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ABSTRACT. A singular perturbation problem for a scalar bistable nonlocal reaction-
diffusion equation is treated. It is rigorously proved that the layer solutions of this
nonlocal reaction-diffusion equation converge to solutions of the averaged mean
curvature flow on a finite time interval as the singular perturbation parameter tends
to zero.

1. Introduction and main results

1.1. Nonlocal reaction-diffusion equation. We consider in this paper the
following scalar bistable nonlocal reaction-diffusion equation:

{utszdquf(u)(f(u)}, t>0 xeQ,

(RD)
Ou/dn = 0, t>0, xe Q.

Here, Q is a smooth bounded domain in RY (N >2) with total volume |Q|
and the outward unit normal m on the boundary 0Q2; ¢ a small positive
parameter; f a nonlinear function of bistable type, a typical example being
f(u) =u—u?; and the symbol (- stands for the spatial average over £,
ie.,

1
{p) = @JQ @ dx.

Rubinstein and Sternberg [26] derived the nonlocal equation (RD) as a shadow
system for the viscous Cahn-Hilliard equation (cf. [23, 24])

— 2 _
(VCH) {T“r— Al Au+ f(u) —u), t>0,xeQ,

Ou/on = 0A4u/on = 0, t>0,xed
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with respect to the limit operation of the parameter 7 — 0. The function
u = u(t, x) represents, e.g., an order parameter or a concentration of one of the
components in the mixture at time ¢ > 0 and position x € 2, and the term Au,
is regarded as a viscous effect. In particular, if the viscous effect is negligible,
(vCH) is reduced to the Cahn-Hilliard equation

{ — A2 du+ f()], (>0, xeQ,

(CH)
ou/on = 04u/dn =0, >0, xe€ Q.

For (RD) with sufficiently small ¢ >0, it is known that the dynamics
of solution consists of several stages, and is roughly summarized as
follows:

(S1) Generation of layers.
The solution with an appropriate initial condition generates sharp internal
transition layer in a narrow region of O(e) near a hypersurface, called an
interface. Such a solution is referred to as a layer solution.

(S2) Motion of interfaces (i).
The layer solution begins to move in such a way that the corresponding
interface is driven according to a certain motion law.

(S3) Motion of interfaces (ii).
The layer solution then comes to evolve such that the motion of the
corresponding interface is governed by another motion law, called the
averaged mean curvature flow. The interface is driven in such a way that
the volume of domain enclosed by itself is preserved and its surface area
decreases. After a coarsening process, the interface evolves into a single
sphere.

(S4) Motion of bubbles (i).
The layer solution with spherical shape is referred to as the bubble
solution. The bubble solution drifts with exponentially slow speed,
without changing shape, towards the closest point on 02 from the
center of the corresponding sphere.

(S5) Motion of bubbles (ii).
Once the bubble solution attaches to the boundary 00, it intersects
perpendicularly to 0Q with hemisphere-like shape, and evolves along 0Q2
by its geometric information.

The dynamics in (S1) through (S3) was discussed in [26] by using formal
asymptotic analysis. For (S4), the existence of bubble motions was rigorously
established by Alikakos et al. [3]. Ward gave in [36] an explicit asymptotic
ordinary differential equation for the distance between the center of the bubble
and the closest point on 02 from it (see also [37]). Alikakos et al. derived
in [5] such an ordinary differential equation for the Cahn-Hilliard equation
(CH), and compared the bubble motions for (CH) with those for the nonlocal
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equation (RD). The dynamics in (S5) was studied by Alikakos et al. [4] and
Ward [37].

Our result in this paper is concerned with the dynamics occurring in the
stage (S3). We will rigorously demonstrate that the dynamics in (S3) of layer
solutions to the nonlocal reaction-diffusion equation (RD) is approximated by
the averaged mean curvature flow.

1.2. Dynamical approximation via interface equations. In the stages (S2) and
(S3), the dynamics of layer solutions is approximately captured by a motion
law of interface. Such a motion law is called an interface equation. Through-
out the remaining part of this paper, an interface means

a smooth, closed hypersurface embedded in Q@ = RY, staying uniformly
away from 0%Q.

The interface I" separates the whole domain Q into two subdomains. We
denote by Q" one containing 02 as a part of boundary, and by Q~ the other:

Q=0 UruQ", @ =I, Qt=0QUT,

and by v(x;I") the unit normal vector on I at x €I’ pointing toward the
interior of the subdomain QF. We also let the nonlinear function f(u) satisfy
the conditions listed below, in which the nonlinearity is regarded as f(u) — v,
rather than f(u) itself, by introducing an auxiliary variable v for the nonlocal
term.
(A1) The function f is smooth on R and the nullcline {(u,v)]|f(u) —v
=0} has exactly three branches of solutions

{(u,v) | U= hf(U),U € (l—)v OO)}a
{(u,v) |u=h*(v),ve(—w0,b)},

{(u,0) [u=K(v), v e (2,0)},
satisfying the following inequalities for each v e (v, ):
h=(v) < h°(v) < I (v),
f'(h*(v)) <0, or equivalently, hit(v) <O.

(A2) For each ve (v,0), define J(v) by
It (v)
J(v) == J}( )(f(u) — v)du.
Then there exists a unique point v* € (v,7) such that J(v*) =0 and
J'(v*) <.
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The dynamics of layer solutions to (RD) in (S2) is slow, and is of order
O(g). In order to capture its dynamics in time scale of O(1), we rescale the
time ¢ in (RD) as t — t/e:

(RD) {suf =2 Muf + f(u®) — {f(u®))y, t>0,xeQ,
ou®/én = 0, t>0, xe0f.

Under the assumption (Al), it is known that the following problem, called the
nonlinear eigenvalue problem, has a unique smooth solution pair (Q(z;v), ¢(v))
for each v e (v,0) acting as a parameter (cf. [13]):

NEP 0-: +¢0:+ f(Q)—v=0, ze(-00, o),
(NEP) lim 0 =h*@), Ol =h().

The functions Q and c¢ are referred to as the profile and the speed of the
traveling wave, respectively. By employing the wave speed ¢, the interface
equation in (S2) is expressed as

(x; (1)) = c(v(1)), t>0,xel(),
(IE) (1) = h(v(2); I'(0))c(o()| (1], >0,
r)=ry, v0)=uve(v,?)

with

_ h*(v(1)) — h™(v(1)) _
by (0()|27 ()] + i (0(1))127 (1)

Here, the scale of time is that of (RD’), the symbol v(x; I'(¢)) stands for the
normal velocity of I'(¢) at x € I'(¢) in v-direction; || and |I'| are the volume
of Q% and the surface area of I', respectively. The motion law of interface in
(S2) was earlier given as the equation (2.15) in [26]. The form, however, was
implicit and unsuitable for the circumstantial examination. The explicit form
by the interface equation (IE’) was later derived by Okada [25], in which the
unique existence of smooth solutions and the stability of the equilibria to (IE')
were successfully established.

For 0 < ¢« 1, the dynamics of the solution u#* and the nonlocal effect
{f(u?)y to (RD') are approximated by that of the solution pair (I'(z),v(¢)) to
(IE’) in the sense that

b o [IE0), >0, xe @ (1),
w6 ) ”{h+<u<z>>, >0, xeQ(n).
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Note, in particular, that the second property shows the sharp layer structure of
u® near the interface I'(r). Such a characterization in (S2) was justified in [25]
by the following

THEOREM (Theorem 1.2 in [25]). Assume that (Al) and (A2) are satisfied,
and let (I',v) be the smooth solution pair to (IE') on a time interval [0, T)].
Then there exist ¢* > 0 and an e-family of smooth solutions u® to (RD'), defined
Jor €€ (0,&], satisfying

lir% SWwh)y=v uniformly on [0,T],

Q\I'y
Qp\I'y

h~(v)

lim u® :{ ) ) uniformly on {

lim I (v for each 6 > 0,

where

Q7= |J {1} xQ*©),
tel0,T]

rs .= {1} x I'(t
tel0,T]

with I'(1)° := {x € Q |dist(x, I'()) < 8}, the d-neighborhood of the interface I'(1).

In the next stage (S3), the dynamics of layer solutions to (RD) is much
slower, compared with that in (S2), which is of order O(¢?). To capture this in
time scale of O(1), it is adequate to rescale the time ¢ in (RD) as ¢ — /&%, and
to employ the rescaled version

{gzu‘g =2Auf + f(u®) — {f(u®)), t>0 xeQ,

1.1
(L.1) ou®/on = 0, t>0, xe Q.

The corresponding interface equation is known to be the averaged mean
curvature flow:

{V(x;F(t)) =—x(x; (1) + &), t>0,xel(t),

(12) r(0) = I,

Here, the scale of time is that of (1.1), the symbol x(x; ") stands for the sum
of principal curvatures (the mean curvature, for short) of I at xe I', and K
denotes the average of x on I, i.e.,

k(1) == ! J K(x; T'(2))dST0
(1)

L0 )7

dST being the surface element of I" at x e I'. We notice that the sign of x is
chosen so that it is positive if the center of the curvature sphere lies in Q™.
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The existence and uniqueness of smooth solutions to (1.2) are well established
(cf. [14, 16, 11, 21]), and arise as the lowest compatibility condition in our
approximations (cf. §3.5 below).

In the previous stage (S2), the interface dynamics by (IE’) approximates
the dynamics of layer solution to (RD’) for small ¢ > 0. Then, in this stage
(3),

does the averaged mean curvature flow (1.2) approximate the dynamics of
layer solution to the nonlocal reaction-diffusion equation (1.1) for small
e> 07

By a variational method, it was rigorously proved in Bronsard and Stoth [7]
that the answer to this question is affirmative for radially symmetric solutions in
a spherically symmetric domain. Our aim of this paper is to show, by means
of an alternative method, that the answer remains affirmative without any
restrictions of symmetricity.

1.3. Main result. We are now in a position to state our result. This ensures
the existence of solutions to the nonlocal reaction-diffusion equation (1.1) which
exhibit sharp transition layer near the interface driven by the averaged mean
curvature flow (1.2).

