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On the influence of time-periodic dissipation on energy and

dispersive estimates

Jens Wirth

Abstract. In this short note we discuss the influence of a time-periodic dissipation

term on a-priori estimates for solutions to dissipative wave equations. The approach is

based on a diagonalisation argument for high frequencies and results from spectral

theory of periodic di¤erential equations / Floquet theory for bounded frequencies.

In recent years much attention was paid to hyperbolic equations with time-

dependent coe‰cients and the question of the influence of the precise time-

dependence on asymptotic properties of solutions. In particular, we refer to

[ReYa00], [HiRe03], [ReSm05], [Wir06], [Wir07] or the survey article [Rei04]

for an overview of results. All these papers have in common that they use

assumptions on derivatives of the coe‰cients to avoid the (bad) influence of

oscillations. That oscillations may have deteriorating influences was shown

in [Yag01] for the example of a wave equation with time-periodic speed of

propagation. In this case (some) solutions have exponentially growing energy.

The counter-example of [ReSm05] shows that even for the Cauchy problem

utt � a2ðtÞDu ¼ 0

with aðtÞ ¼ 2þ sinðlogðeþ tÞaÞ and a > 2 (some) solutions have supra-

polynomially increasing energy, while for a ¼ 1 polynomial growth may occur

and for a < 1 the energy can be bounded by te for any e > 0. Similar results

can be obtained for oscillations in mass terms, especially for the case of

periodic mass terms we can always find solutions with exponentially increasing

energy.

Our aim is to show that the influence of oscillations in the dissipation term

is di¤erent. To be precise, we want to show that a wave equation with a

periodic in time dissipation term,

utt � Duþ 2bðtÞut ¼ 0; bðtþ TÞ ¼ bðtÞb 0;
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satisfies the same Matsumura-type estimate as obtained for constant dissipation

in [Mat76]. We conjecture that the results of [Wir07] (where only very slow

oscillations were treated and decay results of the same structure were obtained)

can be extented to general dissipation terms with tbðtÞ ! y without further

assumptions on derivatives. However, it is an open problem how to achieve

such a result.

This note is organised as follows: In Section 1 we give the basic

assumptions on the Cauchy problem under consideration and discuss properties

of its fundamental solution and the associated monodromy operator. Main

result is Theorem 1.1. In Section 2 we discuss applications of Theorem 1.1

to energy and more generally Lp–Lq decay estimates of solutions. Results

are given in Theorems 2.1 and 2.2 and resemble whose for the damped wave

equation based on [Mat76]. Finally, Theorem 2.3 implies a di¤usion phe-

nomenon for periodically damped wave equations generalizing results of

[IkNi03] and [ChHa03].

1. Representation of solutions

We consider the Cauchy problem

utt � Duþ 2bðtÞut ¼ 0; uð0; �Þ ¼ u1; utð0; �Þ ¼ u2ð1:1Þ

for a wave equation with time-dependent dissipation, where we assume that the

coe‰cient bðtÞ is continuous, of bounded variation and satisfies bðtÞ > 0 a.e.

together with

bðtþ TÞ ¼ bðtÞ for some T > 0 and all t A R:

We denote the mean value of bðtÞ as

b ¼ 1

T

ðT
0

bðtÞdt:

Using a partial Fourier transform with respect to the spatial variables we

reduce the Cauchy problem (1.1) to the ordinary di¤erential equation

ûutt þ jxj2ûuþ 2bðtÞûut ¼ 0;ð1:2Þ

which we reformulate as first order system DtV ¼ Aðt; xÞV for V ¼ ðjxjûu;DtûuÞT
with coe‰cient matrix

Aðt; xÞ ¼ jxj
jxj 2ibðtÞ

� �
:
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As usual, Dt ¼ �iqt denotes the Fourier derivative. Aim of our investigation

is to describe the corresponding fundamental solution Eðt; s; xÞ, i.e. the matrix-

valued solution to

DtEðt; s; xÞ ¼ Aðt; xÞEðt; s; xÞ; Eðs; s; xÞ ¼ I A C2�2ð1:3Þ

or, exploiting the periodic structure of the problem, the corresponding family of

monodromy matrices Mðt; xÞ ¼ Eðtþ T ; t; xÞ. Note, that the T-periodicity of

bðtÞ implies directly the T-translation invariance of the fundamental solution,

Eðt; s; xÞ ¼ Eðtþ T ; sþ T ; xÞ. The monodromy matrix Mðt; xÞ is T-periodic

and satisfies the commutator equation

DtMðt; xÞ ¼ ½Aðt; xÞ;Mðt; xÞ�; MðT ; xÞ ¼ Mð0; xÞ:

Indeed, the semigroup property Eðt; s; xÞEðs; t; xÞ ¼ I yields DsEðt; s; xÞ ¼
�Eðt; s; xÞAðs; xÞ and, therefore, DtMðt; xÞ ¼ Aðtþ T ; xÞEðtþ T ; t; xÞ�
Eðtþ T ; t; xÞAðt; xÞ ¼ ½Aðt; xÞ;Mðt; xÞ�.

1.1. Considerations for large frequencies. Our aim is to show that the

monodromy matrix is contractive for large frequencies, i.e.

kMðt; xÞk < 1 holds true for jxj > Nð1:4Þ

uniformly in t A ½0;T � for a (still to be determined) constant N. Because we

consider only large frequencies jxj > N the influence of jxj in Aðt; xÞ seems to

be stronger than the influence of the (comparatively small) coe‰cient bðtÞ. To

employ this, we apply two transformations to the system. For the first step we

use the unitary matrices

M ¼ 1ffiffiffi
2

p 1 �1

1 1

� �
; M�1 ¼ 1ffiffiffi

2
p 1 1

�1 1

� �
¼ M �

and set V ð0Þ ¼ M�1V , such that

DtV
ð0Þ ¼ jxj

�jxj

� �
þ ibðtÞ 1 1

1 1

� �� �
V ð0Þ:

We denote the first (diagonal) matrix as DðxÞ and the remainder term as

R0ðt; xÞ. For convenience we set D1 ¼ Dþ diag R0 and R1 ¼ R0 � diag R0.

In the next step we follow an idea from [Eas89, Chapter 1.6] and construct a

matrix N1ðt; xÞ subject to

DtN1 ¼ ½D1;N1� þ R1ð1:5Þ

and N1ð0; xÞ ¼ I (we could use any starting point N1ðs; xÞ ¼ I here without

changing much of the calculation). The choice of N1ðt; xÞ implies that
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ðDt �D1 � R1ÞN1 �N1ðDt �D1Þ ¼ DtN1 � ½D1;N1� � R1N1 ¼ R1ðI �N1Þ;

such that with R2 ¼ �N�1
1 R1ðI �N1Þ the operator equation ðDt �D1 � R1ÞN1

¼ N1ðDt �D1 � R2Þ holds true. Thus, provided N1ðt; xÞ is invertible, we

conclude that V ð1Þ ¼ N�1
1 V ð0Þ satisfies

DtV
ð1Þ ¼ ðD1ðt; xÞ þ R2ðt; xÞÞV ð1Þ:ð1:6Þ

It remains to understand in which sense the remainder R2 is better than the

remainder R1 and that it is indeed possible to choose the zone constant N large

enough to guarantee the invertibility of N1.

For this we solve (1.5). Since D1 is diagonal, we see that Dt diag N1 ¼ 0

and therefore diag N1 ¼ I . The two o¤-diagonal entries of N1 ¼
�

1 n�

nþ 1

�
satisfy

Dtn
Gðt; xÞ ¼G2jxjnGðt; xÞ þ ibðtÞ; nGð0; xÞ ¼ 0;

such that

nGðt; xÞ ¼
ð t
0

eG2ijxjðt�sÞbðsÞds ¼
ð t
0

eG2isjxjbðt� sÞds;

especially we see that nþ ¼ n� and as Fourier transforms of bðt� sÞ1½0; t�ðsÞ the

Riemann-Lebesgue lemma implies nGðt; xÞ ! 0 as jxj ! y for any fixed t.

We show that this is true uniformly in t A ½0; 2T �, provided that b is of bounded

variation. Indeed, integration by parts yields

jnGðt; xÞj ¼ 1

G2ijxj e
G2ijxjsbðt� sÞjt�s¼0þ þ 1

G2ijxj

ð t
0

eG2ijxjsb 0ðt� sÞds
����

����
aCð1þ tÞjxj�1

and the assertion follows.

