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Abstract. Parabolic Bergman space bp
a is a Banach space of all p-th integrable

solutions of a parabolic equation ðq=qtþ ð�DÞaÞu ¼ 0 on the upper half space, where

0 < aa 1 and 1a p < y. In this note, we consider the Toeplitz operator from bp
a to

bq
a where pa q, and discuss the condition that it be compact.

1. Introduction

Let Rnþ1
þ be the upper half space of the ðnþ 1Þ-dimensional Euclidean

space ðnb 1Þ. We denote by X ¼ ðx; tÞ a point in Rnþ1
þ ¼ Rn � ð0;yÞ, and by

LðaÞ the a-parabolic operator on Rnþ1
þ :

LðaÞ :¼ q

qt
þ ð�DxÞa;

where Dx :¼ q2x1 þ � � � þ q2xn is the Laplacian on the x-space Rn and 0 < aa 1.

We consider the parabolic Bergman space on the upper half space

bp
a :¼ fu A LpðVÞ; u is LðaÞ-harmonic on Rnþ1

þ g;

where 1a pay and V is the Lebesgue measure on Rnþ1
þ . We give the

definition of LðaÞ-harmonic functions in § 2 (see also [3]). The orthogonal pro-

jection from L2ðVÞ to b2a is an integral operator with kernel Ra, called the a-

parabolic Bergman kernel (see [2]). Then for a positive Borel measure m on

the upper half space Rnþ1
þ , we can consider the Toeplitz operator with symbol

m, defined by

ðTmuÞðX Þ :¼
ð
RaðX ;Y ÞuðY ÞdmðY Þ:
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In this paper, we only consider Borel measures m such that 0a mðKÞ < y for

all compact sets K . Then we call such a measure a positive Borel measure,

simply.

B. R. Choe, H. Koo and H. Yi [1] studied the Toeplitz operators on the

harmonic Bergman spaces on Rnþ1
þ . It was shown in [2] that when a ¼ 1=2,

our 1=2-parabolic Bergman spaces coincide with their harmonic Bergman

spaces. Our investigation generalizes some results in [1].

In our previous paper [4], we treated the boundedness of the Toeplitz

operator Tm 1Tm;p;q : b
p
a ! bq

a , where pa q, related to that of the Carleson

inclusion im 1 im;p;q : b
p
a ! LqðmÞ. In this paper, we shall discuss their com-

pactness. We also treat the parabolic Bloch space

Ba :¼ fu A C1ðRnþ1
þ Þ;

kukBa
:¼ juðX0Þj þ sup

ðx; tÞ AR nþ1
þ

ðt1=2aj‘xuðx; tÞj þ tjqtuðx; tÞjÞ < yg;

where X0 ¼ ð0; 1Þ and ‘x denotes the gradient operator on the x-space Rn. It

is natural to consider Ba=R rather than bya when we treat with q ¼ y, where

R is considered as the set of constant functions.

First, we shall state the results obtained in [4] with some definitions. We

introduce some auxiliary functions. Let m be a positive Borel measure on

Rnþ1
þ , t A R and m be a nonnegative integer. For Y ¼ ðy; sÞ A Rnþ1

þ , we

put

m̂mðaÞ
t ðYÞ :¼ s�tðn=2aþ1ÞmðQðaÞðYÞÞ;

~mmðaÞ
t;mðYÞ :¼ sð2�tÞðn=2aþ1Þ

ð
Rm

a ðX ;YÞ2dmðX Þ;

where QðaÞðY Þ is an a-parabolic Carleson box, defined by

QðaÞðY Þ :¼ fðx1; . . . ; xn; tÞ; sa ta 2s; jxj � yjja 2�1s1=2a; j ¼ 1; . . . ; ng; ð1Þ

and where Rm
a is a modified reproducing kernel, defined by

Rm
a ðX ;YÞ ¼ Rm

a ðx; t; y; sÞ :¼
ð�2Þm

m!
smqm

s Raðx; t; y; sÞ:

We note that R0
a ¼ Ra and write simply ~mm

ðaÞ
t :¼ ~mm

ðaÞ
t;0. A relation between the

above two functions is stated in Lemma 3 below.

Definition 1. Let t A R and let mb 0 be a Borel measure on Rnþ1
þ .

( i ) m is called a t-Carleson measure (in the a-parabolic sense) if km̂mðaÞ
t ky < y,

where k � ky stands for the usual supremum norm.
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(ii) m is called a vanishing t-Carleson measure (in the a-parabolic sense) if

lim
Y!A

m̂m
ðaÞ
t ðYÞ ¼ 0, where A denotes the Alexandro¤ point (infinity of the

one point compactification) of the upper half space Rnþ1
þ .