THEOREM 1.1.  Assume that (A1) and (A2) are satisfied, and let I" be the
smooth solution to (1.2) on a time interval [0, T]. Then there exist ¢* > 0 and
an e-family of smooth solutions u® to (1.1), defined for ¢ € (0,¢*], satisfying

ling W)y =0" uniformly on [0,T],

h™(v*

o, ) o Q\I%
lim u :{}ﬁ(v*) uniformly on rvr

Gir for each 6 > 0.

e—0

It is in general not so easy to establish this sort of convergence result for
nonlocal problems. One reason for the difficulty is that the method of sub- and
super solutions based on the maximum principle, or comparison principle, is
not applicable. Situation is the same even for the most fundamental scalar
equation (1.1), and so it is for the higher order equations such as (vCH) and
(CH). To demonstalate Theorem 1.1, we will follow an alternative method,
an approximation method. This method is based on the singular perturbation
method and has been developed as a way to treat boundary/internal layers ap-
pearing in local elliptic problems [12, 20, 18, 15, 27, 28, 29, 22, 32, 33|, and in
local parabolic problems [2, 10, 30, 31]. For nonlocal problems, the applica-
tion of this method to (RD’) was successfully established by Okada [25], fol-
lowing the argument developed in Sakamoto [31], Nefedov and Sakamoto [22].
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This paper is organized as follows. We will prove Theorem 1.1 in §2.
The proof consists of two steps; (i) construction of approximate solutions and
(ii) perturbation argument. In the first step, a family of approximate solutions
with high degree of accuracy is constructed (cf. Proposition 2.1 below). Since
the construction is rather lengthly and involved, it will be postponed to §3. In
the second step, we derive a true solution as a perturbation from the approx-
imate solution (cf. Proposition 2.2 below). In this procedure, a certain estimate
on the evolution operator associated with the linearized operator around the
approximate solution plays a crucial role (cf. Proposition 2.3 below). The
details will be developed in §4.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Several propositions are employed,
the proofs for some of which are postponed to §3 and §4. In what follows,
where no danger of confusion will arise, we employ the same symbol M to
denote positive constants independent of ¢ > 0 which could be differ from line
to line.

The first step is the construction of approximate solutions:

PrOPOSITION 2.1.  Assume that (A1) and (A2) are satisfied, and let I" be the
smooth solution of (1.2) on a time interval [0, T]. For each integer k > 2, there
exist ¢* > 0 and an e-family of smooth approximate solutions u’ to (1.1), defined
for €€ (0,&*], satisfying

ou’, ’
(2.1a) max||e _6A — A’ — f(ud) + {f () = 0(hh,
[0, 7] t L*(Q)
ou’
(1) ZA=0 o [0,7]x 02,

(2.1¢) ling Slug)y =o' uniformly on [0, T},

o O\ 76
(2.1d) E»% ufy = { Z+EZ*; uniformly on {g;§;§ for each 6 > 0.
We will postpone the proof of Proposition 2.1 to §3.
Let us now move on to the second step. By means of perturbation
argument, we will prove that there exists a true solution u® near the approx-
imate solution u% constructed as in Proposition 2.1.

PROPOSITION 2.2.  For each integer k > 2, let u% be the e-family of smooth
approximate solutions to (1.1), defined for ¢e (0,&*], satisfying the properties



270 Koji OkADA

stated in Proposition 2.1. Then there exists an e-family of smooth solutions u®
o (1.1), defined for e (0,¢*|, such that

(2.2) max [[u® — ufl| - g = o5 1),

[0, 7]

Proor. For each 1€ 0, T], let £*(¢) be the linearized operator of (1.1)
around the approximate solution u%:

P40 = Ap+ 1 Wt o~ S Wt Do)

By introducing a scaling parameter s € R, which is to be determined, we rescale
the time ¢ in £*(¢) by

(2.3) t=¢é't,

and seek a true solution u® of (1.1) with the following form:
(2.4) ut(e't, ) = uf(er, ) + p* (1) (), 1€ [0, T/&’.
Our equation in (1.1) is recast as an evolution equation for ¢*(7)
(2.5) 9°(r) = A (D)p"(x) + N(1,0°(7)) + 2°(2),

where “dot” stands for the derivative with respect to the variable 7; 7%(7)p,
N¥(t,p) and #°(r) are the linear, the nonlinear and the remainder parts,
respectively, defined by

(2.6a) A1) =L (%)
=&’ Ap + &2 [f (i (e, ) — < (i (e, )],
(2.6b) A ¥(t,0) =2 [f (T, ) + 9) — fuh(e’n, ) — (T, ))p
= fh(En, ) + o) = fuy(e'n, ) = /1 (ui(e'n,)p)l,
(26c) (D)= [szzm; (%, ) + S (67, ) — < (e, )

&
2 0uf

-2 %)

Notice that the following estimates are valid for 7 € [0, T'/&*] by virtue of (2.6b),
(2.6c) and (2.1a) in Proposition 2.1:

(2.7a) &N (1,0) = O(lpl),

(2.7b) 122 (0) | (@) = O(™*).
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We now decompose L*(Q) as L*(2) =M @ M*, where M and M* stand
for the space consisting of zero-average functions and the orthogonal com-
plement of M spanned by the constant function |Q\71/ 2, respectively. Accord-
ing to this decomposition, we also decompose the function ¢®(7) in (2.5) as

(2.8) o (M) =i (D) +5(0),  i(r) €M, pi(z) e M.

Then, the equation (2.5) is equivalent to the following system:

(2.9a)  ¢i(1) = A ()i () + N (7,01(7) + 95(2)) + 2°(1, 05(7)),
(2.95)  95(7) = <#°(2)).

Here, #°(z,9,) (¢, € M%) is defined by

(2.10)  R(7,0,) = A°(0) = {A(2)) + (1),
= A°(0) — (R (1)) + &2 [ (i (e, ) = S (uh(e’n, ) )]s

Note that (2.9a) is the evolution equation and (2.9b) the ordinary differential
equation.

In order to deal with the evolution equation (2.9a), let us now set up some
appropriate function spaces. Let p >2 and we define the basic space by

(2.11) Xy =L"(Q)NM
and the domain of .«/%(t) by
X{ = wrh@)nm,
where Wﬁjﬁ—j({)) is the same as the usual Sobolev space
WP (Q) = {ue W*(Q)|du/on =0 on 0Q}
as a set, with the weighted norm

(2.12)

) = llull o) + 272 Dl

L@ T &' D?ul

||u||VKzg(Q Lr(Q)"

In the sequel, some weighted norms and embedding properties are employed.
We notice here that the weighted norms are introduced to make the embedding
constants independent of &> 0.

For a € (0,1), let X} be the real interpolation spaces between X and X7{

(2.13) X = (X5, X,

endowed with the norms || -||,, where (-,-), , stands for the standard real
interpolation method (functor). Note that X7 enjoy the continuous embedding

properties
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Xj = X;,
0<a<p<l= .
ull, < Mllull, — (ue Xp).
We also set up weighted Holder spaces ij(é) for o€ (0,1), which are the
same as the usual Holder spaces C*(Q) as sets, with the weighted norm

(2.14) H“”C’gp(f)) — 3XN/2P||“HL%(Q) + (/DN /p) [u]ca(é)v

where [u]c, 5 is the Holder seminorm defined by

|u(x) — u(x")|
ez = sup LMD
Cc*(Q) o' ed |x_ X/|
x#x'

Notice that, if the relation 20 — N/p > f is valid for some «, f € (0,1), then X}
is continuously embedded in C/(Q):

85
X, < Cz:,p(Q>7

N o
(2.15) 2—=>f= .
P Il g < Mllull, (e X2).

We simply denote by ||B||, ; the operator norm of a bounded linear operator
B:X;— Xj.

Let @°(r,0) : X; — X§ (0 <o <7< T/¢") the evolution operator associ-
ated with the family {</°(t)},c(o 7/-- Applying the variation of constants
formula to (2.9), we obtain

216)  pi(5) = (0.0)01(0) + | P(5.0) (0 01(0) + p3(o))do

+ JT (7, 0);@”(0, pi(0))do,
0

2166)  ¢30) = 03(0) + | ()i

The existence and uniqueness of smooth solutions is well established, and
therefore our task is only to have an estimate for the solution ¢¢ to (2.5) by
employing those for ¢f and ¢ in (2.16). In estimating ¢f, the estimate of
evolution operator ®@%(r,0) in the following proposition plays a crucial role.

ProposITION 2.3. For 0 <o < f <1 with (a,f) # (0,1), there exist some
constants K, M > 0 such that the following estimate holds for small ¢ >0, s > 4
and 0 <o <t < T/e:

(2.17) ”¢6@30HMﬁ:£A4@_,U)wﬁéﬂa+mufﬂ

with some A, > 0.
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The constant A, > 0 in Proposition 2.3 is derived from some information
of the principal eigenvalue of the linearized operator #*(¢) via the spectral
analysis developed in §4 below.

We postpone the proof of Proposition 2.3 to §4, and proceed with the
argument to get the estimate (2.2). We recall that &, s, p and o are parameters
related to the accuracy degree of approximations (cf. Proposition 2.1), the
scaling of time (cf. (2.3)), the basic space (cf. (2.11)) and the interpolation
spaces (cf. (2.13)), respectively. We now let

(2.18a) k=2,

(2.18b) 5 =4,

(2.18¢) p > 2N,
(2.18d) e (3/4,1),
and choose ¢°(0) = ¢f(0) + ¢5(0) so small that
(2.19) l;(O)1l, = 0(++),
(2.19) |95(0)] = O(e*).

Let us first treat (2.16b) together with (2.19b). The estimate (2.7b) with
(2.18b) yields that

|93(D)] < [p3(0)] + L 12°(0) | .= (@) do

_ O(Sk-H) + O(8k+3) A T/64.
Therefore, the solution ¢5(z) of (2.9b) with (2.19b) satisfies
(2.20) p5(0)] = 0, Telo, T/,

Substituting the solution ¢j(r) with (2.20) into (2.16a), we move on to
estimating ¢{. Since p and o are chosen so that (2.18c) and (2.18d), respec-
tively, it holds that

N 31
Qo ——>2. 2 __ =1
x p> 4 2 7

and the embedding relations in (2.15) are fulfilled for fe(0,1) chosen
arbitrarily. Hence, by (2.7a) and (2.14) with (2.18b), (2.20) and X} — X{,
we have the following estimates for o e [0, T /&*]:

[-47(a, 9i(0) + 932())llo

< M*||p{(0) + 05(0) |- o l0i (@) + 03(a)llo
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< M2 (I94(0) - o) + 105 (195 (@) + 3]

< Mgt + O ) I ()], + O+ )

< M2V i (0)|12 + Me2 602V (1 4 2900) i), + Me24~072)
< M@t (@) + 12 i), + 6.

