A T0 and h A C with jhj ¼ ~ll, let hðh; kÞ A CðSþ
A Þ

be such that hðh; kÞ ¼ h0ðh; kÞ þ h1ðh; kÞ, where h1ðh; kÞ ¼
Ps

i¼1 hðh; k; kiÞ,

hðh; k; k1Þ ¼ ðhI �LBk1k1
;jÞ�1LBkk1

;jh0ðh; kÞ and

hðh; k; kiÞ ¼ ðhI �LBkiki
;jÞ�1LBkki

;jh0ðh; kÞ

þ
Xi�1

j¼1

ðhI �LBkiki
;jÞ�1LBkjki

;jhðh; k; kjÞ
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for each i ¼ 2; 3; . . . ; s, inductively. Similarly, we write T2 as fl1; . . . ; ltg with

l1 > � � � > lt. Let nðh; kÞ A MðSþ
A Þ be such that nðh; kÞ ¼ n0ðh; kÞ þ n1ðh; kÞ,

where n1ðh; kÞ ¼
P t

i¼1 nðh; k; liÞ,

nðh; k; l1Þ ¼ ðLBl1k
;jðhI �LBl1 l1

;jÞ�1Þ�n0ðh; kÞ and

nðh; k; liÞ ¼ ðLBlik
;jðhI �LBli li

;jÞ�1Þ�n0ðh; kÞ

þ
Xi�1

j¼1

ðLBli lj
;jðhI �LBli li

;jÞ�1Þ�nðh; k; ljÞ

for each i ¼ 2; . . . ; t, inductively.

We have the following:

Proposition 5.3. Assume that ðS:1Þ, ðS:2Þ and ðS:3Þ are satisfied. Let

j A FyðSþ
A ! RÞ. Assume that g A CðSþ

A Þ and l A C with jlj ¼ ~ll satisfy

LB;jg ¼ lg. Then we have the following:

(1) g ¼ 0 on Sð2Þ.
(2) If g ¼ 0 on Sð0Þ, then g ¼ 0 on Sð1Þ.
(3) If the condition ðSFÞ holds, then there exists a vector ðbkÞ in Cm0 such

that g has the form g ¼
P

k AT0
bkhðl; kÞ.

Proposition 5.4. Assume that ðS:1Þ, ðS:2Þ and ðS:3Þ are satisfied. Let

j A FyðSþ
A ! RÞ. Assume that n A MðSþ

A Þ and l A C with jlj ¼ ~ll satisfy

L�
B;jn ¼ ln. Then we have the following:

(1) supp nHSþ
B and njSð1Þ ¼ 0.

(2) If njSð0Þ ¼ 0, then njSð2Þ ¼ 0.

(3) If the condition ðSFÞ holds, then there exists a vector ðgkÞ in Cm0 such

that n ¼
P

k AT0
gknðl; kÞ.

Proof of Proposition 5.3. As before, we write LB ¼ LB;j for simplicity.

Note that ðLBð f wSk
ÞÞwSk 0

¼ LBkk 0 f holds for each k; k 0 A T and f A CðSþ
A Þ.

(1) If k A T2 and k 0 A T satisfy k 0 � k, then k 0 A T2. Therefore,

Ln
B ðgwSð2ÞÞwSð2Þ ¼ ðLn

B gÞwSð2Þ ¼ lngwSð2Þ for any nb 1. Suppose g0 0 on

Sð2Þ. Then we have kgwSð2Þky > 0. It follows from Proposition 5.2 that

~ll ¼ jlj ¼ Ln
B

gwSð2Þ
kgwSð2Þky

 !
wSð2Þ

�����
�����
1=n

y

a kðLn
B 1ÞwSð2Þk

1=n
y ! l0

as n ! y, where l0 ¼ maxk AT2
~llk. This contradicts the fact l0 < ~ll. Thus

g ¼ 0 on Sð2Þ.
(2) We write T1 as fk1; k2; . . . ; ksg with k1 < k2 < � � � < ks. It is easy to