Now we are in a position to show that (1.4) holds true. Note first, that

the transformation matrices satisfy N1ðt; xÞ ! I and therefore N�1
1 ðt; xÞ ! I

uniform in t A ½0; 2T � as jxj ! y. Furthermore, the remainder term satisfies

R2ðt; xÞ ! 0 as jxj ! y uniformly in t A ½0; 2T �. Thus for su‰ciently large

zone constant N we can achieve that

sup
t A ½0;T �

kN1ðtþ TÞk exp

ð tþT

t

kR2ðs; xÞkds
� �

kN�1
1 ðtÞk < exp bTð1:7Þ

holds true. We fix this choice of the constant N and construct the funda-

mental solution Eðt; s; xÞ to Dt � Aðt; xÞ. We start from the transformed

version of this equation. The fundamental solution to the diagonal part

Dt �D1 is given by
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lðsÞ
lðtÞ

~EE0ðt; s; xÞ;

where ~EE0ðt; s; xÞ ¼ diagðexpðiðt� sÞjxjÞ; expð�iðt� sÞjxjÞÞ is unitary and related

to the free propagator E0ðt; s; xÞ ¼ M ~EE0ðt; s; xÞM�1 corresponding to b1 0

and lðtÞ ¼ expð
Ð t
0 bðtÞdtÞ describes the influence of dissipation. Note that

lðtÞAexp bt as t ! y. For the fundamental solution to Dt �D1 � R2 we

make the ansatz lðsÞ=lðtÞ ~EE0ðt; s; xÞQðt; s; xÞ such that

DtQðt; s; xÞ ¼ ~EE0ðs; t; xÞR2ðt; xÞ ~EE0ðt; s; xÞQðt; s; xÞ; Qðs; s; xÞ ¼ I ;

which can be solved directly by the Peano-Baker series

Qðt; s; xÞ ¼ I þ
Xy
k¼1

ik
ð t
s

R2ðt1; s; xÞ
ð t1
s

R2ðt2; s; xÞ . . .
ð tk�1

s

R2ðtk; s; xÞdtk . . . dt2dt1;

where we used the notation R2ðt; s; xÞ ¼ ~EE0ðs; t; xÞR2ðt; xÞ ~EE0ðt; s; xÞ. Note that

kR2ðt; s; xÞk ¼ kR2ðt; xÞk and therefore

kQðt; s; xÞka exp

ð t
s

kR2ðt; xÞkdt
� �

:ð1:8Þ

Hence, the fundamental solution to (1.6) is constructed as

lðsÞ=lðtÞ ~EE0ðt; s; xÞQðt; s; xÞ and transforming back to the original problem yields

Eðt; s; xÞ ¼ lðsÞ
lðtÞMN1ðt; xÞ ~EE0ðt; s; xÞQðt; s; xÞN�1

1 ðs; xÞM�1ð1:9Þ

for all t A ½0;T � and jxj > N. Therefore, the monodromy matrix Mðt; xÞ ¼
Eðtþ T ; t; xÞ is representable as

Mðt; xÞ ¼ lðtÞ
lðtþ TÞMN1ðtþ T ; xÞ ~EE0ðtþ T ; t; xÞQðtþ T ; t; xÞN�1

1 ðt; xÞM�1

and in combination with lðtÞ=lðtþ TÞ ¼ expð�bTÞ the desired result

kMðt; xÞk < 1 uniformly in t A ½0;T � and jxjbN follows by (1.7) and (1.8).

1.2. Treatment of bounded frequencies. Our next aim is to show that for any

c > 0 there exists a natural number k such that

sup
t A ½0;T �

kMkðt; xÞk < 1ð1:10Þ

for all ca jxjaN. Note, that we are only interested in a compact set in t and

x here. We will combine spectral theory with a compactness argument. First
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step is to show that the spectrum spec Mðt; xÞ is contained inside the open unit

ball fz A C j jzj < 1g.
Note first, that Mðt; xÞEðt; 0; xÞ ¼ Eðtþ T ; 0; xÞ ¼ Eðt; 0; xÞMð0; xÞ and

therefore Mðt; xÞ is similar to Mð0; xÞ. Especially the spectrum spec Mðt; xÞ
is independent of t. Furthermore, we assumed bðtÞ to be real. Therefore (1.2)

has real-valued solutions and it follows that Mðt; xÞ is similar to a real matrix.