Moreover, employing (2.7b), (2.20) together with (2.18b) in (2.10), we have for
cel0,T/eY,

1°(a, 93())llg < 122°(0) — <A*(0)lo
+ I i (00, ) = {f ' (i(e°a, ) olo5 (o)
<2(|12°(0) | 1@ + €IS (i (20, )| L= () l93(0)])
= 0 +&0(1) o)
< Mk,
Using these estimates in (2.16), we find that

(2.21) o (@), < [12°(z, 0) I, |0 (),

T
) 2
e w0 [ )l i) o
o MekH1-2Np JO 12°(z,0)lo 497 (0) | ,do

M J 19°(2,0) g oo,

where the inequality 2k > k 4+ 1 (under (2.18a)) has been employed to get the
last term.
Let r%(7) be the function defined by

(2.22) r(1) = [lot(@)],e R reo, T/,
Then, by the estimates (2.17) with (2.18b), we can compute (2.21) in terms of
ré(t) so that

T

(2.23)  ri(r) < M(VS(O) 4 e HRT 212N /p) J (t — ) *r*(0)*do
0

1—o
+8k+1—2N/p JT(T o 0)7“}’8(0')610'—’- Mgk-‘rl lT a8—4(l—oc))
0 _
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< M(rS(O) + g2(1=N/p) J (t — o) *r(0)*do
0

T

1 gk t1=2N/p J

(t — o) "r’(o)do + 6k+4°‘3) :
0

By (2.19a), we have

(2.24) r*(0) = [l (0], = OE"*).
Then from the continuity of r?(t) it follows that
(2.25) ri(t) <e
for small 7 > 0. Setting

T¢ :=sup{r e [0, T/e*]|r(c) < &* for all o€ l0,1]},
we have one of the alternatives

ri(T?) =& or T =T/e.

Assuming the former situation is realized, we can compute by employing (2.24)
in (2.23) so that
—4(1—-a)

l—o
(2.26) gk _ re(Ta) < M(8k+l + 82(1—2N/p)82kir e
— o

1—
L k12N gk 1T ;874(14) + 8k+4x3)

1—
< Sk (M&‘ + AfT * 8k72+4oc74N/p

1—
+ All]_—' OC“ 8k73+4oc72N/p + M84x3> )

Noting our choice of parameters in (2.18), we have

4 1
k—24d0-N oo a4 4112
p 4 2
k—3+4oc—2—N>2—3+4-§—2-1:1>O,
p 4 2

3
4 —3>4.2-3=0.
o > 4

Thus for sufficiently small ¢ > 0, (2.26) implies
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K&

8S77

which is a contradiction. Hence, the latter case is realized, namely, (2.25) is
valid for 7 e[0,T/e*], and by (2.22) we have

lof(D)ll, < M* 0Tk = 0(e"), e 0, T/,
By employing (2.14) and (2.15), it follows that
(2.27) |9 (@)l @) = O 7), <0, T/e".
Combining (2.20) and (2.27) in (2.8), we have
lo* (Dl L= (@) < 01Dl @) + 103(7)]
— O(52V/P) 4 Ok 1)
= 0(" Y, te0,T/eY.

This estimate and (2.4) lead to (2.2), which completes the proof of Proposition
2.2. O

Theorem 1.1 immediately follows from Proposition 2.1 and Proposition 2.2
with k£ =2, and the following inequalities

= hi(v*)HLw(ét\r(’) < [Ju® = ufll o ) + Ny — hi@*)nu@i\ro‘),
[Kf @)y = o™ < [ (uf)) = {f(uf)d + 1Kf () ) — o
< Ml — gyl o) + [<fh)> — 7).

This completes the proof of Theorem 1.1.

3. Proof of Proposition 2.1

In this section, we construct the approximate solutions satisfying the
properties stated in Proposition 2.1. For this purpose, we recast the equation
n (1.1), by introducing an auxiliary variable, as

(3.1a) euf = & Au + f(u®) — v°, t>0,xeQ,
(3.1b) v = {f(w)) =0, t>0.

The procedure of construction consists of five parts; outer expansion (§3.1),
inner expansion (§3.2), C'-matching (§3.3), nonlocal expansion (§3.4), and
uniform approximation (§3.5). §3.1 through §3.3 are devoted to the first
equation (3.1a), in which (3.1a) is treated as a scalar equation with a parameter
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v® and the method of matched asymptotic expansions for local problems is
employed. In §3.1 and §3.2, we determine the outer and inner solutions to
(3.1a), respectively. In §3.3, we derive a series of equalities equivalent to the
C'-matching conditions which guarantee that the inner solution is smooth
across the level-set interface I'*(f) := {x € Q|u®(t,x) = h°(v*)}. In §3.4, we
substitute all information for the outer and inner solutions obtained in the
previous procedures into v® — {f(u*)) and regulate it as in (3.1b), which gives
rise to another series of equalities. In the last section §3.5, we construct the
desired approximate solution by solving these two series of equalities obtained
in §3.3 and 3.4.

3.1. Outer expansion. We assume that u“(z,x) in (3.la) has the formal
expansions

(3.2) W(t,x) = U(t,x) ~ S &/ UME(e,x)  in Q\I(0)°,
=0

and determine the coefficients U/* (j > 0) so that they asymptotically solve
(3.1a) on the respective domain Q7F. Substituting (3.2) together with the
formal expansion

(3.3) vo(t) ~ Ze-/vf(l)

Jj=0

into (3.1a) and equating the coefficient of each power of ¢ in the resulting
equation, we have the following series of equations for U/* in Q.

(j=0) fU")=1"
(3.4) (=1 fuHutt =y,

(722 SWHUE = 1 EE,

where F;* stand for the terms depending only on U%*,..., U/"!%, explicitly
given by
Fi _ Ujfz,i _AUj—Z,i _ iﬁ Z _mUm,i —f’(UO’i)Uj’i
joT jlder” \ 2=° '
m> e=0

As a solution of (3.4) for j =0, we choose (cf. (Al))
(3.5a) (j=0) U%E(1,x) = US%(1) := h*(0°(1)) on Q*().

If we make this choice, U/* (j > 1) can be successively expressed, by (3.4)
and (Al), as
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(3.5b) (j=1)  UME(t,x) = UPE(t) = hE(W(0))o/(t) + VE(r)  on 2%(1),

where V= are some functions depending only on v°,...,v/~! satisfying V" = 0.
Once v°,..., v/ are known, U/* are completely determined via (3.5), although
v/ (j = 0) are unknown at this stage. These will be determined later, by the
procedure developed in §3.5 below.

By setting formally

US*(1) =Y /UM (1) on Q*(1),
j=0

the outer solution U? is asymptotically characterized by

U>=(1), t>0,xeQ (1),
Ue(t,x) =
(8,) { Ust(r), t>0,xeQ(1).

3.2. Inner expansion. Transition layers cannot be captured by the outer
solution U* because it has a jump between U~ (¢) and U>™"(z) on the interface
I'(t). We now introduce a local coodinate system in I'(¢)° adapted to
describing layer phenomena.

For each ¢ > 0, we assume that I'(¢) is expressed as a smooth embedding
from a fixed (N — 1)-dimensional reference manifold .# to R™:

y(t,0) Ml — T(2)
(3.6)
y=x=9(4).

We denote by v(z, y) € RY the unit normal vector on I'(¢) at x = y(¢, y) pointing
into the interior of Q7(7), and normalize the parametrization (3.6) in such a
way that p, is always parallel to v (cf. [10]). A point x e I'(r)° is uniquely
represented as

(3.7) x=@&(tr,y) =yt y) +rv(t,y)

by the diffeomorphism ®(z,-,-) : (=0,0) x .4 — I'(r)°, which gives the trans-
formation between the coordinate systems (¢,x) and (z,r, y). By virtue of this,
a function u(z,x) for xe I'(r)° is also denoted by u(z,r, y).

In terms of (z,r,y), the differential operators 0/0t and 4, in (z,x) then
transform as follows:

0 0 0 r

Eﬁa_})’.vﬁ_m'vﬁ’
(3.8)

Ay = - cxLar

x—arz or M
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Here, K(t,r, y) is the sum of pricipal curvatures (mean curvature, for short) of
the r-shifted interface

I'(t):=d(t,r, M) ={xeQ|x=y(t,y)+r(t,y),ye U}

at x=&(t,r,y)el'"(t). Let x;(t,y) (i=1,...,N—1) be the principal cur-
vatures of I'(r) at x =y(t,y) e I'(t). Then K is explicitly expressed as

Ki(t, )
l
) Zl—i—rk,ty

The symbols V;;r and AI;/ denote the gradient operator and the Laplace-
Beltrami operator on ./# induced from V" and 4”7, those on I''(f), by
&(t,r,-), respectively. Let (Gy)(t,r,y) (i,j=1,...,N—1) be the covariant
metric tensor on I'"(f) at x = &(¢,r, y) induced from the Euclidean metric
in RY, and denote (G7) = (G;)”' and G = det(G;). Then V' and 47, are
explicitly represented as

N-1
. oD(t,r,y
CONR AR Dt

ij=1

GU(E”? y)57

Af;[y(tv V, y)

e g (VO 1)

We note that the following equalities are valid:

=

—1

(3'10) K(I,O, y) = Ki(ta J/) = K(tv .V)v V;/ﬂr(tv r, y)‘r:() = V;(l‘, y)v

1]

Il
_

T

K (1,0, ) == 171, ), Al ()|, = 47,1, y),
i=1

where V2 and 47, are the gradient operator and the Laplace-Beltrami oper-
ator on .# induced from V! and 4’ those on I'(¢), by y(t,-), respec-
tively.

For 7 > 0, we define the e-dependent interface I'%(¢) as a level set of the
solution u®. The transition layer is expected to develop near {x € Q|u®(t,x) =
h°(v*)}, and without loss of generality, we may assume

(3.11) ") :=0
by an appropriate translation. From this, we set

(3.12) re(t) == {xe Q|u(t,x) = 0}.
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We also expect that I'°(¢) is expressed as the graph of a smooth function over
I():

(3.13) i) ={xeQ[x=y(t,y) +eR(1, y)v(1, y), y € M},

where R? is a priori unknown and to be determined. To describe the layer
phenomena near I'“(¢), i.e., near r = &R(¢,y) in (z,r,y), let us introduce a
stretched variable

r—eR(t, y)

(3.14) z:= .