see that k � ki yields k A T0 UT2 U fk1; k2; . . . ; kig for each i. Therefore we

have

197Generalized Ruelle operators



lgwSki
¼ ðLBgÞwSki

¼
X

k AT0UT2Ufk1;k2;...;kig
LBkki

g ¼
X
k AT0

LBkki
gþ

Xi

j¼1

LBkjki
g

by (1) for each i. Note that ~llk1 < jlj ¼ ~ll by the definition of T1. We have

gwSk1
¼
X
k AT0

ðlI �LBk1k1
Þ�1LBkk1

g and ð5:4Þ

gwSki
¼ ðlI �LBkiki

Þ�1
X
k AT0

LBkki
gþ

Xi�1

j¼1

LBkjki
g

 !
ð5:5Þ

for each i ¼ 2; 3; . . . ; s. Assume that g ¼ 0 on Sð0Þ. Then LBkk 0 g ¼ 0 for any

k A T0 and k 0 A T . We have g ¼ 0 on Ski , i ¼ 1; 2; . . . ; s, inductively and thus

g ¼ 0 on Sð1Þ.
(3) Let k A T0. We see that there is no element k 0 A T0 such that k0 k 0

and k 0 � k. Therefore the relation k 0 � k implies k 0 A T2 U fkg. We have

LBkk ;jðgwSk
Þ ¼ lgwSk

by (1). If g0 0 on Sk, then there exist an integer

0a j < pk and a number bk A C such that l ¼ lBkk ; j and gwSk
¼ bkh0ðl; kÞ

by Theorem 4.1 for the operator LBkk
. As a result, we see that g has the

form g ¼
P

k AT0
bkh0ðl; kÞ on Sð0Þ for some vector ðbkÞ in Cm0 . We notice

that the equations (5.4) and (5.5) yield the form g ¼
P

k AT0
bkh1ðl; kÞ on

Sð1Þ. Thus we have g ¼
P

k AT0
bkhðl; kÞ.

Proof of Proposition 5.4. (1) First, we show supp nHSþ
B . For

any o A Sþ
A nSþ

B , Bðononþ1Þ ¼ 0 for some nb 0. Then nð0½o0 . . .onþ1�AÞ ¼
l�n�1nðLnþ1

B w
0½o0...onþ1�AÞ ¼ 0. Thus, supp nHSþ

B .

Next, we show njSð1Þ ¼ 0. If k 0 A T1 satisfies k � k 0 for some k A T1, then

k 0 A T1. Therefore lnnð f wSð1ÞÞ ¼ nðLn
B ð f wSð1ÞÞÞ ¼ nðwSð1ÞLn

B ð f wSð1ÞÞÞ for any

f A CðSþ
A Þ and nb 1. Suppose nð f wSð1ÞÞ0 0 for some f A CðSþ

A Þ. Let B1

be a d � d matrix with entries 0 or 1 such that B1ðijÞ ¼ BðijÞ if i; j A S1 and

B1ðijÞ ¼ 0 otherwise. Then we notice that wSð1ÞL
n
B ð f wSð1ÞÞ ¼ Ln

B1
f for any

nb 1. If Sþ
B1

¼ q, then Ln
B1

¼ 0 for any nb d. Therefore we may assume

Sþ
B1
0q. Putting B ¼ B1 in Proposition 5.2, we have

~ll ¼ jlj ¼
nðLn

B1
f Þ

nð f wSð1ÞÞ

�����
�����
1=n

a
jnjð1Þk f ky
jnð f wSð1ÞÞj

 !1=n
kLn

B1
1k1=ny ! l1

as n ! y, where jnj is the total variation of the measure n and l1 ¼
maxk AT1

~llk. This contradicts the fact ~ll > l1. Thus, njSð1Þ ¼ 0.