Furthermore, according to Liouville theorem we see that

det Mðt; xÞ ¼ exp i

ð tþT

t

tr Aðt; xÞdt
� �

ð1:11Þ

¼ exp �2

ð tþT

t

bðtÞdt
� �

¼ expð�2bTÞ;

such that the eigenvalues K1ðxÞ and K2ðxÞ of Mðt; xÞ are either real and of the

form K2ðxÞ ¼ K1ðxÞ�1 expð�2bTÞ or complex-conjugate K2ðxÞ ¼ K1ðxÞ and

therefore jK1ðxÞj ¼ jK2ðxÞj ¼ expð�bTÞ. For the complex case we observe

spec Mðt; xÞJ fjzj ¼ expð�bTÞg; for the real case we have to look more

carefully. Note, that the eigenvalues are continuous in x.

Assume that for a certain frequency x0 0 the monodromy matrix Mð0; xÞ
has an eigenvalue with modulus 1. Since it must be real, it is either 1 or �1.

Let ~cc ¼ ðc1; c2Þ be a corresponding eigenvector. Then we can find a domain

WR ¼ fx A Rn j jxjaRg such that �jxj2 is an eigenvalue of the Dirichlet

Laplacian on WR with normalised eigenfunction fðxÞ. Let us consider the

initial boundary value problem ruþ 2bðtÞut ¼ 0 with Dirichlet boundary

condition and uð0; �Þ ¼ c1jxj�1fðxÞ and utð0; �Þ ¼ ic2fðxÞ. Now we look for

the solution in the form

uðt; xÞ ¼ f ðtÞfðxÞ

and we show that f ðtÞ is T-periodic (or 2T-periodic). Indeed, as a conse-

quence of Df ¼ �jxj2f, the partial di¤erential equation ruþ 2bðtÞut ¼ 0 turns

into the ordinary di¤erential equation utt þ jxj2uþ 2bðtÞut ¼ 0 (with x regarded

as parameter), and hence, the corresponding solution satisfies

Dt
jxjuðt; xÞ
Dtuðt; xÞ

� �
¼ jxj

jxj 2ibðtÞ

� �
jxjuðt; xÞ
Dtuðt; xÞ

� �
;

jxjuðt; xÞ
Dtuðt; xÞ

� �����
t¼0

¼~ccfðxÞ:

But this system can be solved by the fundamental solution Eðt; s; xÞ and

especially for t ¼ T we obtain

jxjuðt; xÞ
Dtuðt; xÞ

� �����
t¼T

¼ MðT ; xÞ~ccfðxÞ ¼G~ccfðxÞ
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(sign according to the eigenvalue). Thus we conclude that f ðtÞ is a T-periodic

(or 2T-periodic) function with f ð0Þ ¼ c1jxj�1. However, this is not possible.

If we denote the energy of this solution as Eðu; tÞ ¼ k‘uðt; �Þk22 þ
kDtuðt; �Þk22, the standard integration by parts argument gives

d

dt
Eðu; tÞ ¼ �2bðtÞkutk22 ¼ �2bðtÞj f 0ðtÞj2;

such that after integration 0 ¼ �2
Ð ð2ÞT
0 bðtÞj f 0ðtÞj2dt. The a.e. positivity of

bðtÞ implies that f is constant and this contradicts x0 0. Thus,

G1 B spec Mðt; xÞ for x0 0 and therefore (using that the spectrum is inside

the unit ball for jxj > N) the spectral radius satisfies rðMðt; xÞÞ < 1 for all

x0 0. Thus, the spectral radius formula kMkðt; xÞk1=k ! rðMðt; xÞÞ < 1

implies that for any t and x we find a number k such that kMkðt; xÞk < 1.

Next, we want to show that we can find such a number k uniform on

any compact frequency interval jxj A ½c;N�. Set for this Uk ¼
fðt; xÞ j kMð2kÞðt; xÞk < 1g. The sets Uk are clearly open (by the continuity of

the monodromy matrix) and satisfy Uk JUl for ka l. The above reasoning

shows that the compact set C ¼ fðt; xÞ j 0a taT ; ca jxjaNg is contained in

6
k
Uk and by compactness we find one k such that CHUk. Hence, the

estimate (1.10) is proven.