Then the equation (3.1a) is recast in terms of z as follows, in which ¢ and y are
regarded as parameters:
Lemma 3.1. The equation (3.1a) is recast as
(3.15) u, + Du’ + f(u’) —v* =0 in (—0/¢ — R*,0/e — R?).
Here, D* is the differential operator defined by

0 0

& . & 0 2 3 & pe
(3.16) D :=¢(y,-v+ K )02+8 <R, o 4%, R o

& & 82 & & & a S a
+[VyR | 22 —2V,R"- V/za 4% 6t>

& & & & 6
+¢ [(Z + R*)v; - ( w—VuR E)

Nz(a_ fG") 5

4 ]il i(\/EG"J‘) RSRS 0
\/ng.:l or 7oz |’
in which
Vj/l([’ z,y) = Vj;r([a r, y)|r:r,z+xR”(t,y)v

Afil([a z,y) = AV];;([’ r, y)|r:az+nR“(t‘y)’

and other functions K:(t,z,y) etc. are defined by K(t,r,y) etc. with r=
ez + eRé(t, y).

ProOOF. By virtue of (3.14), the differential operators 0/dt, d/dr and /0y’
in (¢,r,y) are represented in (¢,z,y) as
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o 0 0 o 10 0 0 0
1 S L
(3.17) ot ot oz’ or &0z’ oyt oyt TV oz

Therefore, the differential operator ¢4 — &20/0t in the equation (3.1a)

82<A §l>u+f() v* =0

is recast, by (3.8), (3.9) and (3.17), as

(3.18a) 822 +[8K‘g; +&°4%
(3.18Db) — & % + szR,”% +ey, - v% +&*(ez + &Ry, - Zjl] ,
where
(319) V= NZII (%% — Ry 561) (67) (ai;, ~ R ai)
e ) ()

Note that (3.18a) and (3.18b) come from &?4 and —&%0/0t, respectively. In
(3.19), we explicitly compute as

X X .0 .
vi Vo= (V}z - V,;/Rg(az> —e(v VR -V, —e(ve-v)|V, Ré\
& & & a
=V (V// —VuR E)’

& & & a & &
2V, R®- J/E"‘ ViR

_j;_sz< fm) Ma@j \/@Z< \FGU))xR;L.R;,%

i,j=1

) O

& & & & a
47y =47 — 4R —— 22

a
oz

Then, in (3.18), we find that the differential operators in the brackets [-] form
the operator D* defined in (3.15). This completes the proof. O

Substituting the formal expansion
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(3.20) RE(1,p) ~ Y e/RITN(1, p)

Jj=0

into (3.16) and noting (3.10), we can easily verify that the coefficients D/ in the
formal expansion

(3.21) D~ Y &/D

j=0
are given as follows:

(322) (j=0) D°=0
G=1) D'=GrvinL,

(j=2) D*= E—AF—NX_fK-z rRZ
ot M - i oz

A2
2 0 (3
+|V,R'| P 2V, R Vgg

+ 4%, —z Nz:ilic'2 4.9
o &' oz ot

N—1
(j=3) D= E—AF—ZKZ r12
= ot M o i 0z

, o? , 0
1 _
+2V, RV R P RV, pE
+ differential operator including I", R',... R/7%.

Assuming that u(z,z, y) in (3.15) has the formal expansions

(3.23)  u'(t,z,y) =u’(t,z, )

Sz (<2 RS- R,

j=0

we will determine the coefficients #/*(z,z,y) (j >0) so that /'~ and @/*
asymptotically solve the equation in (3.15) in the intervals (—oc0,0) and (0, 40),
respectively. Substituting (3.23) together with (3.21) and (3.3) into (3.15), and
equating the coefficient of each power of ¢ in the resulting equation, we obtain
the series of equations for #/'* in +z e (0, ).
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(3.24) ' | )
(G=1)  @*+ f@"Hat+ Fr =0,

where, F/i are the functions given by

. J 4 (1 @
(325) F}i = ZDmlzj_m’i — v/ + [F E (Z 8mam,i>

m=0 m=0

=0
depending only on I', R',...,R/7Y; v/; %% ... /=% (cf. (3.22)).

We treat (3.24) together with the following boundary conditions.
(3.26a) "~ (1,0,y) =0 =a""(1,0, ),
(3.26b)  |@/E(t,z, y) — U/E(1,z, y)| = O(e™F)  for some 5 >0 as +z — oo.

The first condition (3.26a), the interface condition, comes from the definition of
the level-set interface I'%(¢) (cf. (3.12)). The second condition (3.26b) is called
the inner-outer matching condition, in which U/*(t,z, y) stand for the coef-
ficients of ¢/ in the expansion for

[78(1, z,y) = Ut y(t,y) + (ez + eR(t, y))v(t, y)),

the inner expression of outer solution U%(z,x) in terms of (¢,z,y). More
precisely, U/*(t,z,y) are, in general, the functions defined by

I 1 gk
)= 3o 0 (v o)

k=0 m>1

3

e=0

where we employed the expression U/~%%(¢,r, y). In our situation, U FE(t,z,y)
are nothing but the functions given by

(3.27) U/i(t,z,y) = UFE(1), +z € (0,0),

thanks to the fact that U/%(¢,x) (j > 0) are spatially homogeneous (cf. (3.5)).
The function U ®(t,z,y) is asymptotically characterized by

oy JUST(D, ze(=2,0),
Uit z,y) { Us*(1), ze(0,0).

In determing the solutions #/* to the equations (3.24) satisfying (3.26),
the smooth solution pair (Q(z;v),c(v)) (ve (v,7)) to the nonlinear eigenvalue
problem (NEP) (cf. §1)

O-:+¢cQ-+ f(Q) —v=0, ze(-ow0,n),
Jim Q@ =h*(v), Ql. =h(v) :=0
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plays an important role. Here, we note that Q|,_, is normalized as Q|,_, =0

by virtue of (3.11). Under the assumptions (Al) and (A2), the solution pair

(O(z;v),¢(v)) satisfies the following properties:

(i) The function Q(z;v) and its derivatives of any order with respect to z
converge to the limits #%(v) and 0 with an exponential order of O(e~"")
for some # >0 as z — +o0, respectively. Furthermore, Q.(z;v) > 0 for
z € (—o0, ).

(i) The function ¢(v) is given by c(v) = —J(v)/m(v). Moreover, there exists
unique point v* € (v,7) such that

(3.28a) c(v*) =0,
(3.28b) ! (v") = —J;(::) = [:j >0,
where

)= [ 100 >0,

—

m* :=m(v*) >0, and [A]" :=h"(v*) —h (v*) > 0.
We simply denote the function Q(z;v*) by Q*(z). The equations in (3.24)
(j = 0) have unique solutions #** satisfying (3.26a) (j = 0) if and only if

(3.29) 00 =%

Once (3.29) is realized, the solutions #%* are determined as

QO’i(lazvy):Q*(Z)v ZG(—O0,0],
@ (1,2,) = 0(2),  zel0,0),

and the condition (3.26b) (j = 0) is satisfied by (3.27) (j =0), (3.52) and the
property of Q*. Moreover, it is proved that for each j > 1 the equations (3.24)

(3.30)

alt + f1(Q")ah* + FE =0

with (3.26) have unique solutions #/* (+z e (0,0)) explicitly expressed as

30 @z =00 | [ erEE e
0 [Q:(z")]" 40
and that the derivatives for #/* — U/* of any order with respect to ¢, z and y
also decay with exponential rate of O(e™"l) for some 5 >0 as z — +o0.
If v° is chosen so that (3.29) and (I',R',...,R/=!;v' ... v/) are known,
the functions @/* (j > 0) are completely determined via (3.30) and (3.31),

N}
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although (I',R',...;v% v',...) are still unknown at this stage. By setting
formally

@H(1zy) = Y (), +zel0w),
j=0

the inner solution #® is asymptotically characterized by

e, el
u (1727 y) _{ﬁ87+(t,z, y)7 ZE [07 OO)

3.3. C'-matching. We imposed in the previous subsection the interface
condition (3.26a) on the functions #/* (j >0). In this subsection, we deal
with additional conditions for their derivatives, called C'-matching conditions:

(3.32) al = (1,0,y) =ual*(1,0,y),  j=0.

We will derive a series of equations for (7", R',...;v% v! ...) which is equiv-

alent to (3.32). For the functions #/* satisfying (3.32), we also employ the
simple notation #/ without superscripts “+” in the sense that

ﬁ'/’_(l,Z,y), ZE(—O0,0],

W20 =

W (t,z,y), z€[0,00).

LEMMA 3.2. The C'-matching conditions (3.32) are equivalent to

(3.33a) (j=1) 7 v =—k+c (',

N-1
3.33b j > 2 RV =4l + S 02 |RFV 4+ (0 +p_y,
J M i i1

i=1

where p;_, is a function depending only on (I',RY,...,R/=% v o', ... /70,
Proor. The statement for the 0-th order condition immediately follows
from the last part in the previous subsection (cf. (3.30)).
By virtue of (3.31), we find that the conditions (3.32) for j>1 are
equivalent to

(3.34) r)@@mﬁaﬁﬁzm i=1,

— o0

where F; is the function defined by two functions I:"ji (cf. (3.25)) as
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- F(t,z,y), ze(—w,0],
F}(t, z, y) = { 13.l+( y) (0 ]
J (1727)})) ZG[ 700)'
For j=1, we have from (3.22) and (3.30),
Fi=D'3a—v'"=(y, - v+x)0; —v".

Then, the condition (3.34) with j =1 reads as

OZJ‘ Q:Fy d== (3, v+ )m" — [h]"0",

where m* and [h]" are the positive constants introduced in (3.28b). This implies
(3.33a).
For j =2, the function F, turns out to be

- 1
F2 _ DZQ* +D1ﬁ1 _ 02 +§f//(Q*)(L~ll)2
Noting (3.22), we can recast (3.34) as

():J Q'F dz

— 0

0 N—1 . © o )
- (E“’f/f - ZK?>R‘m + IV,QR‘IZJ 010" dz — [0
i-1 "

]
—00

By (3.28b) and the fact that [* QrQ:dz=0, we arrive at (3.33b) with
j =2, where p, is a function depending only on (I';v*,v'), explicitly given
by

N-1
—Z<Z K?> 02 + (3, v+ 1)t + %f”(Q*)(ﬂ‘)Z] 0: d:.
i=1

1 © Nl 2 % ~1 1 -1/ w\/~1\2 *
(3.35) p ::%J Zki 205 — (y, - v+ K)i! _Ef (0")@)"| 0: d=.