(2) We write T2 as fl1; l2; . . . ; ltg with l1 > l2 > � � � > lt. Since li � l

means l A T0 UT1 U fl1; l2 . . . ; lig for any i, we see

lðgwSli
Þ ¼

X
l AT0

nðLBli l
gÞ þ

Xi�1

j¼1

nðLBli lj
gÞ þ nðLBli li

gÞ
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for any g A CðSþ
A Þ and i ¼ 1; 2; . . . ; t. For f A CðSþ

A Þ, it follows from this

equation that

nð f wSl1
Þ ¼

X
l AT0

nðLBl1 l
ðlI �LBl1 l1

Þ�1
f Þ and ð5:6Þ

nð f wSli
Þ ¼

X
l AT0

nðLBli l
ðlI �LBli li

Þ�1
f Þ þ

Xi�1

j¼1

nðLBli lj
ðlI �LBli li

Þ�1
f Þ ð5:7Þ

for each i ¼ 2; 3; . . . ; t, by putting g ¼ ðlI �LBli li
Þ�1

f . Note that if njSl
¼ 0

then nðLBli l
gÞ ¼ 0 for any i and g A CðSþ

A Þ. Assume that njSð0Þ ¼ 0. Then we

have njSli
¼ 0 for i ¼ 1; 2; . . . ; t, inductively. Thus njSð2Þ must be 0.

(3) Assume that the condition ðSFÞ is satisfied. We easily see that for

any l A T0 and f A CðSþ
A Þ, the equation lnð f wSl

Þ ¼ nðLBll
ð f wSl

ÞÞ holds. By

virtue of Proposition 4.8(2), we have njSl
¼ gln0ðl; lÞ for some gl A C. Thus

njSð0Þ ¼
P

l AT0
gln0ðl; lÞ is satisfied. We notice that (5.6) and (5.7) imply

njSð2Þ ¼
P

l AT0
gln1ðl; lÞ. Hence we have n ¼

P
l AT0

glnðl; lÞ.

6. Proof of main results

This section is devoted to the proof of our main results.

Proof of Theorem 3.2. First we show that (i) implies (ii). Put

g ¼
X
k AT0

hð~ll; kÞ;

where each hð~ll; kÞ is defined in Section 5. The condition ðSFÞ implies that

g is an eigenfunction corresponding to the eigenvalue ~ll of the operator LB;j.

In particular, we see that g is a nonnegative function whose support is

Sð0ÞUSð1Þ. We define a d � d matrix B1 with entries 0 or 1 by B1ðijÞ ¼
BðijÞ if i; j A S0 US1 and B1ðijÞ ¼ 0 otherwise. Put B2 ¼ B� B1. Then LB;j

has the form LB;j ¼ LB1;j þLB2;j. We see that B1B2 ¼ O from the definition

of S2. We have the inequality

Ln
B;j1 ¼ ðLB1;j þLB2;jÞ

n1 ¼
Xn
k¼0

Lk
B1;j

Ln�k
B2;j

1

a
Xn
k¼0

kLk
B1;j

1kykLn�k
B2;j

1ky
	 


ð6:1Þ

for any nb 1. It follows from Proposition 5.2 that

lim
n!y

1

n
logkLn

B2;j
1ky ¼ log ~ll0;

199Generalized Ruelle operators



where ~ll0 ¼ maxk AT2
~llk < ~ll. Thus for any e > 0 satisfying ~ll0 < e�e~ll there

exists a constant c9 b 1 such that kLn
B2;j

1ky a c9ðe�e~llÞn for any nb 1. On

the other hand, for any nb 1 and o A Sð0ÞUSð1Þ, we have

Ln
B1;j

1ðoÞ ¼ Ln
B1;j

wSð0ÞUSð1ÞðoÞ ¼ Ln
B;jwSð0ÞUSð1ÞðoÞ

a
1

infSð0ÞUSð1Þ g
Ln

B;jgðoÞ ¼
1

infSð0ÞUSð1Þ g
~llngðoÞa c10~ll

n;

where c10 ¼ kgky=infSð0ÞUSð1Þ g. Consequently, the inequality (6.1) implies

that

kLn
B;j1ky a

Xn
k¼0

c9c10~ll
nðe�eÞn�k

a
c9c10

1� e�e
~lln

for any nb 1. Hence the condition (ii) is fulfilled.