Remark. We know even a little bit more about the structure of the

eigenvalues K1ðxÞ and K2ðxÞ. We can apply a Liouville type transform to

equation (1.2) to deduce Hill’s equation

vtt þ ðjxj2 � b2ðtÞ � b 0ðtÞÞv ¼ 0; v ¼ lðtÞûu;ð1:12Þ

such that Floquet theory, see e.g. [Eas73], may be applied. This implies that

if b2ðtÞ þ b 0ðtÞ is not constant (which is equivalent to bðtÞ not constant) then

there exist infinitely many (closed) intervals I0 ¼ ð�y; t0� and Ik ¼ ½t�k ; tþk �,
k ¼ 1; 2; . . . , such that for jxj A Ij, j ¼ 0; 1; . . . , the spectrum spec Mðt; xÞ is real
(intervals of instability for (1.12)), while for all other x the eigenvalues are

complex and conjugate to each other (intervals of stability for (1.12)). The

numbers tGk are the eigenvalues of the corresponding periodic eigenvalue

problem �v 00 þ ðb2ðtÞ þ b 0ðtÞÞv ¼ l2v with periodic boundary conditions vð0Þ ¼
vð2TÞ, v 0ð0Þ ¼ v 0ð2TÞ.

1.3. The neighbourhood of x ¼ 0. The frequency x ¼ 0 is the only exceptional

point of our reasoning, since spec Mðt; 0Þ ¼ f1; expð�2bTÞg contains the

eigenvalue 1. This follows directly by solving (1.2); a fundamental system

of solutions is given by 1 and
Ð t
0 expð�2

Ð s
0 bðtÞdtÞds. We will use ideas from

the theory of Hill’s equation to understand the structure of Eðt; s; xÞ near
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x ¼ 0. From the remarks of Section 1.2 it is clear that 0 is interior point of I0
and, choosing c small enough allows to write down a fundamental system of

solutions to (1.2) as

e�nGðxÞtfGðt; xÞð1:13Þ

with T-periodic functions fGðt; xÞ and exponents nGðxÞ such that

expð�nGðxÞTÞ A spec Mðt; xÞ. It is clear that nGðxÞ > 0 for x0 0 and we

denote them in such a way that nþðxÞ ! 0 and n�ðxÞ ! 2b as x ! 0. Any

solution to (1.2) is a combination of these two solutions. The part corre-

sponding to n�ðxÞ is not of interest for us (because it leads to an exponential

decay as t ! y) and we can concentrate on the nþðxÞ part.

We know that nþðxÞ is an analytic function of jxj (as long as Mðt; xÞ has

no multiple eigenvalues) and can therefore be expanded into a MacLaurin

series

nþðxÞ ¼
Xy
k¼1

akjxjk:ð1:14Þ

We want to show that a1 ¼ 0 and a2 > 0. For this we use Mð0; xÞ ¼
EðT ; 0; xÞ and calculate the derivatives of tr Mð0; xÞ with respect to jxj at

x ¼ 0. Note, that qjxjAðt; xÞ ¼
�
0 1
1 0

�
¼ J and q2jxjAðt; xÞ ¼ 0, such that

DtqjxjEðt; s; xÞ ¼ JEðt; s; xÞ þ Aðt; xÞqjxjEðt; s; xÞ and qjxjEðs; s; xÞ ¼ 0. There-

fore we obtain the representation

qjxjEðt; s; xÞ ¼
ð t
s

Eðt; t; xÞJEðt; s; xÞdt:

Using that

Eðt; s; 0Þ ¼ exp i

ð t
s

Aðt; 0Þdt
� �

¼ diag 1; expð�2

ð t
s

bðtÞdt
� �

¼ diag 1;
l2ðsÞ
l2ðtÞ

 !

is diagonal, we immediately see that the above integrand has zeros as diagonal

entries for x ¼ 0. This implies qjxj tr Mðt; 0Þ ¼ 0. For the second derivative

we use in analogy that Dtq
2
jxjEðt; s; xÞ ¼ Aðt; xÞq2jxjEðt; s; xÞ þ 2JqjxjEðt; s; xÞ and

q2jxjEðs; s; xÞ ¼ 0, such that after integration

q2jxjEðt; s; xÞ ¼ 2

ð t
s

Eðt; t; xÞJqjxjEðt; s; xÞdt

¼ 2

ð t
s

Eðt; t; xÞJ
ð t
s

Eðt; y; xÞJEðy; s; xÞdydt:

For x ¼ 0 we can evaluate these integrals and obtain for the trace
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q2jxj tr Mðt; 0Þ ¼ 2

ðT
0

ð t
0

l2ðyÞ
l2ðtÞ

þ l2ðtÞ
l2ðTÞl2ðyÞ

 !
dydt > 0:

On the other hand, tr Mðt; xÞ ¼ expð�nþðxÞTÞ þ expð�n�ðxÞTÞ with

nþðxÞ þ n�ðxÞ ¼ 2b, such that qjxj tr Mðt; 0Þ ¼ a1Tð1� expð�2bTÞÞ ¼ 0 implies

a1 ¼ 0 and q2jxj tr Mðt; 0Þ ¼ 2a2Tð1� expð�2bTÞÞ > 0 implies a2 > 0.

Hence, we have shown that as x ! 0 the exponent behaves like nþðxÞ ¼
a2jxj2 þ Oðjxj3Þ (and, if we look carefully at the representations, we see that all

odd coe‰cients vanish and thus the remainder term is Oðjxj4Þ). This will be

enough to obtain energy and dispersive estimates for solutions to our Cauchy

problem in Section 2.

1.4. Collection of results. What have we obtained so far? The main results

are concerned with the monodromy operator Mðt; xÞ ¼ Eðtþ T ; t; xÞ and its

spectral properties.

Theorem 1.1. (1) There exists a (large) number N > 0 such that for all

jxjbN the monodromy matrix Mðt; xÞ is a contraction (uniform in t), i.e.

sup
t

kMðt; xÞk < 1:

(2) For any (small) number c > 0 there exists an exponent k A N, such that for

ca jxjaN the matrix Mkðt; xÞ is a contraction (uniform in t), i.e.

suptkMkðt; xÞk < 1.

(3) As x ! 0 the eigenvalues of Mðt; xÞ satisfy

log K1ðxÞ ¼ �a2T jxj2 þ Oðjxj4Þ; log K2ðxÞ ¼ �2bT þ a2T jxj2 þ Oðjxj4Þ

with a positive coe‰cient a2 > 0.

2. Estimates for solutions

The repesentations from Section 1 allow us to estimate the Fourier

transform of solutions, in combination with Plancherel’s theorem this gives

estimates in L2-spaces, combined with Hölder inequality and mapping proper-

ties of the Fourier transform dispersive estimates follow.

2.1. Energy estimates. We distinguish between small and large frequencies.

If jxjbN, the monodromy matrix Mð0; xÞ is a contraction and therefore

kEðt; 0; xÞk ¼ kMlðs; xÞEðs; 0; xÞka clkEðs; 0; xÞk for t ¼ lT þ s, s A ½0;T � and

c ¼ suptkMðt; xÞk < 1. Furthermore, since bðtÞb 0 we know that

kEðs; 0; xÞka 1 and therefore
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kEðt; 0; xÞka e�dðt�TÞð2:1Þ

with d ¼ T�1 log c�1 > 0. Thus, high frequencies lead to an exponential

decay. For the intermediate frequencies we obtain similarly kEðt; 0; xÞk ¼
kMlðs; xÞEðs; 0; xÞka clkEðs; 0; xÞk for t ¼ lkT þ s, s A ½0; kT � and c ¼
suptkMðt; xÞk < 1. Again this yields exponential decay, but now of the form

kEðt; 0; xÞka e�dðt�kTÞð2:2Þ

with d ¼ ðkTÞ�1 log c�1 > 0. Hence, the only non-exponential contribution

may come from the neighbourhood of x ¼ 0. For the treatment of small

frequencies we have to specify the structure of the estimate we have in mind.

While estimating the energy of the solution at time t in terms of the initial

energy brings (due to 1 A spec Mðt; 0Þ) only the trivial uniform bound and no

decay, an estimate in terms of ku1kH 1 and ku2kL2 brings decay. Reason for

this is that we can use an additional factor jxj for small frequencies.