™ i=1

Proceeding with the same argument as above, we get the equalities (3.33b)
for j > 3. Indeed, the function F; (j>3) is

F=D/Q" —v/ +---,

13 LR

where we employed the expression to denote the lower order terms
depending only on (I',R!,...,R/=2;v*,v',...,0/7!). Then (3.34) gives
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O:J’ 0'F; dz

( AI;, ZK )R/ !
FWIRIVIR [ 0oz d el 4
Using [”_ 0.0 dz =0 and (3.28b) again, we obtain (3.33b). This completes
the proof. ]
We cannot determine (I, R',...;v',v?,...) by the series of equalities (3.33)

alone. In order to determine them, we need another series of equalities, which
will be derived in the next subsection from the second equation (3.1b).

3.4. Nonlocal expansion. So far, we have dealed with the equation (3.1a).
In turns, we treat in this section the nonlocal equality (3.1b). Note that the
outer and inner solutions U® and #‘, which were obtained only from (3.1a),
depend on the data y*= (I, R%v?). We will substitute U?(y*) and @°(x®)
satisfying (3.1a) into v* — {f(u*)), and constrain this so that (3.1b) is satisfied.
It is expected that such a constraint gives rise to another series of equalities
among (I',R',...;v° v',...) which couples with (3.33).

To materialize this idea, let us first recast the volume element dx in terms
of (t,r,y) and (¢,z,y). We define

N-1
(3.36) J(t,r,p) H +rii(t, y))

i=

Then, by virtue of (3.7) and (3.14), the Euclidean volume element dx is
expressed in terms of (z,r,y) and (¢,z,y) as

3.37 dx = J(t,r, y)drdST") = eJ%(t, z, y)dzdST")
Y Y

where dS " stands for the (N — 1)-dimensional volume element on .# induced
from the surface element dS: " on I'(¢) at x=1y(¢t,y) by »(¢,-), and J* is a
function defined by

(3.38) Je(1,2, y) = J (.62 + R (1, 1), ¥).
We note that dSym) is explicitly expressed as

() _
(3.39) dS" = \/G(1,0, y)dy.

LemMmA 3.3.  The equation (3.1a) implies the nonlocal equality
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(340) "= ) = 1 l1* = (UT1Q7|+ U j@7]) + O]
with
& ._ * ~& rre e( ¢ r7e & r
(3.41) I .= J/{ Jﬂo[(u —U%)..+D*(u’ — U")|J* dzdS, .
PrOOF. A direct computation by employing (3.1a) implies
1
v = W) =157 | "= S (uf)]dx
|Q rJQ
_ L (2 Au® — &*u?)dx
12] o &
= 1 (2 Au’ —szus)dx—&—ij ( 2Au® — &*uf)dx,
(% Jr@’ 12| Q\I'(7)

and by using the inner expression and (3.37), we have

d/e—R*
(342) vé — <f(u’£)> — iJ. J (ufz + Déué)Jé dZde
|Q| M J—5)e—RE “
82
+ 7J (Au® — uf)dx.
12 Ja\rqy !

Note that u®= U? on Q\I'(1)° and u®=u® on I'(1)°. Therefore, we may
replace u® in the first and the second nonlocal terms on the right-hand side of
(3.42) by u¢ and U*, respectively. Employing the inner expression U?, we have

0/e—R*
w—qw»ziWJ‘ (u+mﬂﬁwwf+—J (AU* — Up)dx
121w ) s 12l Jo\r
e d/e—R* B B
= —J j [(@° — U°).. + D*(a° — U*)]J* dzdS}
|‘Q| M J—=/e—R*?
i )
AU® — Uf)dx.
e
Moreover, U*¢ is expressed as U‘(t,x) = U*(¢) on Q%(f) by the spatial

homogeneous functions U%*(¢). This implies

&

vt =S () = @

&2

+ —
12l Jo

I,

R
J (@ — %)
—Jd/e—R?

J (AUST — UP Ydx +

:z+D8(ﬁ£ -

2
1ol

U))J*¢ dzdS]

J (AU — U**)dx



Dynamical of layers and the averaged mean curvature flow 289

e d/e—R? _ )
- @J//J 5 R\[(ﬁ” — U)..+ D*(a* — U*))J* dzdS]

2

Us~|Q |+ UsHQ"
1 (IR Ul

The error caused by replacing the integral interval (—J/e — R®,d/e — R*) by
(—c0,0) is of order O(e /%) for some 5 > 0 because of the decay properties
for the difference %+ — U** as z — +o0. Hence we have (3.40). O

Let us now constrain v — {f(u?)) in (3.40) so that (3.1b) is satisfied:
(3.43) If— (U |Q7 |+ UT|Q%]) 4+ 0(e7"?) := 0.

We will expand the equality (3.43) and calculate the coefficient of each power
of &. In order to do so, we need to know the coefficients J/ (j > 0) in the
formal power series

(3.44) “(tz,p) ~ Y el (1,2, ).

j=0
Substituting the expansion (3.20) into J* let us compute the coefficients
J.
We first express J(¢,r, y) in (3.36) as

N-1
(3.45) J(t,r,p) H (IL+rri(t, ) = ZHi(t, nr!
i=1 i>0
in which Hy, ..., Hy_; are the fundamental symmetric functions of xy,...,xy_
and H; =0 for all i > N:
N-1
(346) H() = 1, H1 = Z Ki =K, Hz = Z KiKj,
i=1 1<i<j<N-1
------ , Hyoo=]]w H;=0 (i>N).

Hence, from (3.20), (3.38), (3.44) and (3.45), we have
Zstj(t,z,y) t,z,y) = ZH t,y) <82+Zs’”R’”ly>
j=0 i>0 m>1

Noting (3.46) and equating the coefficient of each power of ¢, we find that the
coefficients J/ are as follows:



290 Koji OkADA

(3.47) (j=0 J'=1,
(=1 J'=x(z+R",
(j=2) J*=kR>+ Hy(z+ R")?,

(j=3) J/ =xR/ +2H;(z+ R")R/™!

+ terms including I, R',... R/72.
Substituting the expansions (3.2), (3.23), (3.21) and (3.44) into (3.43) with
(3.41), we obtain the following series of equalities:

(j=0 1°=0,
(3.48) S -
(j=1) =0 "Q|+Uv/ et =o.

Here, I/ (j>0) are coefficients in the expansion I°(s) ~ >, ,&/l/(z) for
(3.41) defined by

J

(3.49) U= ZJ How(af"ﬂ — O I d

m=0J A -

. j—m, + r7j—m,+ m r
+JO @@=t — gy g dz}dSy

J m

+33 J ) How DIt — o) dz

m=0 [=0 77

o0
+J DI @t — g gt dz} dsy.
0

LemMA 3.4.  The nonlocal equalities (3.48) are satisfied for j =0, and are
recast as follows for j > 1.

1
3.50a) (j=1 ¢ (v*)v! :—J xdS!,
( ) ) (v) i), s
' 1 N-1 ‘
(3.50b) (j =2) c’(v*)vfmjﬂ Zx,?w(yfv) RINAS] + 01,
VA=
where agj_1 is a function depending only on (F,Rl, o RITZ 0% ..,vj’l).

Proor. In the proof, we use the decay properties for a>* — U**, (3.22),
(3.27) and (3.47), (3.32) and their equivalent expressions listed in Lemma 3.2.
Let us begin with j =0. The term 7° in (3.48) is recast as
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o0

0
1° = J J @~ — U%")_.dzdS] +J J @ " — U%")_.dzdS]
M M

% 0

[ (] ozt )asy = 10:() - @z (-0,
which vanishes due to the property of Q*. Therefore, the equation (3.48) with
j =0 1is valid.

We move on to the case where j=1. The function I' is as follows:

o0

0
(3.51a) 1! :J U (@ — ') dz+J @t — g0 dz] ds”
M

—o0 0

0 0
(3.51b) +J U @ - 0%)_ J" d- +J @+ - ot _J! dz} dsf
M

o 0

DY@ — %)) dz} ds’.

— 00

We can compute so that

H in (3513) = a;’_|z:0 - ﬁ_lﬂL'z:O + (121-,+ - UI7+)Z|::30 - (ﬁh_ - 017_): z=—00

o0

o0 o0

[] in (3.51c) = (y, - V+K)J | Q: dz=c'(v*)! J

— 0

Hence, I' becomes

I = || (c’(v*)vl —%J%KdSyr)

On the other hand, the second term in (3.48) with j =1 vanishes since
U%* = h*(v*) are independent of ¢, which implies that (3.48) with j =1 is

[h)"|I) (c’(v*)v1 — |11ﬂ|J.///K de) =0.