Next, we show that (ii) implies (iii). Suppose that there exists an

eigenvalue lj0 of the operator LB;j A LðFyðSþ
A ÞÞ that is not semisimple. Then

the nilpotent Nj0 corresponding to lj0 is not a zero operator. Choose any

f A FyðSþ
A Þ such that Nj0 f 0 0. Put 0 < nj a d such that N

nj
j ¼ O and

N
nj�1
j 0O for each j. The decomposition (3.1) of LB;j A LðFyðSþ

A ÞÞ yields

the form

Ln
B;j ¼

Xq�1

j¼0

ln
j Pj þ

Xnj�1

i¼1

n

i

� �
ln�i
j N i

j

 !
þRn ð6:2Þ

for nb d. We obtain

k~ll�nLn
B;j f ky b

Xq�1

j¼0

Xnj�1

i¼1

n

i

� �
~ll�ikN i

j f ky �
Xq�1

j¼0

kPj f ky � ~ll�nkRnf ky

b n~ll�1kNj0 f ky �
Xq�1

j¼0

kPj f ky � ~ll�nkRnf ky ! y

as n ! y. Therefore the condition (ii) does not hold. Thus (ii) yields (iii).

The implication (iii) ) (iv) is trivial.

Finally, we show that (iv) implies (i). Assume that ðSFÞ does not hold.

Then there exist k; k 0 A T0 with k0 k 0 such that ~llk ¼ ~llk 0 ¼ ~ll and k � k 0. We

show that the generalized eigenspace and the eigenspace do not coincide for

the eigenvalue ~ll. For this purpose, we construct a function h A FyðSþ
A Þ such

that

ð~llI �LB;jÞh0 0 and ð~llI �LB;jÞ2h ¼ 0: ð6:3Þ
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Let e0 A T be a maximal element of the set

fk A T0 : there exists k 0 A T0 such that ~llk ¼ ~llk 0 ¼ ~ll; k � k 0 and k0 k 0g

in the sense that there is no element k of the set above such that e0 � k and

e0 0 k. Put

T0;0 ¼ fk A T0nfe0g : ~llk ¼ ~ll and e0 � kg;

T0;1 ¼ fk A T0nðfe0gUT0;0Þ : e0 � kg;

T0;2 ¼ fk A T0 : e0 � k does not holdg:

Then T0 is decomposed into the subsets fe0g, T0;0, T0;1, T0;2. Note that if

k A T0;1 then ~llk < ~ll and there exists k 0 A T0;0 such that e0 � k � k 0. We write

T0;1 as fe1; e2; . . . ; erg with e1 < e2 < � � � < er, and T1 as fk1; k2; . . . ; ksg with

k1 < k2 < � � � < ks.

We will construct such h A FyðSþ
A Þ as the composition of the function

hk on Sk defined as follows:

(a) hk ¼ 0 if k A T0;2 UT2.

(b) he0 ¼ h0ð~ll; e0Þ, which is a nonnegative eigenfunction corresponding to

the eigenvalue ~ll of the operator LBe0e0
;j supported on Se0 .

(c) hei ¼ ð~llI �LBeiei
;jÞ�1ð

P i�1
j¼0 LBej ei

;jhej Þ for each i ¼ 1; 2; . . . ; r, induc-

tively.

(d) hki ¼
P2

j¼1ð~llI �LBkiki
;jÞ�jð

P
k A fe0gUT0; 0UT0; 1Ufk1;...;ki�1g LBkki

;jhkÞ for

each i ¼ 1; 2; . . . ; s, inductively.