We denote by Em the vector space generated by fRm
a ð�;YÞgY AR nþ1

þ
.

Remark that Em is dense in bp
a for 1a p < y when mb 1. If 1 < p < y,

then E0 is also dense in bp
a . Theorems obtained in [4] are the following.

Theorem A. Let 1a pa qay with p0y, q01 and put t ¼ 1þ 1
p
� 1

q
.

Let m be a positive Borel measure on Rnþ1
þ and mb 1 be an integer. Then

we have the following inequalities:

kTm;p;qkaC1km̂mðaÞ
t ky aC2k~mmðaÞ

t;mky;

where Tm;p;q is the Toeplitz operator bp
a ! bq

a or bp
a ! Ba=R according as q0y

or q ¼ y, and kTm;p;qk denotes the operator norm. Here we remark that the

above positive constants C1, C2 can be taken independently of m.

Under some additional conditions, the opposite inequalities also hold.

Theorem B. In the same situation as above, we assume, in addition,ð
jRm

a ðX ;YÞjdmðXÞ < y for every Y A Rnþ1
þ ð2Þ

for some integer mb 1. Then we have

k~mmðaÞ
t;mky aC3kTm;p;qk;

where the above positive constant C3 can be chosen independently of m.

Concerning the theorem, we give a remark.

Remark 1. In [4], we showed Theorem B under the conditionð
jRm

a ðX ;YÞjdmðX Þ < y for V -a:e: Y A Rnþ1
þ : ð3Þ

Remark that if Tm;p;q is bounded, then (3) is equvalent to (2) (see [4, Theorem

2]).

The above theorems are closely related to the boundedness of the Carleson

inclusion.

Theorem C. For 1a pa q < y, put t ¼ q=p. Let mb 0 be a Borel

measure on Rnþ1
þ . Then there exists a constant C4 b 1 independent of m such

that the inequalities

C�1
4 km̂mðaÞ

t k1=qy a kim;p;qkaC4km̂mðaÞ
t k1=qy
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hold when m is a t-Carleson measure, where im ¼ im;p;q denotes the inclusion map

bp
a ! LqðmÞ : imu ¼ u and kim;p;qk denotes the operator norm.

Remark 2. In the above theorem, even when m is a t-Carleson measure, the

inclusion map im, which we call the Carleson inclusion, is not necessarily injective.

Now, we shall state our main results.

Theorem 1. Let 1 < pa qay with p0y and put t ¼ 1þ 1
p
� 1

q
, and

let m be a positive Borel measure on Rnþ1
þ satisfying (2). Then the following

statements are equivalent:

( i ) The Toeplitz operator Tm;p;q is compact;

( ii ) m is a vanishing t-Carleson measure, i.e., limY!A m̂m
ðaÞ
t ðY Þ ¼ 0;

(iii) limY!A ~mm
ðaÞ
t ðYÞ ¼ 0.

Remark 3. In the above theorem, we can also handle the case where

p ¼ 1. In this case, we use the notion of ‘‘*-compact operator’’ instead of

‘‘compact operator’’ (see § 2 later, cf. [6]) and when p ¼ 1, q ¼ y, we have to

replace ~mm
ðaÞ
t by ~mm

ðaÞ
t;m with mb 1 in (iii). We can state the above assertions in

a unified form if we use the notion of ‘‘*-compact operator’’ (see Theorem 3

below).

We shall also give a characterization of the compactness of the Carleson

inclusion.

Theorem 2. For 1a pa q < y, we put t :¼ q=p. Then im;p;q is *-

compact if and only if m is a vanishing t-Carleson measure.

Throughout this paper, C will denote a positive constant whose value is

not important, not depending on measures m or functions u, and not necessarily

the same at each occurence; it may vary even within a line.

The authors would like to thank the referee for a set of useful

remarks.

2. Preliminaries

In this section, we recall fundamental properties of LðaÞ-harmonic functions

and compact operators.