Since [A]*|I'| > 0, we have (3.50a).
We next treat the case where j=2. The term I’ turns out to be as
follows:
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(3.52a)

(3.52b)

(3.52c)

(3.52d)

(3.52¢)

(3.52f)

I? =

Koji OkADA

We can calculate so that

0 0 b
U @ U JJdz+ | @ - U>")_J" dz|dS]
W L) - 0 J
- 0 B o0 ~ 7
+ @ -0 g dz+ | (@bt -0 _J dz|dS]
M LI -0 0 i
- 0 B O - 7
+ @ —U%) .S dz+ | @ - U%")_J* dz|dS)
ML) -0 0 d
- 0 ~ o0 - 7
+ DX = U*) dz+ | D*@"" - U%")J dz|dS]
ML) -0 0 d
- 0 ~ o0 - 7
+ D'@" —U*)J dz+ | D'@"" —U%")J dz|dS]
ML) -0 JO d
- 0 - o0 - 7
+ D'(a"~ - U"")Jdz+ | D'(a"* - U"")J"dz|dS].
ML) -0 0 d
H in (3523) = 1’23’_|;:O - ﬁ_37+|z:0 + (122"+ - 02’+):|z:3@ - (ﬁz T - 02’_)2 z=—0o0
= O7
: ~1,— 7l — 0 ~1, 71, 0
[]in (3.52b) = [@" " — U"")J' L, + (@ —U""). T
0 0
_j @~ 0").J) de _J @ — 0. dz
—o0 0
0 _ 0 ~
= —J @ - 0" dz—J @t - U"7") Kk dz
—0 0
= —x[@" " - "), —kl@ - Ty
= k(U = U,
[] in (3.52¢) = J 0:.J% dz = —J Q1 J2dz = _J  0X(Hy(z + RY))dz
= —2[h|*"H,R' — 2H, <J zQ. dz>,
) 0 N-1 )
[] in (3.52d) = J KE DY K,?> Ri|Q; dz +J \VIR'?Q: dz
—® i=1 %

- (NZI K?)ZQ.T
-0 \ i=1

dz
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2
= [1"(c'(0*)0* + py) + IV R 7[Q2 (0) — QX (= 0)]

N-1 0
2 *
- K; J zQ: dz

N-1 oe)
= [h}*c/(v*)yz + <[h*}pl — ZKZZJ ZQ_j dZ),
i1 %

where p; is the function depending only on (I";v*,v!) defined as in (3.35),

[] in (3.52¢) = JOC (y,-v+x)Qrx(z + RY)d=
=(y,- v-‘rK)KJOO zQ: dz + (7, - v + k)R J% Q! dz
:[h]*(yt.v—‘,—K)K‘Rl_’_(y,.v—f—}c)l(fjoo ZQ; dZ,
0 _ o0 ~
[] in (3.52f) = J (y-v+r) @~ —U"7), dz +J (y,-v+r)@ - 0", dz
-0 0

= (vl = O+ Gy )l = O
=(y,-v+r)(U-T = U").
The second term in (3.48) with j =2 is
Ul + UheT,
which is lower order since U''* depend only on v*, v!. Therefore, (3.48) with

j =2 is recast as

(3.53) [W*|I] <c'(v*)v2 LJ (2H, — (y,- v+ x)x)R! dS}I," — 01> =0,

)
where o) is a lower order term depending only on (I7;v*,v!), explicitly given
by
1 -1 0 71 1 1,- r
o] = - U | +U’+Q+ —(lj’ﬁ_—[]7 J j)VdS
(O Ute) )| nevas]

1

+ ﬁ (J% -0: dz> L{ <2H2 + Ni K= (e v+ K)K) ds;

™ i=1

1 r
- mﬁ/l @By -
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From the definition of H, (cf. (3.46)), the integral kernel in (3.53)
2H, — (y, v+ 1K)k
is recast as

2Hy — (y,-v+K)k = 2Hy — k> — K(p, - v)

N-1 \?2
=2 Z KiKj — (Z Ki> —K(y,-v)
1<i<j<N-1 i1
N-1
= =3 Kk ()
i=1
Thus, from (3.53) and [A]*|I'| > 0, we arrive at (3.50b) with j=2.
The same computation as above implies the results for all j > 3. Indeed,
the term I/ is:

0 0
(3.54a) I/ — J U (@ — ) J° de +J (@ — T/+)..00 de | dST
M LI -0 0
0 ~ .
(3.54b) + U (@ - -0 g dz
M — 0
o I /A dz} s}
0
0 ~ . 0 ~ .
(3.54c) + U @ —U0%)_J/ dz +J @ — 0" J/ dz|dS}
ML) —o0 0
0 . ~
(3.54d) + H D/ —U%)J dz
M —o0
+ | D/@@"t - u%h)s° dz} ds;
0
O ~ .
(3.54e) + H D' (@~ - Uy dz
M —0
+| bY@t - oyt dz} s}
0

_A'_...7

13 LR

where we employed the expression to denote the lower order terms
depending only on (I",R',...  R/=2;v* v! ... v/7!). We can compute so that
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0 0
[] in (3.54a) :J (@~ = U, dHJ (@t = U"), dz
. 0

= 11':]"7|2:0 - a;i’+|2:0 + (ajnL - 0j7+)z|z:oo - (ajﬂi - Uj77)z|z:730

0
- @ -U").(cRT+ ). dz
_ (fll + _ Ul +)Z(KR]*1 + )— dz
0
0 o0 ~
:—J @ = —U").( )dz—J(u1+—Ul+)( )dz
. 0
[] in (3.54c) = JT Q77 dz = ’Jw Q:J! dz = ’Jw QI QHR™™ + -+ )dz
= 20 HoR™ + -,
0 P N-1 ‘
[] in (3.54d) = J Frie A, — chf R 0 dz
—© i=1

o0
+| wiRviRIQL
o0

= (1" + )+ 2GRV RIQ: (0) = O (=0 + -+
= [

Jin (540 = | oy +RQIR 4

-0

:(yt'V‘FK)KRj_]JV Q; dZ+

= [0 (v R
The second term in (3.48) is

vttt + U et =
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since U/~1'% depend only on v*,v',... /!, Hence, (3.48) is recast as

(AT (c’(v*)vj ! J (2H, — (y, - v+ K)K)R/™! dSyF + - > =0.

1

By [A]*|I'| > 0 and changing the form of the integral kernel, we arrive at
(3.50b). This completes the proof. O

3.5. Uniform approximation. In §3.3 and §3.4, we derived two series of
equalities (3.33) and (3.50). These two give rise to the following series of
parabolic equations for ¢ >0, ye ./#:

1
3.55a y ~V=—K—|——J xdSh,
B35 i),

N—-1 N—1
- ) 1 .
(3.55b) R/ 7' = (Af;/+ > :Ki2>R"_l _ITIJ <§ :Kf+K(y[-v)>R/_l ds;
i=1 M\ i=1

+ (pj_1 +aj-1).

The first equation (3.55a) is nothing but the averaged mean curvature flow.
Thus, once a smooth initial interface is given, it is guaranteed that there exists
unique smooth solution I" to (3.55a) on a time interval [0, T] (cf. [14, 16, 11,
21]). The equation (3.55b) is a nonlocal nonhomogeneous linear parabolic
equation of the following form

N-1
Rt—<A§/+ZK[Z>R+J a’Rdy+b,
pa M

where a’ is a function defined by (cf. (3.39))

1 N-1
aF .— _m (Z K',-z + K(yt . v)) \/Elr:()
i=1

and b a nonhomogereous term. This is expressed as
R(t,y) = A6, )R(t, p) + b(1,y), >0, yed,

and the generator of A is sectorial because the linear differential operator
AT, + SV K2, called the Jacobi operator, generates a sectorial operator while
the linear nonlocal effect fﬂl/ar R dy defines a bounded operator. Therefore,
by the abstract theory for evolution equations (cf. e.g. [19]), it is ensured that
there exists a unique smooth solution R to (3.55b) on [0, T], provided that
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I', b and initial data are all smooth. In this subsection, we will determine
(I',R',...;v% v',...) by employing (3.55) and construct approximate solu-
tions.

We give a smooth initial interface I’y and define I” as a unique smooth
solution to (1.2) on a time interval [0,7]. We also set

(3.56) =0, tel0,T].

Then, our choice determines the functions U%* as

U= () =h(v*) on Q (1), tel0,T],
(3.57)

Ut (1)

K (v*) on Q7 (1), tel0,T]

by (3.5a), and @%* as in (3.30) for 1€[0,7] and ye.#. For fixed k > 2,
we can also determine the functions U/*(7) (t1e[0,T]) and u/*(s,z,y)
(tel0,T],+z€[0,00),ye#) for j=1,...,k via (3.5b) and (3.31), by suc-
cessively solving (3.55b) for R' ..., R*! on [0, T] together with given initial
data

R(l)(y),...,Rg_l(y), Ve,

and by setting as, for ¢e [0, 7],

ol
1 r
v K dS;,
W)
(3.58) | | Vol
v = - —J kP +r(y,-v) |R7VAST o5 |.
7w |ITT <Z ) y o

We notice that the C!-matching conditions (3.32) (j=0,1,...,k) and the
nonlocal equalities (3.4) (j =0,1,...,k — 1) are all fulfilled, since I", R',...,
R*1 solve (3.55) while v°,0',... 0% are defined via (3.56) and (3.58) (cf.
Lemma 3.3 and Lemma 3.4).

Let us now define

k—1
Ri(t,y) ==Y & "R(1,y),
=1
(3.59) '

k
04 (1) == Z /vl (1).
=0

We also set
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k k
Ujvi(t) = Zg.in}i(t)) t 2 y) = Z [ )
=0
Dé = ZSJDJ, Ji(t,z,y) == ZSJJJ(Z7Z’ ),
J=0 =
k=1
Li(0) =&l (1)
j=0
U (1), te0,T], xeQ (1),
UA( ) = U‘9>+([) te [0 T] xngr(l)
A ’ 5 y ,
g U;(n), tel0,T —0,0 Y
Uj(l"z,y);{ zg+()7 6[7 ]726( 0, )7)/6 ,
Us™(t), tel0,T),ze(0,0), ye .,

ﬁc(l ) aj_(l,Z,y), [E[O,T],ZE(—OO,O],yEﬂ7
z =
P ast zy), 1e]0,T], ze0,0), ye.a.

Here, the coefficients D/, J/ and I/ are determined via (3.22), (3.47) and (3.49),
respectively. We note that /§ is represented as

60 ri=| |G - O D - U deds]
M

Let O(r), 0 <O <1, be a smooth cut-off function satistying

(1 <é2,
@(”‘{o >,

and define our smooth approximate solution u% on Q7 := [0, T] x Q as follows:
(3.61) u’(t,x) := Ui(t,x) + O(r(t,x))[a (¢, x) — Uj(¢,x)], (t,x) € Qr.

where we employed the interchangeable expressions in terms of (¢,x) <
(t,r,y) < (t,z,y) via (3.7) and z=¢ '[r —eR%(t,y)]. By our way of con-

struction, we can easily find the following.
(i) Approximation of (3.1a) by outer solutions (cf. §3.1):

oU? , ,
(3.62)  max eza—A—eZAUj — f(US) + 0" = 0",
[07 T] t LU;(Q)
(ii) Approximation of (3.1a) by inner solutions (cf. §3.2):
176
(3.63)  max |2 2 g 4ot =04,
[0$ T] at L* ([v()/Z)

(i) Approximation of (3.1b) by outer and inner solutions (cf. §3.4):
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(3.64) max |7 - (U197 + U127 = 0("),
, T

I being (3.60).
Using these results, we have the following

Lemma 3.5. Let ufy, v% be the functions defined by (3.61) and (3.59),
respectively. Then

o omax @S- ) e =06,
[0, 7] ot L*(@)
(3.65)  max|of — /() = OE).