It remains to define hk for k A T0;0. Let k A T0;0. By Theorem 4.1 for the

operator LBkk ;j;LBkk ;j A LðFyðSþ
A ÞÞ has the spectral decomposition

LBkk ;j ¼ ~llPBkk
þ Ek

such that PBkk
is the projection onto the eigenspace corresponding to ~ll of

the operator LBkk ;j and Ek satisfies EkPBkk
¼ PBkk

Ek ¼ O. We put hk ¼
ð~llI � EkÞ�1

gk with gk ¼ ðI �PBkk
Þð
Pr

j¼0 LBejk
;jhej Þ. The function hk satisfies

ð~llI �LBkk ;jÞhk ¼ ð~llI � EkÞhk ¼ gk:

We set h ¼
P

k AT hk.

It is easy to check that for each k A T2 U fe0gUT0;1 UT0;2, ð~llI �LB;jÞh ¼
ð~llI �LB;jÞ2h ¼ 0 on Sk. For each k A T0;0 and o A Sk, we have

ð~llI �LB;jÞhðoÞ ¼ ð~llI �LBkk ;jÞhðoÞ � ðLB;j �LBkk ;jÞhðoÞ

¼ gkðoÞ �
Xr
j¼0

LBejk
;jhej ðoÞ ¼ �PBkk

Xr
j¼0

LBejk
;jhej

 !
ðoÞ:
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Note that the last term is non-zero since each function hej is nonnegative and

e0 � k holds. Therefore this equation implies that ð~llI �LB;jÞh0 0. On the

other hand, we have ð~llI �LB;jÞ2hðoÞ ¼ 0. It is not hard to see that for

k A T1, ð~llI �LB;jÞ2h ¼ 0 on Sk. Thus h satisfies (6.3). Consequently, ~ll is

not semisimple. We see that (iv) implies (i).

Proof of Theorem 3.3. We use the notation hðl; kÞ and nðl; kÞ in Section

5. Choose any l A C which is an eigenvalue of the operator LB;j A LðCðSþ
A ÞÞ

satisfying jlj ¼ ~ll. Denote by P A LðCðSþ
A ÞÞ the projection onto the eigen-

space corresponding to the eigenvalue l. By Proposition 5.3(3), the eigen-

space is spanned by fhðl; kÞ : k A T0ðlÞg, where T0ðlÞ ¼ fk A T0 : hðl; kÞ0 0g.
Therefore for any f A CðSþ

A Þ, there exist numbers mkð f Þ A C with mkðhðl; kÞÞ ¼ 1

such that Pf ¼
P

k AT0ðlÞ mkð f Þhðl; kÞ. We see that each mk is a linear func-

tional and thus it is a complex Borel measure on Sþ
A . By a similar argu-

ment, we have L�
B;jmk ¼ lmk. By virtue of Proposition 5.4(3), mk ¼ gknðl; kÞ

holds for some gk A C by supp mk VSð0ÞHSk. Furthermore, 1 ¼ mkðhðl; kÞÞ ¼
gknðl; kÞðhðl; kÞÞ ¼ gk. Consequently we have the desired form Pjð f Þ ¼P

k AT0ðljÞð
Ð
f dnðlj ; kÞÞhðlj; kÞ for each j ¼ 0; 1; . . . ; q� 1 and f A CðSþ

A Þ.

Proof of Proposition 3.4. Assume that LB;jg ¼ lg for some g A CðSþ
A Þ

with g0 0 and l A C with jlj ¼ ~ll. Then g ¼ 0 on Sð2Þ by Proposition 5.3(1).

We write T0 as fm1;m2; . . . ;mrg with m1 < m2 < � � � < mr. Put k ¼ m1. We

see that k 0 � k yields k 0 A T2 U fkg. Therefore, we have

LBkk ;jðgwSk
Þ ¼ ðLB;jgÞwSk

¼ lgwSk

on Sþ
A . Since Bkk is irreducible and ~llk ¼ ~ll holds, if g0 0 on Sk then

lpk ¼ ~llpk for the period pk of the matrix Bkk. Thus either lpk ¼ ~llpk or g ¼ 0

on Sk.