If jxja c is su‰ciently small, we know that a fundamental system of

solutions to (1.2) is given by expð�nGðxÞtÞ fGðt; xÞ with real T-periodic functions

fGðt; xÞ and exponents nþðxÞ ¼ a2jxj2 þ Oðjxj4Þ, n�ðxÞ ¼ 2b � a2jxj2 þ Oðjxj4Þ.
Furthermore, fGðt; xÞ are non-zero for all t and x. This follows from the fact

that they are periodic and non-zero for x ¼ 0. Thus, if they would have a zero

for some t and x we could find a smallest value of x where the zero occurs.

By di¤erentiability of fG it follows that for this fixed x we would obtain a zero

of order at least 2, which contradicts the fact that expð�nGðxÞtÞ fGðt; xÞ is a

not identically vanishing solution of the second order equation (1.2). Hence,

we may assume that fGð0; xÞ ¼ 1 for all jxja c. This allows to express the

special fundamental system of solutions F1ðt; xÞ and F2ðt; xÞ with F1ð0; xÞ ¼ 1,

qtF1ð0; xÞ ¼ 0, F2ð0; xÞ ¼ 0 and qtF2ðt; xÞ ¼ 1, i.e. the fundamental system

representing solutions to (1.2) as

ûuðt; xÞ ¼
X
j¼1;2

Fjðt; xÞûujðxÞ; jxja c;ð2:3Þ

in terms of fGðt; xÞ and the exponents nGðxÞ. A simple calculation shows

F2ðt; xÞ ¼
e�nþðxÞtfþðt; xÞ � e�n�ðxÞtf�ðt; xÞ

n�ðxÞ � nþðxÞ þ qt fþð0; xÞ � qt f�ð0; xÞ
;

F1ðt; xÞ ¼
e�nþðxÞtfþðt; xÞ þ e�n�ðxÞtf�ðt; xÞ

2
� qt fþð0; xÞ þ qt f�ð0; xÞ

2
� b

� �
F2ðt; xÞ:

Both functions are smooth in x and di¤erentiable in t, especially it follows that

the denominator in the first expression is non-zero. Since we are interested in

polynomial decay rates, we can forget about all the f�-terms, which imme-
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diately lead to exponential decay. Thus, to estimate jxjûuðt; xÞ in terms of ûu1
and ûu2, the typical term to estimate is jxje�nþðxÞtfþðt; xÞ (multiplied by a

x-dependent function). Now nþðxÞ@ a2jxj2 implies the uniform decay rate

t�1=2 for this term. To estimate qtûuðt; xÞ in terms of ûu1 and ûu2 we have to

consider the typical term e�nþðxÞtqt fþðt; xÞ � nþðxÞe�nþðxÞtfþðt; xÞ. The second

addend gives t�1, while the first one has to be considered in detail. Note, that

F1ðt; 0Þ ¼ 1, such that comparing representations implies fþðt; 0Þ ¼ 1. Since

the equation was parametrised by jxj2, smoothness in jxj and periodicity in t

imply qt fþðt; xÞ ¼ jxj2~hhþðt; xÞ with a bounded T-periodic function ~hhþðt; xÞ.
Therefore we see, that the first addend gives the same decay rate t�1.

We collect our results in the following theorem.

Theorem 2.1. The solution uðt; xÞ of the Cauchy problem (1.1) satisfies the

a priori estimates

kuðt; �ÞkL2 k ku1kL2 þ ku2kH�1 ;

k‘uðt; �ÞkL2 k ð1þ tÞ�1=2ðku1kH 1 þ ku2kL2Þ;

kqtuðt; �ÞkL2 k ð1þ tÞ�1ðku1kH 1 þ ku2kL2Þ

Furthermore, for any cut-o¤ function w A CyðRÞ with wðsÞ ¼ 0 near s ¼ 0 and

wðsÞ ¼ 1 for large s there exists a constant d > 0 such that the exponential

estimate

kwðDÞuðt; �ÞkL2 þ kwðDÞ‘uðt; �ÞkL2 þ kwðDÞqtuðt; �ÞkL2 k e�dtðku1kH 1 þ ku2kL2Þ

holds true.