PROOF. Let us first prove (3.65a). Since 5 (1,x) = U%(1,x) on Q\I'(1)°,
the estimate (3.62) immediately yields that

a &
szﬁ—szzluj — fu) + 5

(3.66) max 3

-0 k+1 )
[0,7] (8 )

L*(Q\I'?)

In I'(£)°\I"(1)*”, putting p4 =u% — Uj, we can compute as

2 & & 3 261”164
e Aul + f(uf) — v —¢ v
U
=& AU: + f(U5) — v, — & ﬁtA

a(p50(r))

+ 2 A(p500) + S (U + p30() — £(Ug) - 2L

2 0U%
ot

+20(r)Ap%, + 2620 (r)\Vp®, - v + &2p (0" (r) + O'(r)Ar)

=AU + f(US) — 0% — ¢

1 On¢
+60) | UG+ spi00))ds + 20 iy — 00 L
0

where the following identities were employed:
rt(la X) = —V(X; F(l))7 Vr(l7 X) = V(X; F(l))

By the estimate (3.62) and the fact that p% and its derivatives with respect to ¢,
x of any order are O(e /%) for some 5 > 0, we obtain
Uy

0
P2 Py — [ (u5) + 0

— Okt
3 = 0(e"").

L (I°\I°?)
Combining (3.63), (3.66) and (3.67) together, we obtain (3.65a).

3.67
(3.67) max
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Let us next prove (3.65b). The terms in the left-hand side of (3.65b) are
recast as

CFlus)> = o =gz | L) = i
= J L = v o | () — U
(3.680) = |, L = vdax o | L) — rwpas
(3.68b) 1oy 08) — S U
(3.650) T RUCARNCAIT

Using (3.62), (3.64) and (3.65a), we treat (3.68a) as follows.

1 & — & — 1 & &,
(3.68a) = @J E[(UFT), — AUy ldx + @Jm E[(US™T), — AUS  dx
s

|€2]

82

el

| et - v, = a6 - Uplas+ o6+
(U512 |+ Ug @)

: 0/2e—R, ~ ]
_ %J J (@ — U5).. + Dy (a5 — U dzdS) + O(eF)
| | M I —-6/2e—R?,

= [ (USTIQ7| + USTI27]) — I + O(e™%)] + O(++)
= c0(e") +£0(e™ ) + O(FT)
_ 0(8k+1).
On the other hand, (3.68b) is computed as
1 * &
(3.680) = o | | LU+ pi600) - S (U
|Q| o\ro”?

1 . L .
- @LW P40 (Jof (Uf + spA@(r))ds> dx

— (efn/6)7
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and
(3.68¢) = 0
since u(t,x) = Uj(t,x) on Q\I'(1)°. Therefore, we obtain (3.65b). O

Our approximate solution u% in (3.61) is obviously smooth. From Lemma
3.5, we immediately obtain (2.1a). It also turns out that uf satisfies the
boundary conditions (2.1b) since u?%(t,x) = U™ (), spatially homogeneous, on
0Q. Furthermore, we can verify that (2.1c¢) and (2.1d) are fulfilled because of
(3.56), (3.57) and the fact that I'(z) is the solution to (1.2) for [0,7]. There-
fore, our u% defined as in (3.61) is the desired approximate solution. This
completes the proof of Proposition 2.1.

ReMaRrk. (i) The linear part in the equation (3.55b)

N-1 N-1
1
R,:<Aﬁ,r/,+ E K?>R_WL"<E Ki2+K(y,~v)>RdSyF
i=1 i=1

is characterized as the linearization of the averaged mean curvature flow
(3.55a) in the direction of

@, )+ R(t, y)v(t, y) |y e}

It is also verified that the function R satisfies

d r_ dp_d(1 r\ =
0 L R(t,y)ds =0,  —R=- (IFI L{R(r, »)dS! ) = 0.

(ii) The level-set interface I'*(¢) (cf. (3.12), (3.13)) is approximated by
I'i(t) :={xeQ|u’(t,x) =0}
={xeQ|x=yp(t,y)+eR5(t,y)v(t, ),y € M}.

(iii) By virtue of the homogeneous Neumann boundary conditions and the
existence of nonlocal term, the true solution u® to (1.1) preserves its
spatial average:

(t,-)y = <wu(0,-)), €[0T,

while the approximate solution u% does not. However, it does approx-
imately in the sense that

Wt ) = <w5(0,)) + 0, 1e(0,T)
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4. Proof of Proposition 2.3

In this section, we prove Proposition 2.3 by means of several lemmas.
The first lemma shows that the operator .«/*(t) is sectorial for all 7 € [0, T/¢*].

LemmA 4.1.  There exist some constants L, >0, 0, € (0,7/2) and M, >0
such that

p(Z(1)) S, :={leC|A#A, |arg(A —&°A)| < /2 + 6.}
and the following resolvent estimate is valid for all T € [0,T/¢e*]:

& - M* )
(4.1) (= 25(x) Moo < =i L€ S..

ProOF. We first treat the case where p = 2. It is easy to verify that #*(r)
under the Neumann boundary condition is formally self-adjoint in L?(Q) M,
and therefore eigenvalues are real. We also obtain by the variational char-
acterization for the principal eigenvalue A° of £%(¢) that

Jo =Vl + 72 ()l dx

AP = sup 3
peH'(Q) ||§0||L2(Q)
0 #0,{p>=0
—|Vol? + e (uf) || dx
< swp Jo =1Vl 2f(A)le .
peH'(Q) lollz20)
p#0

This says that A° is estimated from above by the principal eigenvalue of the
linearized Allen-Cahn operator 4 + ¢ 2f”(u%). On the other hand, according
to the results established by Alikakos et al. [6] and Chen [§8], the principal
eigenvalue of A + ¢ 2f'(u%) is bounded above for ¢ >0 and te[0,7]. Thus
we have 1% < 1, for some A, > 0.

For A e C and a complex-valued function v with zero average, let us now
consider the resolvent equation

(4.2) Ju— L (Hu=v, —=0.

Multiplying the equation in (4.2) by the complex conjugate # of u and
integrating over 2, we have

(4.3) Aullz gy = (L4(00u,u) gy + (0,10) 2(),

where the symbol (-,-);2q) stands for the usual L%-inner product. We
decompose 1 eC, u: Q2 — C and v: Q — C so that
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(4.4) A=2Rp it u=u®+iu’, v=ovR+ il

We note that the real-valued functions u®: Q — R and u/ : Q — R also have
zero average and satisfy the Neumann boundary conditions. Associated with
the decomposition in (4.4), the real part of (4.3) is computed as

lRH“H%Z(g) = (38(1)uR7“R)L2<9) + (L0, ”l)LZ(Q)
+ (uf, UR)LZ(Q) + (u17U[)L2([2)
< Au(lu® 120y + 14" 172(0)
+ ||“RHL2(Q)||UR||L2(Q) + H”IHLZ(Q)HUI”LZ(Q)

< /1*(||”R||2LZ(Q) + ||”I||2LZ(Q))

2 2 12 2 2 12
+ (1117 20) + 14 17200) N0 120 + 10717200

= /1*||u||12(9) + [lull 2@ 101l 2 ()
to obtain
(4.5) (A" = 2 lull @) < 1ol 2y
On the other hand, the imaginary part of (4.3) becomes
Al = ~(L5 R ul) ) + (L7 uP) g
+ (W, 0") 2o — (!, 0%) o)
= (", UI)Ll(Q) — (', UR)U(Q),

where integration by parts and the Neumann boundary conditions are used.
Thus we have

(4.6) A ull 2y < 0ll2(o).
From (4.5) and (4.6), we obtain the estimate
(A5 = 2) + 127 el 2 < 200ll 2@
which implies that

M,
(4.7) [ull 120y < m”’)”um)

is valid for Ae {1eC|A# A, |arg(d — A)| < n/2 + 0.} = p(L*(¢)) with 0. €
(0,7/4) and M, :=+/2/cos(0, + n/4).
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Once this is established, we find, along the line of arguments in Tanabe
[34], that the following L”-version (p > 2) of (4.7)

M,
(4.8) [ull oo < m”l’”u(sz)

holds for all 1e {1eC|A# 4, |arg(A — A)| < /2 + 0.} < p(ZL(¢)) with the
same A, > 0 in (4.7), replacing 6. and M, by other constants. The estimate
(4.1) then follows from (4.8) and the time rescale in (2.3), which completes the
proof of Lemma 4.1. O

On the other hand, one can easily find that the operator .o7°(7) — .o/%(o)
consists of a multiplication operator and an integral operator. In particular, it
does not involve any differential operator. Thanks to this fact, the operator
norm of «/%(t) — «/%(g) has the following characterization for s > 4.

LemMa 4.2. Let og€[0,1/2). Then, there exists a constant My =
M(ao) > 0 such that the following estimate holds for sufficiently small ¢ > 0,
s>4and 0 <o <t<T/e

(4.9) 17 °(2) = A (0)ly 4, < Mog*(z = 0).

ProoF. In the proof, we simply write « and M instead of «y and M,
respectively.
Let p € X{ and define the linear operator & by

(4.10) &L 0 = (A5(1) — A%(0))p.
Then, by (2.6a), an elementary calculation gives
@11) & p(x) = &2 [F (%) G (x)p(x) — <F7 ,Gf ,9)]e’(z — a),
where F?_ and G;, are
1
Flo(x) = J I (Wiebe, x) + 0(ujy(e't, x) — ujy(e'o, x)))do,

(4.12) ’

1A e
ou

G* (x) = L 2460 + 0(c — 0)), x)d0.

We divide the proof into two cases; (i) « =0, and (i) o€ (0,1/2).
Case (i): « = 0. We notice that £/ and G, (0 <o <7<T/¢)in (4.12)
satisfy the following estimates:

17 oMl 1= (0) = O(1),

(4.13) i
G2 ol 1o (@) = O(e7).
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Thus, by (4.11), (4.13) and the embedding X — X§ = L?(2), we obtain

67 0l < 26572HF18,<7||L‘L(Q)HG-ia”L%(Q)”¢| L@’ (t—0)
< Me"* &'z = o)llol..
For s > 4, we have
(4.14) 162 50llo < Me*(z = a)loll,
This together with (4.10) implies
|.2%(z) — (o), < M&* (1 — 0),

which establishes (4.9) with o = 0.