In order to define LðaÞ-harmonic functions on Rnþ1
þ , we shall recall how

the adjoint operator ~LLðaÞ ¼ �q=qtþ ð�DÞa acts on Cy
c ðRnþ1

þ Þ, the space of all

infinitely di¤erentiable functions with compact supports on Rnþ1
þ . Since the

case a ¼ 1 is trivial, we only consider the case 0 < a < 1 here. Then ð�DÞa is

the convolution operator defined by �cn;ap:f :jxj�n�2a, where p.f. stands for the

finite part,
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cn;a ¼ �4ap�n=2Gððnþ 2aÞ=2Þ=Gð�aÞ > 0

and jxj ¼ ðx2
1 þ � � � þ x2

nÞ
1=2. Hence for j A Cy

c ðRnþ1
þ Þ,

~LLðaÞjðx; tÞ ¼ � q

qt
jðx; tÞ � cn;a lim

d#0

ð
jyj>d

ðjðxþ y; tÞ � jðx; tÞÞjyj�n�2a
dy:

It is easily seen that if suppðjÞ, the support of j, is contained in fjxj < r;

t1 < t < t2g, then

j~LLðaÞjðx; tÞja 2nþ2acn;a sup
t1<s<t2

ð
R n

jjðy; sÞjdy
� �

� jxj�n�2a

for ðx; tÞ with jxjb 2r.

Definition 2. Let 0 < aa 1. A continuous funcion u on Rnþ1
þ is

said to be LðaÞ-harmonic, if LðaÞu ¼ 0 in the sense of distribution, i.e.,Ð
u~LLðaÞj dV ¼ 0 for every j A Cy

c ðRnþ1
þ Þ.

Next, we introduce the fundamental solution W ðaÞ of LðaÞ, defined by

W ðaÞðx; tÞ ¼ ð2pÞ�n Ð
R n expð�tjxj2a þ

ffiffiffiffiffiffiffi
�1

p
x � xÞdx t > 0

0 ta 0.

�

When a ¼ 1 or a ¼ 1=2, we know the explicit form. In fact, for t > 0,

W ð1Þðx; tÞ ¼ ð4ptÞ�n=2
e�jxj2=4t and W ð1=2Þðx; tÞ ¼

G
�
nþ1
2

�
pðnþ1Þ=2

t

ðt2 þ jxj2Þðnþ1Þ=2 :

The following homogeneity of W ðaÞ is useful:

qb
xq

k
t W

ðaÞðx; tÞ ¼ t�ððnþjbjÞ=2aþkÞðqb
xq

k
t W

ðaÞÞðt�1=2ax; 1Þ;

where b ¼ ðb1; . . . ; bnÞ is a multi-index and kb 0 is an integer.

The following estimate plays an important role in our argument.

Lemma 1 ([4, Lemma 1]). Let b ¼ ðb1; . . . ; bnÞ be a multi-index of non-

negative integers and kb 0 be an integer. Then there exists a constant C > 0

such that

jqb
xq

k
t W

ðaÞðx; tÞjaCðtþ jxj2aÞ�ðnþjbjÞ=2a�k

for all ðx; tÞ A Rnþ1
þ .

We list some properties of a-parabolic Bergman kernels Ra and Rm
a . Re-

call that

Raðx; t; y; sÞ :¼ �2qtW
ðaÞðx� y; tþ sÞ;

Rm
a ðx; t; y; sÞ :¼

ð�2Þmþ1

m!
smqmþ1

t W ðaÞðx� y; tþ sÞ:

181Compact Toeplitz operators



These kernels have the following reproducing property: For mb 0, 1a p < y
and for every u A bp

a , Rm
a u ¼ u, i.e.,

Rm
a uðx; tÞ :¼

ð
Rm

a ðx; t; y; sÞuðy; sÞdVðy; sÞ ¼ uðx; tÞ: ð4Þ

Lemma 1 gives the following estimate for Rm
a . For an integer mb 0,

there exists a constant C > 0 such that

jRm
a ðx; t; y; sÞjaCsmðtþ sþ jx� yj2aÞ�ðn=2aþ1Þ�m: ð5Þ

We also need an estimate from below. Then there exist constants C > 0

and r > 0 such that

jRm
a ðx; t; y; sÞjbCs�ðn=2aþ1Þ ð6Þ

for all ðy; sÞ A Rnþ1
þ and ðx; tÞ A QðaÞðy; rsÞ ([5, Corollary 1]).

If m >
�
n
2a þ 1

��
1
p
� 1
�
, then we have

kRm
a ð�;Y ÞkLpðVÞ ¼ Csðn=2aþ1Þð1=p�1Þ ð7Þ

with some constant C > 0 independent of Y ¼ ðy; sÞ A Rnþ1
þ . Indeed, (5) and

next lemma ensure kRm
a ð�;Y ÞkLpðVÞ < y, so that the homogeneity of W ðaÞ gives

the equality (7).