2.2. Dispersive estimates. We will continue this short note with some remarks

on dispersive and more generally Lp–Lq decay estimates. Again only the

small frequencies are of interest, since by Sobolev embedding the previous

theorem implies

kwðDÞuðt; �ÞkLq þ kwðDÞ‘uðt; �ÞkLq þ kwðDÞqtuðt; �ÞkLq

k e�dtðku1kH p; rpþ1 þ ku2kH p; rp Þ

for any choice of indices 1a pa 2a qay and regularity rp > nð1=p� 1=qÞ.
Thus it remains to consider the typical terms from the previous section near

x ¼ 0. Instead of Plancherel’s theorem we use Hölder inequality together with

the Lp–Lp 0
boundedness of the Fourier transform for pp 0 ¼ pþ p 0 to deduce

kwðDÞjDje�nþðDÞtfþðt;DÞkLp!Lq a kwðxÞjxje�nþðxÞtfþðt; xÞkLr
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for any 1a pa 2a qay and with 1
r
¼ 1

p
� 1

q
. The Lr-norm can be calcu-

lated directly using nþðxÞ@ a2jxj2, which implies the decay rate t�1=2�n=2r.

Similarly we obtain for the derivative terms the rate t�1�n=2r and for the

solution itself t�n=2r.

Theorem 2.2. The solution uðt; xÞ of the Cauchy problem (1.1) satisfies the

a priori estimates

kuðt; �ÞkLq k ð1þ tÞ�ðn=2Þð1=p�1=qÞðku1kH p; rp þ ku2kH p; rp�1Þ;

k‘uðt; �ÞkLq k ð1þ tÞ�1=2�ðn=2Þð1=p�1=qÞðku1kH p; rpþ1 þ ku2kH p; rp Þ;

kqtuðt; �ÞkLq k ð1þ tÞ�1�ðn=2Þð1=p�1=qÞðku1kH p; rpþ1 þ ku2kH p; rp Þ:

for all 1a pa 2a qay and rp > nð1=p� 1=qÞ.

2.3. Di¤usion phenomenon. For proving estimates for the solution u we used

that the only bad term in the representation of solutions was e�nþðxÞtfþðt; xÞ@
e�a2jxj2t, which corresponds to the Fourier multiplier for a corresponding heat

equation

wt ¼ a2Dw; wð0; �Þ ¼ w0:ð2:4Þ

Choosing w0 in dependence of u1 and u2 allows to cancel the corresponding

terms in the representation of solutions such that the norm of the di¤erence

jju� wjjL2 decays. For constant b and with a2 ¼ ð2bÞ�1 this was observed in

[Nis97] and [YaMi01] for lower dimensions. The general abstract result is due

to [IkNi03] and [ChHa03], which we are now able to extend to periodic

dissipation terms. If we choose

w0 ¼ u1 þ
1

2b � g
u2; g ¼ qt f�ð0; 0Þ ¼ 2b � ð1� e�2bTÞ

ðT
0

dt

l2ðtÞ

 !�1

ð2:5Þ

and use the a2 from Section 1.3,

a2 ¼
1

Tð1� e�2bTÞ

ðT
0

ð t
0

l2ðyÞ
l2ðtÞ

þ l2ðtÞ
l2ðTÞl2ðyÞ

 !
dydt;ð2:6Þ

lðtÞ ¼ exp

ð t
0

bðsÞds
� �

;

then the following result holds true:

Theorem 2.3. The solutions uðt; xÞ of (1.1) and wðt; xÞ of (2.4) satisfy

under the relation (2.5) the a-priori estimate

jjuðt; �Þ � wðt; �ÞjjL2 k ð1þ tÞ�1ðjju1jjH 1 þ jju2jjL2Þ:

408 Jens Wirth



To prove this result we first note that we can forget about all terms in

the representation which give a faster decay. The choice of the initial datum

(2.5) implies that the only term of interest is ðe�nþðxÞtfþðt; xÞ � e�a2jxj2tÞŵw0 and

fþðt; xÞ ¼ 1þ Oðjxj2Þ together with nþðxÞ ¼ a2jxj2 þ Oðjxj4Þ localised near

jxj ¼ 0. But this multiplier can be estimated by a combination of

e�nþðxÞtjxj2 and e�minðnþðxÞ;a2jxj2Þtjxj4t. Both terms decay uniformly like

ð1þ tÞ�1 and the assertion follows.

A similar statement with improvement of one decay order holds for

dispersive and Lp–Lq estimates as well as for estimates of higher order spatial

derivatives. The reasoning is analogous.
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