Case (ii): 2 € (0,1/2). We note, by virtue of the relation between Besov
and Sobolev-Slobodeckii spaces [1, 35], that the interpolation spaces X/ in this
situation are characterized as

XE = (@) NM.
Here, W2*P(Q) = W?*#(Q) as a set, equipped with the weighted norm
@15 il = oy + & oo,

in which [u]y2, ) is the seminorm defined by

| P lp
(4.16) (] s o) == (J JQ % dxdx') .

xQ |x — x|

Let p € X{, and we will estimate & ¢ by the norm || - || wier()- n (4.15),
the estimate

(4.17) 167 601l L) < Me*(z = a)llll,

immediately follows from (4.14). Hence, it suffices to examine the seminorm
part.
Let us compute &**[&;7 ,¢]p2pq)- From (4.11), we can calculate as

6L 0(x) = &7 jp(x) = & 2(F7 ,(x) = FE (") GE ,(x)p(x)
+ F,(X)(G] ,(x) = G7 ,(x"))p(x)
+ F; (¥ G (X)) (p(x) — p(x))]e"(z - o).
By (4.16), it is easily verified that

(4.18) &7 0] W) < M(If +0I+ If)ss(‘c —0),

T
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where
1/p
F:.x_an/Pchl’xP
oot ([ V)~ PG N
QxQ |x — x/| 7T
1/p
Fe x/PGe x) — G¢ X/P xP
e[ V@G = G, ) N
Jlexa |x — x!| 7T
1/p
Fé (xXN1P1GE (x| lo(x) — o(x")|?
([ PG o) o) N
QxQ |x — x|V

We first examine I{. Let D°:= (Q x Q)\(I'** x I'%/?), namely,
DY = [(@\I72) x (@\IPP)] U [(2\I2) x T2 U1 x (2\1712)].
We also define S° = D° by
8% :={(x,x") e D%;|x — x'| <I/4}

and introduce

|u(x) — u(x')]
Ul sy -— SU B Era—
[ }Llp(s)) x,x’epsﬂ' |x _ x/|
x#x'

Note that 7, for 0 <o <7 < T/e' enjoys the following properties

(4.19a) [F;';g]Lip(s(n = 0(1),
(4.19b) [F:,o]c/f(fri/Z) = O(E_ﬁ)
for e (0,1).

We now fix f# so that 2o < f < min{4e,1}. Using (4.13), (4.19) together
with spherical coodinates, we can compute I{ as

1/p
Fr.x_anlPchl’xP
,lgSMgs_zng [| el = PG N, dx,)
SO

‘x _ x,‘ N+2op

1/p
Fé (x) — F¢ x/Panl’xP
o[ el FEONGEA
DI\ |x — x| 7T

1/p
st_Fex/PGexﬁxP
+Mgs—2g”<“ |F? o (x) = F£ (X)"1G ,(x)[” |o(x)] dxdx,)
92592

‘x _ x/‘Nﬁ*ZO(p
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1/p
21 ot lp(x)|? dxdx’
< M2 50162 o (J o
1
s p(0)Pdxdx’ "
+ Me 17 ol @)1 G2 ol 12 () RS o
Do\So |x — x|
1/p
sou+s—27 e M
+ Me [ T, (;]C/f 1"0/’ ||G‘[ JHLT (JJF‘)/ZXF’/7 |_X x,|N+ (2a—p)p

dx’ v
so+(s—4) )4
< Me (JQ |o(x)] <J9_|x | VT )dx>
1/p
dx’
+ Mesoc+(sf4) J o(x p J " dx
Q| | Qn{lx—x'|=s/4} |x — x| VT2
1/p
dx’
so—f+(s—4) p

ool ([t )

< M P gl g
and by the embedding X{ — X < L?(Q), we have
(4.20) If < Me™ P9
As for I, we notice that the following properties for G; , are valid:
(4.21a) [G7 o lLip(so) = 0(e7),
(4.21b) (G} ]c/r< Fory = o(e 7).

Then the same computation as that for I implies

X . . 1/p
Fé / pGa — G¢ NP P
I < M2 (J J |Fe o (I71GE 0 (x) = Ge , () le)I” dx,)
S0

‘X . x/‘N+2ap

X . . /p
Fé (x! I'Ga x) — G¢ X' P x p
+M<j | F2o()I71GE () = G2, (Il dx,)
DA\S? |x

_ x,|N+2ap

X X X 1/p
Fe NP G¢ —G& IAYV4 p
+ ng—ngo: JJ | ‘r,a(x )| | r,a(x) r,a(x )| |¢(X)‘ dXdX/
/25 [9/2 ‘x

o x,‘NJrZa(p
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1/p
- |p(x)|” dxdx’
< M P2 FE Nl e )[GE Gl Lipso) (JL —,|N+(21,1),,

i x—x

/p
s lp(x) | dxdx’
+ M2 G2 o (Jj A

DA\SY |x — X'|

1/p
swhs=2| o e _lp)ldxdx’
+ Me HFT,JHU(Q)[Gz,a]c/:(rm) (J er/zxr(i/z Ix — x/|N+(21fﬂ)p

o 1/p
so+(s—4) P i —
< Me <JQ ()] (JQ v — x/|N+(29cl)P> dx)
1/p
dx’
+ M=% J p(x) J o |
Q| )l on {jx—x| 24y [x — x|V
1/p
dx’
—B+(s—4) p B — ST T
+ M P (JQ lo(x)] (JQ o — x,|N+(2aﬂ)p> dx)

< M85a7ﬁ+<574)||¢||u(9)a
and thus we obtain
(4.22) I3 < Me"H 09 g| .

In (4.20) and (4.22), we find that su —f+ (s—4) >4a— >0 by virtue of
s >4 and our way of choice of f, and therefore we have

(4.23) IF<Mlgll, i=1.2

For I{, we can estimate, by (4.13), as
15 < e 2 ool G ol €0 r )

< M. &% [g] w2 ()

—4
< Mg ||(P||Wf*v1’(g)a

which, together with s >4 and the embedding X} — X/ = W*7(Q), implies
(4.24) 5 < Mol

By substituting (4.23) and (4.24) into (4.18), and combining with (4.17), we
have

16200l < Me*(z = o)l
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that is,
l7°(z) = (o)) , < Me*(z = o).
This completes the proof of Lemma 4.2. O

By using Lemma 4.1 and Lemma 4.2, let us now prove Proposition 2.3.
Let o9 €[0,1/2). By Lemma 4.2, it follows that

(4.25) |.oZ%(7) — /%(0) < Myée'(r — o).

||1,0((] -
Moreover, from Lemma 4.1 above and Proposition 2.3.1 in Lunardi [19], we

find that for 0 < o < ff < 1, there exists a constant M = M(«,[f) > 0 such that
the estimate

(4.26) ||e(rfa>-z//*’(a>||a7] < M(t — g)* Pt (0)

is valid. We emphasize that the constant M > 0 can be chosen independent of
¢ > 0 thanks to the weighted norm (2.12). We now define the operator k{(z, o)
by

ki(z,0) == (#°(1) — A *(0))e 7).
Then we can estimate k{(7,0) by employing (4.25) and (4.26) as

(2,00, < 17°(2) = Z ()l 4 ™7 Pl

H 1,0(0
< MyMe® (7).

For this k{(z,0), it is known [9] that the evolution operator ®°(7,0) is the
unique solution of the integral equation

®4(1,0) = ) +J &4 (t,0")k{(c',0)dd’,

g

and that the solution @%(z,0) has the unique representation

(4.27) ?4(1,0) = eI +J e (6! o)do’
with resolvent kernel k°(z,o). This kernel can be successively constructed
starting from k{(z,0). We inductively define k7 (z,0) (m >2) by

m

ki(z,0) = J ki (t,0)ki(d', 0)da’.

a

By the repeated application of the following estimates

T
5.z, < | s (2.0 7" ) g
a
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we find, by induction, that

MoMeH™ 5
I 5.l < G (2= )™ e s,

This immediately implies that the series

(4.28) Zke 1,0)

converges and that it can be estimated as

0 X m—1
s &% (t—0 (MOMSA(T_J))
1k°(z, o)l < MoMe'e +(t=0) ; =)

— M()Mb‘s &' (At MoM)(t— (7)

Therefore, there exist some constants M = M (a, f;00) > 0, K = K(a, f;00) > 0
such that the resolvent kernel k¢ defined in (4.28) satisfies the estimate

(4.29) 1k5(z,0)[lg.y, < Me'e” F K0,

Let us now examine the norm [|®“(z,0)||, ; by using the estimates (4.26)
and (4.29) in (4.27). Suppose that 0 <o < ff < 1. Then, by using (4.29) with
oo = 0, we have

T
1D°(2,0)l,, 5 < [l ], +J =7 o 41Kk (0”, 6) | 00"

< M(x—g)" Pt U-K0)

M [ (e o) e R () o

< M(‘L’ _ O') oc—/)’exs(iﬁ-]()(r—a)

_o
Mesot' etK)(i—0) (t—o0)

+ Mée’e 71 —ﬂ

< M(z — g)" e K1)
N MTlfo(
1-p
< M(t — g)* P tK)(t=0),

8’“(7,’ _ 0_) a—/)’esf(/l*+1<)(7:—a)

In the case where 0 < o < ff =1, we choose «y > 0 so small that a > o.
Then we have
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%, 1 Hkg(o-lv O') Hx.aodo'/

127z, 0)l,1 < [l +J e

a
< M(t—g)* et e tK) (0]

+ Mj (x — 6y~ G K k" )|y o

< M(z - 0) ¥ UK
+ Mot K)o (T 0)"
%

< M(z— g)* et Vet RI0)

1—o)+o
+ M-t gv(ocfo(o)(,[ _ 0_) Oﬁ—leﬁ‘v(i*+K)<T*(7)

%o

< M(t— o) et et K)(=0),

Thus (2.17) is obtained, which completes the proof of Proposition 2.3.

(ii)

and

(4]

(5]

REMARK. (i) Only the estimates ||®°(7,0)|,, and [|@%(z,0)
osition 2.3 are employed in the proof of Theorem 1.1.
The estimate for the case where (o, f) = (0,1) is not given. However,
even if (o,f) = (0,1), the norm ||®°(7,0)|,, can be estimated, by em-
ploying (4.26) and (4.29) with «) > 0, so that

e &% (s T—0 -1
|®%(z,0) o, < Me”H I 4 (z—0) 1],

Hx , in Prop-
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