Let k ¼ mi for some i > 1. Then k 0 � k yields k 0 A T2 U fm1;m2; . . . ;mig.
If g ¼ 0 on Sm1

USm2
U � � �USmi�1

, then

LBkk ;jðgwSk
Þ ¼ lgwSk

holds on Sþ
A . If ~llk < ~ll, then gwSk

must be 0 by the above equation. If
~llk ¼ ~ll, then either lpk ¼ ~llpk or g ¼ 0 on Sk by the above argument. Induc-

tively, we have that either lpk ¼ ~llpk for some k A T0 with ~llk ¼ ~ll or g ¼ 0

on Sð0Þ. By Proposition 5.3(2), if g ¼ 0 on Sð0Þ then g ¼ 0 on Sð1Þ and

thus g ¼ 0. This contradicts the fact g0 0. Hence lpk ¼ ~llpk holds for some

k A T0 with ~llk ¼ ~ll.

202 Haruyoshi Tanaka



7. Examples

In this section, we give some typical examples which illustrate our

results. Let A and B be 6� 6 matrices with entries 0 or 1 as follows.

A ¼

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

0
BBBBBBBB@

1
CCCCCCCCA
; B ¼

1 1 � � � �
1 1 � � � �
0 0 0 0 1 1

0 0 0 0 1 1

0 0 1 1 0 0

0 0 1 1 0 0

0
BBBBBBBB@

1
CCCCCCCCA

¼ B11 B12

O B22

� �
;

ð7:1Þ

where

B11 ¼
1 1

1 1

� �
and B22 ¼

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

0
BBB@

1
CCCA:

It is easy to see that the conditions ðS:1Þ, ðS:2Þ and ðS:3Þ are satisfied. We

write Sð1Þ ¼ f1; 2g and Sð2Þ ¼ f3; 4; 5; 6g. Put Sk ¼ 6
i ASðkÞ 0½i� for each

k ¼ 1; 2. Choose any j A FyðSþ
A ! RÞ. Consider the triplet ð~llk; ~hhk; ~nnkÞ ¼

ðlBkk
; hBkk

; nBkk
Þ A R� CðSþ

A Þ �MðSþ
A Þ for k ¼ 1; 2 obtained by putting

B ¼ Bkk in Theorem 4.1. Since the period of B22 is 2, �~ll2 is an eigenvalue

of the operator LB22;j and the corresponding eigenfunction has the form
~hh2;1 ¼ ~hh2jX ð0Þ � ~hh2jXð1Þ up to constant multiplier, where Xð0Þ ¼ 0½3�U 0½4� and

Xð1Þ ¼ 0½5�U 0½6�. Similarly, the corresponding eigenvector to the eigenvalue

�~ll2 of the dual L�
B22;j

has the form ~nn2;1 ¼ ~nn2jXð0Þ � ~nn2jXð1Þ up to constant

multiplier. Put ~ll ¼ maxf~ll1; ~ll2g. We consider the following cases.

Example 7.1 (The case ~ll1 > ~ll2). We put jðoÞ ¼ 1 if o A S1 and

jðoÞ ¼ 0 if o A S2. Then LB;j A LðCðSþ
A ÞÞ has the decomposition

LB;j f ¼ ~ll

ð
f dnð~ll; 1Þ

� �
hð~ll; 1Þ þRf ;

where hð~ll; 1Þ ¼ ~hh1 þ ð~llI �LB22;jÞ
�1LB12;j

~hh1 and nð~ll; 1Þ ¼ ~nn1. Indeed, we eas-

ily see that T0 ¼ f1g and C ¼ B11. Therefore the condition ðSFÞ is satisfied.

