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1. Introduction

In this paper, we are concerned with a recurrence algorithm, originated
by J. C. P. Miller [17V, for computing a solution f, of a second-order difference
equation

(11) Yn-1=CnYn + bn_’}’n+1 (bn#o; n= 1, 2a )9

in the case where (1.1) has a second solution g, which ultimately grows much
faster than f,[6]. This algorithm is used for computing Bessel functions
[1, 2, 4, 9], Legendre functions [ 8], repeated integrals of the error function
[37], and so on.

Let P,(k) be defined by the formula

1.2) P,(k—1)=ca,P,(k) + b, P,(k+ 1) k=n+1,n,...,1),
where
(1.3) P,m)=1, P,(n+1)=0, P,(n+2)=1/b,,:.

Then Miller’s algorithm is applied in the following two ways:

1°. when the normalizing condition

1.4) mofot+mfi+ - =c (c#0)

is known, put

15) Suh) = Ln®) k=01, ., m),
where
(1.6) R, =§mj P, (j).

2°. when f, is known and f,0, put

1) Numbers in square brackets refer to the references listed at the end of this paper.
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(1.7 T, (k) =f19£gg;?- k=0,1, ..., n).

Under suitable conditions, which are reported to have been obtained by
Gautschi [3, 67, it is valid that

(1.8) S,(k), Tu())—>fx  as n—>oo.

In the sequel, we consider the case where (1.8) holds.

There arises the question how large n should be in order to obtain the
approximate values of f, (k=0,1, ..., N+ 1) to the desired accuracy. Such
a value n will depend on the value N, the desired accuracy, the coefficients
a’s and b’s, and so on. Until now theoretical bounds for the starting value
n have been obtained for spherical Bessel functions [27], and for the repeated
integrals of the error function [ 37, and empirical bounds have been obtained
for Ju(x) [5]. In the case where such a bound is not known, usually Miller’s
algorithm is applied repeatedly for different values of »; the results obtained
are compared in accordance with a preassigned tolerence and the process is
repeated with » increased by a fixed amount until the criteria for acceptance
are satisfied [9].

In the first part of this paper, recurrence formulas are derived for
generating P,(k) and R, for increasing n with & fixed. By generating S,(V)
and S,(N+1) for increasing n through these formulas, the approximate
values of fy and fy,1 can be obtained to the desired accuracy and then the
approximate values of f, (k=N—1,...,1,0) can be generated through (1.2).
This process seems to be more efficient than the above iterative process.

In the second part of this paper, we consider the case where «,>0 and
b>0 (r=1,2,...), and show the methods for generating the approximate
values of f;, (k=0,1,..., N+1) to the desired relative accuracy.

2. Recurrence formulas
We shall first show the following

Turorem 1. P (k) (m=k—1,k, ...) satisfy the recurrence formula

2.1) P, 1(k) = a1 Pu(k) + b,Py (k) n+1=k=0),
where
(22) Pk(k> - 1, Pk_l(k) - O, Pkﬁz(k> - 1/bk_1.

Proof. Since by definition
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2.3) Porta+ D =1/by Pun4+1 =0, Poatn+1D=1,
and
(2.4) P,i() =0, P,(m)=1, Pya(®)=an.1,

(2.1) ia valid for k=nr+1, n. Hence suppose that (2.1) holds for k=n+ 1, n,
-, q (¢>0). Then we have

(25) Pn+1(Q) = an+1Pn(Q) + annAI(q))
and
(26) Pn+1(q + 1) = @y 1Py (q +1)+ ann—l((] + 1)

On the other hand, from (1.2) it follows that
(27) Pn+1(q - 1) = aan+l(q> + qun+1(q + 1)
Substituting (2.5) and (2.6) into (2.7), we obtain

(28) Pn+1(q—1>:an+1|:aqpn(Q)+qun(q+ 1):|+
+ b, [aan—l(q> + qun—1<q + 1)]
= an+1Pn(q - 1) + ann~l<q - 1)

This proves the theorem.
Next put

(2.9) U,(k) = L 11; m; Pn(]) (n=k).
e
Then we have the following

Tureorem 2. U,k) (n=k, k+1, ...) satisfy the recurrence formula

(2.10) Unii1(k) = @n U, (k) + b, Uy (k) + myi (mn=k),
where
(2.11) Uk—l(k> =0, U.(k)=m.

Proof. Since

(2.12) Up(k) = my Pp (k) = my
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and

(2.13) Upi1(k) = mp Py (k) + mp1 Poor (b 4 1) = mpapsq + my 1,

(2.10) is valid for n=Ek.
For n>Fk, we have

(214) Uﬂ-‘-l(k)zz;emjpﬂ—}-l(])+mﬂ+1Pﬂ+l<n+ 1)
i=
= Z}emtj I:an+lpn<j) + ann—l(])] + a1
i=

7 n=1
= an+122mjpn(].) + bnzkmjpn—l(]> + My
j= j=
= Qny1 Un(k) + by, Un—l(k) + M1,

because

(2.15) Pyii(n+1)=1, P, 1(n)=0.