Lemma 2. Let g; h A R. If �1 < g < h�
�
n
2a þ 1

�
, thenð

tgðtþ sþ jx� yj2aÞ�h
dVðx; tÞ ¼ Csg�hþn=2aþ1

with some constant C > 0 independent of ðy; sÞ A Rnþ1
þ .

Lemma 3. Let mb 0 be a Borel measure on Rnþ1
þ . For t > 1�

�
n
2a þ 1

��1

and an integer m >
�
t�2
2

��
n
2a þ 1

�
, we have the following relations:

( i ) m is a t-Carleson measure if and only if ~mm
ðaÞ
t;m is bounded.

(ii) m is a vanishing t-Carleson measure if and only if limY!A ~mm
ðaÞ
t;mðY Þ

¼ 0.

Proof. (i) is shown in [4, Lemma 6], and the ‘‘if ’’ part of (ii) also follows

from [4, Lemma 6]. Hence we will show the ‘‘only if ’’ part of (ii). We

assume that m is a vanishing t-Carleson measure. We use the following

Whitney type decomposition of Rnþ1
þ . For n ¼ ðb1; . . . ; bn; kÞ A Z nþ1, we put

tn :¼ 2k, xn :¼ 2k=2aðb1; . . . ; bnÞ and Qn :¼ QðaÞðXnÞ, where QðaÞðXnÞ is the

Carleson box defined by (1) and Xn ¼ ðxn; tnÞ. Then in a similar manner

to the proof of [4, Proposition 2], we have
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~mmðaÞ
t;mðYÞ ¼ sð2�tÞðn=2aþ1Þ

ð
Rm

a ðX ;Y Þ2dmðX Þ

aCs2mþð2�tÞðn=2aþ1Þ
X

n AZ nþ1

ð
Qn

ðtþ sþ jx� yj2aÞ�2ðn=2aþ1þmÞ
dmðx; tÞ

aCs2mþð2�tÞðn=2aþ1Þ
X

n AZ nþ1

ðtn þ sþ jxn � yj2aÞ�2ðn=2aþ1þmÞmðQnÞ

¼ Cs2mþð2�tÞðn=2aþ1Þ

�
X

n AZ nþ1

ðtn þ sþ jxn � yj2aÞ�2ðn=2aþ1þmÞ
tðt�1Þðn=2aþ1Þ
n m̂mðaÞ

t ðXnÞVðQnÞ

aCs2mþð2�tÞðn=2aþ1Þ

�
ð
ðtþ sþ jx� yj2aÞ�2ðn=2aþ1þmÞ

tðt�1Þðn=2aþ1Þm̂mðaÞ
t ðXÞdVðX Þ:

Now let d > 0 be arbitrary given and let us take a compact set K in Rnþ1
þ such

that m̂m
ðaÞ
t ðXÞ < d for every X A Rnþ1

þ nK. Then we have

~mmðaÞ
t;mðYÞaCdþ Ckm̂mðaÞ

t kys2mþð2�tÞðn=2aþ1Þ

�
ð
K

ðtþ sþ jx� yj2aÞ�2ðn=2aþ1þmÞ
tðt�1Þðn=2aþ1ÞdVðX Þ;

which implies

lim
Y!A

~mmðaÞ
t;mðY ÞaCd:

This completes the proof.

Next, we recall some general properties on compact operators.

Definition 3 (cf. [6]). Let X, Y be Banach spaces and T : X ! Y be a

bounded linear operator. Assume that X has a predual Banach space.

( i ) T : X ! Y is said to be weakly compact if for every sequence ðujÞj in X

such that w-limj!y uj ¼ 0, Tuj converges to 0 in Y.

( ii ) T : X ! Y is said to be *-compact if for every sequence ðujÞj in X such

that w�-limj!y uj ¼ 0, Tuj converges to 0 in Y.

(iii) T : X ! Y is said to be compact if for every bounded sequence ðujÞj
in X, there exists a subsequence ðujk Þk such that ðTujk Þk converges

in Y.

The relations of these notions are given by the following lemma.
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Lemma 4. Let X, Y be Banach spaces with X ¼ Z� for some Banach

space Z. Then we have the following:

( i ) If T : X ! Y is *-compact, then T is compact.

( ii ) If T : X ! Y is compact, then T is weakly compact.

(iii) If a Banach space X is reflexive, i.e., Z ¼ X�, then the notions of ‘‘weakly

compact’’, ‘‘compact’’ and ‘‘*-compact’’ for bounded linear operators from

X to Y are equivalent to each other.