Since B11 is aperiodic, the set of eigenvalues of LB;j with maximal modulus

is f~llg. Note that T1 ¼ f2g and T2 ¼ q if B12 0O and that T1 ¼ q and

T2 ¼ f2g if B12 ¼ O. Thus Theorem 3.3 yields the assertion.
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Example 7.2 (The case ~ll1 < ~ll2). We put jðoÞ ¼ 0 if o A S1 and

jðoÞ ¼ 1 if o A S2. Then LB;j A LðCðSþ
A ÞÞ has the decomposition

LB;j f ¼
X1
j¼0

ð�1Þ j ~ll
ð
f dnðð�1Þ j ~ll; 2Þ

� �
hðð�1Þ j ~ll; 2Þ þRf ;

where hð~ll; 2Þ, nð~ll; 2Þ, hð�~ll; 2Þ, and nð�~ll; 2Þ have the form

hð~ll; 2Þ ¼ ~hh2; nð~ll; 2Þ ¼ ~nn2 þ ðLB12;jð~llI �LB11;jÞ
�1Þ�~nn2;

hð�~ll; 2Þ ¼ ~hh2;1; nð�~ll; 2Þ ¼ ~nn2;1 þ ðLB12;jð�~llI �LB11;jÞ
�1Þ�~nn2;1;

respectively. Indeed, we have T0 ¼ f2g, T1 ¼ q and T2 ¼ f1g. Note that

B22 is irreducible whose period is 2. The assertion is valid from Theorem 3.3.

Example 7.3 (The case ~ll1 ¼ ~ll2). We put j ¼ 1. We have the following:

(a) Assume that B12 ¼ O. Then LB;j A LðCðSþ
A ÞÞ has the form

LB;j f ¼ ~ll

ð
f dnð~ll; 1Þ

� �
hð~ll; 1Þ

þ
X1
j¼0

ð�1Þ j ~ll
ð
f dnðð�1Þ j ~ll; 2Þ

� �
hðð�1Þ j ~ll; 2Þ þRf ;

where hð~ll; kÞ ¼ ~hhk and nð~ll; kÞ ¼ ~nnk for k ¼ 1; 2, and hð�~ll; 2Þ ¼ ~hh2;1 and

nð�~ll; 2Þ ¼ ~nn2;1.

(b) Assume that B12 0O. Then the set of eigenvalues of LB;j A

LðFyðSþ
A ÞÞ with maximal modulus is equal to f~ll;�~llg. In particular, ~ll is

not semisimple and �~ll is simple (consequently semisimple).

Indeed, we note that T0 ¼ f1; 2g and T1 ¼ T2 ¼ q. First we assume

B12 ¼ O. Since the condition ðSFÞ is satisfied, the assertion (a) follows from

Theorem 3.3. Next we assume B12 0O. We see that ðSFÞ does not hold.

By Theorem 3.2, ~ll is not a semisimple eigenvalue of the operator LB;j A
LðFyðSþ

A ÞÞ. On the other hand, the set of eigenvalues of LB;j with maxi-

mal modulus is equal to either f~llg or f~ll;�~llg by Proposition 3.4. Since

LB;j
~hh2;1 ¼ LB22;j

~hh2;1 ¼ �~ll~hh2;1 holds, we see that �~ll is an eigenvalue of LB;j.

It remains to show that �~ll is a simple eigenvalue of the operator LB;j.

Assume that f A FyðSþ
A Þ with f 0 0 satisfies ð�~llI �LB;jÞnf ¼ 0 for some

nb 1. Note that Lk
B;j f ¼ Lk

B11;j
f on S1 for any kb 1. Since �~ll is

not an eigenvalue of the operator LB11;j, we have f ¼ 0 on S1. Thus

ð�~llI �LB;jÞnf ¼ ð�~llI �LB22;jÞ
n
f ¼ 0. The simplicity of �~ll of the oper-

ator LB22;j yields n ¼ 1. Hence �~ll is simple.
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