Thus the theorem has been proved.
Since R,=U,(0), from this theorem we obtain the following

CoroLLArRY. R,(n=0,1,2, ...) satisfy the recurrence formula

(2.16) R,1=au 1Ry + b, Ry 1+ mpsy (n=0),
where
(217) R_l = O, Ro = my.

Making use of (2.1) and (2.16), we can generate P,(k), S,(k), and T,(k) for
increasing n with k fixed. Hence, for a specified k, we can obtain the ap-
proximate value of f;, to the desired accuracy by increasing n.

When P,(N) and P,(N+1) are obtained by means of (2.1), we can use
(1.2) to generate Py,(j) (j=N—1,...,1,0). In that case,if U,(N) is computed,
R, can be obtained by the formula

(2.18) R, =f§;:ijn< )+ Uu(N).

Since by (1.5), (1.7) and (1.8)

(2.19) P ng“ &:)D o f}zl as nooo  (fi7-0),
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we have the following

Tueorem 3.  The ratio fi.1/fr (fr==0) can be expanded into the continued
fraction as follows:

2.20 fro L1 b b 5= 0).
(2.20) fr Gt Great Gpest ( )

Proof. By (2.19) it suffices to show that

Puk+1) _ 1 bri1 bu-1  bm

Pm+l(k) N 1t ap2t Ont  Gmi1
m=k+1,k+2,.... ).

(2.21)

By (2.1), (2.3) and (2.4) we have

(2.22) Prp(k+1) _ Gy 1 b

- b
Prio(k) @ri2Gre1 T bre1 Gt G2

so that (2.21) is valid for m =%k + 1. Hence suppose that (2.21) holds for
m=k+1,k+2,...,n. Then it is valid that

an+1Pn(k+1>+ annal(k_I'l)_ 1 bk+1 bn—l b,

2.23 == Tkl On-1
( ) Qi1 Pn(k) + ann—l(k) Gp1t+  Grizt

Gt Gy

Replacing a,.; and b, in (2.23) with a,,2a,.1 + b,,1 and a,,:b, respectively,
we have

(224) (an+2an+1 + bn+1)Pn(k + l)i Qny2 ann—l(k + 12
(@ns2ni1 + by ) Po(k) + aniz ann—l(k)

=1 bwa buioi  Guiabs
Gri1t+  Gri2t

Gyt Gpi2Gu1 + bn:li
Since by (2.1)

(225) (G;H—Z i1+ bn+1)Pn<r) + aui2 ann—l(r) (rzka k+ 1)
= Qni2 [aﬂ+1Pn(r) + bﬂPn—l(r>] + bn+1Pn—1(7.)

= an+2Pn+1(r) + bn+an+1(r) = Pn+2(r),
and

(2.26) _ Guizby by buis

= e bl
Any2 i1+ bpyy Gni1t  Guio

(2.21) is valid also for m=n+ 1.
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Now we shall show the examples to which the above results can be
applied.

Exampre 1. Bessel functions of the first kind J.(x) (=0, 1, ...) satisfy
the recurrence formula [ 9]

2n

(227> Jn—l(x> :“;”—Jn<x> _Jn+1(x)
with the normalizing condition
(2.28) Jo(x) + 2§J2k(x) =1

Hence we can use (2.1) and (2.16) to obtain the approximate values of J,(x)
and J,(x) to the desired accuracy without knowing previously the starting
value n. They can be used also to determine the empirical bound for the
starting value n for Jy(x) and J:(x). Once such a bound is obtained, we can

use (1.2) to generate the approximate values of J,(x), Ji(x) and so on ef-
ficiently.

ExamprLE 2. Let

(2.29) i" erfe x = Smi"*l erfc ¢ dt (n=0,1, ..),
where

(2.30) ierten= Lo

and put

(2.31) v, =i"""erfe x.

Then 3, (=0, 1, ...) satisfy the recurrence formula [3]
(2.32) Yno1 = 2%y, + 20y, 1.

Since 1y, = erfe x, it is valid that

(2.33) T.(1) — erfc x as n— oo,
where

__‘2_,_ —x? ,E'él_),
(2.34) T.(1) =77 ¢ P00
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Hence we can use (2.1) to obtain the approximate value of erfc .
On the other hand, from (6.20) it follows that

1 2 4 6

2 . 2 4 6
(2.35) erfoZﬁe [2x+ 9%l Pxl Spi .