Lemma 5. Let X, Y be Banach spaces with X ¼ Z� for some Banach

space Z. The space of all *-compact operators T : X ! Y is a closed subspace

in the Banach space of all bounded linear operators.

Proof. Let ðTkÞk be a sequence of *-compact operators which converges

to a bounded operator T in the norm sense. Take any sequence ðujÞj in

X such that w�-limj!y uj ¼ 0. First, we remark that supjkujk < y by the

uniform boundedness principle. Then we have

kTujka kTuj � Tkujk þ kTkujka kT � Tkk kujk þ kTkujk:

Since Tk is *-compact, letting j ! y, we have

lim sup
j!y

kTujka kT � Tkk lim sup
j!y

kujk;

which shows our desired result limj!ykTujk ¼ 0.

Let Ba;0 denote the a-parabolic little Bloch space,

Ba;0 :¼ u A Ba; lim
ðx; tÞ!A

ðt1=2a j‘xuðx; tÞj þ tjqtuðx; tÞjÞ ¼ 0

� �

(see [2] for detail). Note that Ba;0 is separable. In this paper, we always

consider the predual of b1a as Ba;0=R.

We close this section by remarking the following facts.

Lemma 6. Let 1a p < y. For m >
�
n
2a þ 1

��
1
p
� 1
�
, we have

w�- lim
Y!A

Rm
a ð�;YÞ

kRm
a ð�;Y ÞkLpðVÞ

 !
¼ 0

in bp
a , where bp

a F ðbp 0

a Þ� if 1 < p < y and b1a F ðBa;0=RÞ�. Here p 0 is the

exponent conjugate to p.

Proof. Take an arbitrary sequence ðYjÞj ¼ ððyj; sjÞÞj in Rnþ1
þ which con-

verges to A and put

vjðXÞ :¼ Rm
a ðX ;YjÞ

kRm
a ð�;YjÞkLpðVÞ

:
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We may assume w�-limj!y vj ¼ v for some v A bp
a , because the sequence is

bounded in bp
a .

Let 1 < p < y. For every X A Rnþ1
þ , since RaðX ; �Þ A bp 0

a ,

vðX Þ ¼ hv;RaðX ; �Þi ¼ lim
j!y

hvj ;RaðX ; �Þi

¼ lim
j!y

vjðXÞ ¼ lim
j!y

Rm
a ðX ;YjÞsðn=2aþ1Þð1=p 0Þ

j

¼ 0;

by (4), and (5), (7), where h� ; �i denotes the pairing of the duality.

Let p ¼ 1. Since RaðX ; �Þ A Ba;0, we have

lim
j!y

hvj;RaðX ; �Þi ¼ hv;RaðX ; �Þi:

By the definition of the pairing on b1a � ðBa;0=RÞ ([2, Theorem 9.3]),

hvj;RaðX ; �Þi ¼ �2

ð
vjðY ÞsqsRaðX ;YÞdVðY Þ

¼
ð
vjðY ÞR1

aðX ;Y ÞdVðYÞ

¼ vjðX Þ:

The last equality follows from (4). Hence vðXÞ ¼ limj!y vjðXÞ for every

X A Rnþ1
þ . On the other hand,

vjðXÞ ¼ Rm
a ðX ;YjÞ

kRm
a ð�;YjÞkL1ðVÞ

! 0

as j ! y by (5) and (7), which implies v ¼ 0. This completes the proof.

Lemma 7. Let 1a p < y. A sequence ðujÞj in bp
a converges to u A bp

a

in the w�-topology, if and only if the sequence ðujÞj is bounded in bp
a and

converges to u uniformly on every compact set in Rnþ1
þ .

Proof. First we shall show the ‘‘only if ’’ part. Assume w�-limj!y uj ¼
u. By the uniform boundedness principle, ðujÞj is bounded in bp

a . Then

[2, Proposition 5.2 and Theorem 5.4] shows the local uniform boundedness

and the equicontinuity. Taking any subsequence ðujk Þk which converges to

some v A bp
a uniformly on every compact set in Rnþ1

þ , we have

lim
k!y

ujk ðX Þ ¼ lim
k!y

hujk ;RaðX ; �Þi ¼ uðXÞ

for every X A Rnþ1
þ , because RaðX ; �Þ is in the predual of bp

a and it has

the reproducing property (4). Next we show the ‘‘if ’’ part. By the w�-
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compactness of bounded sets, we may assume the sequence ðujÞj converges

to some v A bp
a in the w�-topology. By the ‘‘only if ’’ part, which we have

already shown, we find that ðujÞj converges to v uniformly on every compact

set, which implies v ¼ u and this completes the proof.