J. Patry and J. Keller [ 7] obtained the expansion

a2 1 1 1
(2.36) erfc x=e [cox+ et Gxk ]
where
— 2 2 2
@37 W=VT a=rn en=, 0 oo

As is easily seen, this is equivalent to (2.35), but (2.35) is simpler than (2.36).

3. Case of positive coefficients
In this paragraph, we are concerned with the case where
8.1 @, >0, b,>0 (n=1,2,...... ).
This condition is satisfied, for instance, by the recurrence formulas for I,(x),
in(x) and 7" erfc x. Our problem is how to generate f;, (k=0,1,..., N+1)

to the desired relative accuracy. To that end we need the following

Lemma. Put

fN+]. .
(3.2) =
and
(3.3) -’i'%.-’v(_]%& o =r(14e,) (n=N+1).

Then it 1s valid that

Puk)
fe

3.5) O=dy<dy <. <do<. <dy<dy.=1,

P, (N).

(3.4) =(1+dren)~ f (k=0,1,.., N+1),

and
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(36) —1=€N<9N+2<"'<O<"'<CN+3<6N+1:
where
(37) ‘rbNPN-—l(k)

* T Py(B)+rbnPy(R)

Proof. It is easy to show by induction that

(3.8) Py(k) = Py(N) Py (k) + by Py (N + 1) Py 1 (k)
and
(39) fk :fNPN(k)+beN+1PN_1(k) (k=0, 1, ceey N+1)

From these, (3.2) and (3.3) we have

B}g(k_):Pn(N). PN(k)+r(1+en)bNPN—l(k)
fe fn Py (k) + rby Py_1(k)
Pn(N) rbNPN—lgﬂl

IR MO ERa SO

(3.10)

This proves (3.4).
Next, substituting (3.3) into

(311) Pn+1(N+ l)zan+1Pn(N+ 1)+ann_1(N+ 1),
we have
(312) rn+1Pn+1(N> = rn“n+1Pn(N) + ru-a1 ann—l(N)

From this and
(313) Pn+1(-N):an+1Pn(N)+ann—l(N)>

it follows that

(3'14) Tnil — T — (rn—l - r,,) —énp%(lz(ngg
and
— — — an+1Pn(N)
(3.15) Tnil Tn-1 (rn rn_l)—~P”+1(N) .
Since
(3.16) rv=0, ry. =L, P,(N)>0 (m=>N),

anN +1
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from (3.14) and (3.15) we have
3.17) O=ry<ryi 2 <. - <r<.. <ryos<ryi1

This proves (3.6).
Lastly, from (3.7) we can easily deduce the relations

Py(k+1)+rbyPy 1 (k+1)

(3.18) e e == )b, G ) by Py G~ 1)
and
(3.19) dei1—dp = (dp1—dr)ar 4 Pr (k) +rby P2 (k)

Pyv(t+ 1) +rbyPy_1(k+ 1)

Since dy =0 and dy.: =1, from (3.18) and (3.19) follows (38.5). This com-
pletes the proof of the lemma.
Now we shall show the following

Tureorem 4. Let

(3.20) fi=fl+co  (le|=c <D
and
(3.21) Tk k) = f5 Pulk) =A+ewfe *k=0,1,..,N+1),

P,(0)
where ¥ is an approximate value of fo. Then, for n such that
(3.22) n=N+1+2q (g=1),

it 18 valid that

(3.23) A4+e0)Q—e)<l4+e:<A4+c)A+ey (k=0,1,.., N+1)
and
(3.24) 7rL_.—L”i.2~ <ep,< Tn"Tn-1

Tni2 Tn-1

Proof. From (3.20), (3.21) and (8.4), it follows that

1 n
(3.25) 1+e,=0+¢) -1-::_%’;%* =140 [1+

(di—do) J
1+doe, )

We consider the case where n satisfies (3.22). Then it is valid that
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(3.26) 1+ doen>1,

because dy>0 and e,>>0 by (8.5) and (8.6). Further, from (3.5), it follows
that

(3.27) |dr — do| <1.

Hence we have the inequality

Cdr—do |
(3.28) Cthae <
and (3.23) is proved.
On the other hand, since by (3.6)
(3.29) —1<e,_1 <0, 0 <eyio2 <ep
we have
TnTTno1 _ €T Cro1
(3.30) o T 1de, > e,
and
Tn " Tu+2 _ €n Cny2
(331) : Tny2 a €ni2 < -
Thus the theorem has been proved.
Now, by (3.24), it holds that
(3.32) enr<ex(L+c¢)+c=<e,(1+co)+ co
and
(3.33) ene> —en(l+0)+c=—e(1+ co)—co

Hence we have the following

CororLLaArRY. Under the condition (8.22), if for a positive number 4 (4> c,)

ﬂ—Co
(3.34) =T g

then the inequality

(3.35) lenn] <u
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18 valid for k=0,1,..., N+1.