Remark 4. The above assertion also holds for ~BBa ¼ fu A Ba; uðX0Þ ¼ 0g
where X0 ¼ ð0; 1Þ. Here we consider ~BBa FBa=RF ðb1aÞ

�
. In fact, by using [2,

Proposition 7.2 and Theorem 7.3] instead of [2, Proposition 5.2 and Theorem

5.4] and by taking ~RRaðX ; �Þ :¼ RaðX ; �Þ � RaðX0; �Þ A b1a instead of RaðX ; �Þ, we
can carry out the above arguments.

3. Measures with compact support

From now on, we start to prove our theorems. First, in this section, we

treat measures whose supports are compact. In this case, we need not assume

pa q.

Proposition 1. Let 1a p < y, 1a qay and mb 0 be a Borel measure

on Rnþ1
þ with compact support. Then

( i ) the operator Tm;p;q is *-compact if q > 1, and

(ii) the operator im;p;q is *-compact if q < y.

Proof. We first show the boundedness. For u A bp
a , by (7) and [2,

Proposition 5.2], we have

kTmukLqðVÞ a

ð
kRað�;YÞkLqðVÞjuðYÞjdmðYÞ

aCkukLpðVÞ

ð
s�tðn=2aþ1Þ dmðy; sÞ;

where t ¼ 1
p
þ 1� 1

q
. Remarking the boundedness of the inclusion bya HBa,

which follows from [2, Theorem 5.4], we also have the boundedness of

Tm;p;y : bp
a ! Ba=R. Since

kukLqðmÞ a sup
Y A suppðmÞ

juðY Þj �
ð
dm

� �1=q
aCkukLpðVÞ;

the boundedness of im;p;q can be easily verified, where the last inequality above

follows from the boundedness of the point evaluation [2, Proposition 5.2].

Next, to show the compactness, we take an arbitrary sequence ðujÞj from bp
a

which converges to 0 in the w�-topology. We may assume that ðujÞj be in Em

for mb 1, because Em is dense in bp
a . Since TmujðX Þ ¼

Ð
RaðX ;YÞujðY ÞdmðY Þ,

Lemma 7 implies that
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kTmujkLqðVÞ aC

ð
kRað�;Y ÞkLqðVÞjujðYÞjdmðY Þ

aC

ð
sðn=2aþ1Þð1=q�1Þjujðy; sÞjdmðy; sÞ ! 0

as j ! y for 1 < qay. We also have

kujkLqðmÞ a sup
suppðmÞ

juj j �
ð
dm

� �1=q
! 0

as j ! y. These complete the proof.

Remark 5. In the above proposition, when q ¼ y, we have kTmukBa
a

CkTmuky aCkukp for u A bp
a . Hence Tmb

p
a H bya VBa;0 holds. In fact, for any

u A Em,

jtqtðTmuÞðx; tÞja
ð
jtqtRaðx; t; y; sÞuðy; sÞjdmðy; sÞ

a sup
Y A suppðmÞ

jtqtRaðX ;YÞj
 !

sup
suppðmÞ

juj
 !ð

dm

! 0 as X ! A:

By [2, Lemma 9.2], we see Tmu A Ba;0.

4. Proof of Theorem 1

We begin with the following proposition.

Proposition 2. For 1a pa qay with p0y and q0 1, we put t :¼
1
p
þ 1� 1

q
. If limX!A m̂m

ðaÞ
t ðX Þ ¼ 0, then Tm;p;q is *-compact.

Proof. Take an exhaustion ðojÞj of Rnþ1
þ and put

mj :¼ mjoj
and nj :¼ m� mj :

Then by the assumption that limY!A m̂m
ðaÞ
t ðY Þ ¼ 0, ððn̂njÞðaÞt Þj converges to 0

uniformly on Rnþ1
þ . Theorem A shows

kTm � Tmjk ¼ kTnjkaC1kðn̂njÞðaÞt ky ! 0

as j ! y. Hence Tm is *-compact, because each Tmj is *-compact by Prop-

osition 1. r

Next, we consider the converse assertion.
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Proposition 3. Let mb 0 be a Borel measure on Rnþ1
þ satisfying (2) for

some mb 1. For 1a pa qay with p0y and q0 1, we put t :¼ 1
p
þ 1� 1

q
.

If Tm;p;q is *-compact, then limX!A ~mm
ðaÞ
t;mðX Þ ¼ 0.

Proof. Since m is a t-Carleson measure, we haveð
Rm

a ðX ;Y Þ2dmðXÞ ¼
ð
TmR

m
a ð�;Y Þ � Rm

a ð�;Y ÞdV

for Y A Rnþ1
þ by [4, Proposition 3]. Hence it follows from (7) that

~mmðaÞ
t;mðYÞ ¼

ð
TmR

m
a ð�;YÞ � Rm

a ð�;YÞdV � sðn=2aþ1Þð2�tÞ

a kTmR
m
a ð�;YÞkLqðVÞ � kRm

a ð�;YÞkLq 0 ðVÞ � s�ðn=2aþ1Þð1=p�1=q�1Þ

¼ CkTmR
m
a ð�;YÞkLqðVÞ � kRm

a ð�;YÞk�1
LpðVÞ

¼ C Tm
Rm

a ð�;Y Þ
kRm

a ð�;YÞkLpðVÞ

 !�����
�����
LqðVÞ

if 1 < q < y. When q ¼ y, we similarly have the estimate

~mmðaÞ
t;mðYÞaC Tm

Rm
a ð�;Y Þ

kRm
a ð�;YÞkLpðVÞ

 !�����
�����
Ba=R

:

Therefore

lim
Y!A

~mmðaÞ
t;mðYÞ ¼ 0;

because of the *-compactness of Tm and Lemma 6.

We can now prove our main theorem.

Theorem 3. Let 1a pa qay with p0y, q0 1 and put t ¼ 1þ 1
p
� 1

q
,

and let m be a positive Borel measure on Rnþ1
þ satisfying (2) with some integer

mb 1. Then the following statements are equivalent:

( i ) The Toeplitz operator Tm;p;q is *-compact;

( ii ) m is a vanishing t-Carleson measure, i.e., limY!A m̂m
ðaÞ
t ðY Þ ¼ 0;

(iii) limY!A ~mm
ðaÞ
t;mðY Þ ¼ 0;

(iv) limY!A ~mm
ðaÞ
t;kðYÞ ¼ 0 for every integer k >

�
n
2a þ 1

��
t�2
2

�
.

Proof. In Propositions 2 and 3, we have shown the implications

‘‘(ii) ) (i)’’ and ‘‘(i) ) (iii)’’. Lemma 3 (ii) shows the implication ‘‘(iii) )
(ii) , (iv)’’ and we have the theorem.
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Since bp
a is reflexive for 1 < p < y, Theorem 1 follows from Theorem 3.

Finally, we give a remark.

Remark 6. When q ¼ y and Tm;p;y is *-compact, the image of Tm;p;y is

in the little Bloch space Ba;0=R, which follows from Remark 5 and the proof

of Proposition 2.

5. Proof of Theorem 2

Finally, we consider the Carleson inclusion. Combining the following

propositions, we have Theorem 2.

Proposition 4. For 1a pa q < y, we put t :¼ q=p. If limY!A m̂m
ðaÞ
t ðY Þ

¼ 0, then im;p;q is *-compact.

Proof. Let ðojÞj be an exhaustion of Rnþ1
þ and define ij : b

p
a ! LqðmÞ

by iju ¼ u � 1oj
A LqðmÞ for u A bp

a . Putting mj :¼ mjoj
and nj :¼ m� mj, we

have

lim
j!y

kðn̂njÞðaÞt ky ¼ 0

from assumption. Here we remark that for u A bp
a , by Theorem C,

kðim;p;q � ijÞukLqðmÞ ¼ kukLqðnjÞ aC4kðn̂njÞðaÞt k1=qy kukLpðVÞ;

which shows

kim;p;q � ijkaC4kðn̂njÞðaÞt k1=qy ! 0

as j ! y from assumption. On the other hand, ij is *-compact from the *-

compactness of imj ;p;q by Proposition 1. Thus we see that im;p;q is *-compact,

because kukLqðmjÞ ¼ kijukLqðmÞ.

Proposition 5. For 1a pa q < y, we put t :¼ q=p. If im;p;q is *-

compact, then limY!A m̂m
ðaÞ
t ðYÞ ¼ 0.