Next we shall show the following

Tueorem 5. Let
(3.36) Su(k) = fr(X + sux)
and suppose that, for a positive number K,
(337 lsanl =4 syl =2
Then the inequality
(3.38) [sn| = 4
18 valid for k=0, 1,..., N+1.

Proof. From (3.4) and (1.5) it follows that

(339) Sn,k = Su,N + dken(l + Sn,N) (k = 0, 1,‘ D) N+ 1)
and
(340) 6,,(1 + Sn,N) =S8u,N+1 ~— Su,N,

because dy.;=1. Substituting (3.40) into (3.39), we obtain

(3.41) S,k = disn,n 1+ (L — di)sn,n-

Since by (3.5)

(3.42) 0<d,<1 (k=0,1,..,N+1),

from (3.41) and (3.37) follows (3.38).

Now we are in a position to apply theorems 4 and 5 for generating the
approximate values of f, (k=0, 1,..., N+1) such that

(3.43) [sne| =2 k=0,1,..,N+1)

for a preassigned positive number #. For this purpose, the following three
methods can be considered.

Method 1. Generate P,0), R,, P,(N) and P,(N-+1) for increasing n until
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the inequalities

(3.44) Jsmol <5
and

"
(3.45) leal = g7

are valid for n satisfying (3.22), and then compute S, (k) (¢=0, 1,..., N+1) by
(1.2).

Method 2. Generate R,, P,(N) and P,(N+1) until the condition (3.37) is
satisfied, and then compute S,(k) ¢=0,1,..., N+1) by (1.2).
When there is known a bound M(#) such that the inequality

(3.46) n= M%)

implies (8.44), the following method becomes possible.

Method 3. Generate P,(N), P,(N+1) and U,(N) until (3.45) and (3.46) are
valid for » satisfying (3.22), and then compute S,(k) (¢=0, 1,..., N+1) by (1.2)
and (2.18).

Among the three methods, the last one seems to be the most efficient,
and the methods 1 and 2 can be applied for determining the empirical bound
M(#) with N=0.

Exampre 3. Let I,(x) (=0, 1,...) be the modified Bessel functions of
the first kind and put

(3.47) ¥u = "1,(2)

for a fixed value of x. Then they satisfy the recurrence formula [9]
(3.48) Vu-1= _ngw + yui1

with the normalizing condition

(3.49) o+ 2% g, =1

Generating S,(0) and S,(1) for increasing » until they were in the state
of numerical convergence [ 10] for x=0.01, 0.05(0.05)1.0, 1.5(0.5)10, 15 (5) 100,
and 110 (10) 500, we obtained the following empirical bounds for a digital
computer with 39 bits mantissa:



(3.50)

(3.51)

(3.52)
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62
x+9——39x+—10 0<x=<10)
M 107 = 6270
83
M, 107 = 10800
wt16— 4 0<x=10)
bx+4
M, 1075 = 4514
0.15x + 83 — i 65 (10 < x<500).

These bounds mean that the inequalities

(3.53)

, U U
Isiol=—75>  Isial=-9"

are valid approximately provided n—=>M(x, #), where s} , and s¥ , are the

relative errors of S,(0) and S,(1) to the computed values of e *Iy(x) and e *I,(x)
respectively.
References
[1] British Association for the Advancement of Science: Bessel functions, Part II, Mathematical

[2]
(3]
4]
(5]
[6]
7]
(8]
19

[10]

Tables vol. X, Cambridge (1952).

Corbatd, F. J. and J. L. Uretsky: Generation of spherical Bessel functions in digital computers, J.
Assoc. Comput. Mach., 6 (1959), 366-375.

Gautschi, W.:  Recursive computation of the repeated integrals of the error function, Math. Comput.,
15 (1961), 227-232.

Goldstein, M. and R. M. Thaler: Recurrence techniques for the calculation of Bessel functions, Math.
Tables Aids Comput., 13 (1959), 102-108.

Lance, G. N.:  Numerical methods for high speed computers, London (1960).

Olver, F. W. J.:  Error analysis of Miller’s recurrence algorithm, Math. Comput., 18 (1964), 65-74.
Patry, J. and J. Keller: Zur Berechnung des Fehlerintegrals, Numer. Math., 6 (1964), 89-97.
Rotenberg, A.:  The calculation of toroidal harmonics, Math. Comput., 14 (1960), 274-276.
Stegun, I. A. and M. Abramowitz: Generation of Bessel functions on high speed computers, Math.
Tables Aids Comput., 11 (1957), 255-257.

Urabe, M.:  Convergence of numerical iteration in solution of equations, J. Sci. Hiroshima Univ., Ser.
A, 19 (1956), 479-489.

Department of Mathematics
Faculty of Science
Hiroshima University