Proof. Let m >
�
n
2a þ 1

��
1
p
� 1
�
. For Y A Rnþ1

þ , restricting the domain of

the integral to QðaÞðy; rsÞ, we have the estimate

Rm
a ð�;Y Þ

kRm
a ð�;YÞkLpðVÞ

 !�����
�����
LqðmÞ

bCm̂mðaÞ
t ðy; rsÞ

by (6). Since im;p;q is *-compact, the left hand side tends to 0 as Y ! A by

Lemma 6. Then we have

lim
Y!A

m̂mðaÞ
t ðYÞ ¼ 0:
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6. A relation between Toeplitz operators and Carleson inclusions

In the definition of the Toeplitz operator, we may use a modified kernel

Rm
a . Then the treatment is a little simpler, especially for the case p ¼ 1 or

q ¼ y. Nevertheless, in this paper, we only consider the Toeplitz operator

defined by the original Bergman kernel Ra. Hence the Toeplitz operator Tm is

formally self-adjoint. Moreover the formal adjoint of the Carleson inclusion im
is closely related to Tm, i.e., Tm ¼ i�mim holds. In this section, we explain this

relation more exactly.

We consider a positive Borel measure m satisfying (2) with mb 1. In this

case, im 1 im;p;q is defined densely on bp
a and we can define the adjoint operator.

Remark 7. Let m be a positive Borel measure on Rnþ1
þ satisfying (2) for

some mb 1. Then, for every 1a p; q < y, the inclusion im;p;q : b
p
a ! LqðmÞ

defined on Em is closable. In fact, let ðujÞj be a sequence in Em such that

there exist u A bp
a and v A LqðmÞ with limj!y uj ¼ u in bp

a and limj!y uj ¼ v in

LqðmÞ. Then u ¼ v m-a.e..

Next, we remark that TmuðXÞ is defined pointwise for each u A Em, i.e.,

TmuðXÞ ¼
ð
RaðX ;Y ÞuðY ÞdmðYÞ

is well-defined for all X A Rnþ1
þ and Tmu is LðaÞ-harmonic on Rnþ1

þ . Indeed,

since the estimate (5) shows jRaðX ; �ÞjaCt�ðn=2aþ1Þ for each fixed X ¼ ðx; tÞ A
Rnþ1

þ , the integrabilityð
jRaðX ;YÞuðYÞjdmðYÞaCt�ðn=2aþ1Þ

ð
jujdm < y

follows from (2). This estimate gives the Huygens property of Tmu ([2, (4.1)]),

which shows that Tmu is LðaÞ-harmonic ([2, Proposition 2.5]).

Proposition 6. Let 1a p; qay with p0y, q0 1 and put t :¼ 1
p
þ 1

q 0 ,

where q 0 denotes the exponent conjugate to q. Let m be a positive Borel

measure on Rnþ1
þ satisfying (2) for an integer mb 1. For u A Em, Tmu A bq

a

(Ba when q ¼ y) if and only if ðim;p; tpÞu is in the domain of ðim;q 0; tq 0 Þ� and

Tmu ¼ ðim;q 0; tq 0 Þ�ðim;p; tpÞu holds.

Proof. First we remark that tp is the exponent conjugate to tq 0, since
1
tp
þ 1

tq 0 ¼ 1. We assume that u A Em satisfy Tmu A bq
a ðBa when q ¼ yÞ. Let

v A Em H bq
0

a be arbitrary, take d > 0 and put vdðx; tÞ ¼ vðx; tþ dÞ. Then by the

Schwarz inequality and (7), we haveð
juðy; sÞj

ð
jRaðx; t; y; sþ dÞvdðx; tÞjdVðx; tÞdmðy; sÞ < y:
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Hence the Fubini theorem yieldsð
vdðy; sþ dÞuðy; sÞdmðy; sÞ ¼

ð
vdðx; tÞTmuðx; tþ dÞdVðx; tÞ

¼
ð
ft>dg

vðx; tÞTmuðx; tÞdVðx; tÞ:

Letting d # 0, we have
Ð
vu dm ¼

Ð
vTmu dV , because v is bounded and vTmu A

L1ðVÞ. Then

hðim;p; tpÞu; ðim;q 0; tq 0 Þvi ¼ hTmu; vi;

which implies ðim;p; tpÞu is in the domain of ðim;q 0; tq 0 Þ� and ðim;q 0; tq 0 Þ�ðim;p; tpÞu ¼
Tmu. The opposite direction is trivial, which completes the proof.

Corollary 1. Let 1a pa qay with p0y, q0 1 and put t :¼
1
p
þ 1

q 0 A ½1; 2�. Let m be a t-Carleson measure on Rnþ1
þ . Then, both operators

im;p; tp : b
p
a ! LtpðmÞ and ðim;q 0; tq 0 Þ� : LtpðmÞ ! ðbq 0

a Þ� ¼ bq
a (Ba=R when q ¼ y)

are bounded, and

Tm;p;q ¼ ðim;q 0; tq 0 Þ�ðim;p; tpÞ

holds.
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