
J. Sci. HIROSHIMA UNIV. SER. A-I
29 (1965), 121-133

Note on Miller's Recurrence Algorithm

Hisayoshi SHINTANI

(Received March 10, 1965)

1. Introduction

In this paper, we are concerned with a recurrence algorithm, originated
by J. C. P. Miller EΓp, for computing a solution fn of a second-order difference
equation

in the case where (1.1) has a second solution gn which ultimately grows much
faster than fn [jo]. This algorithm is used for computing Bessel functions
[1, 2, 4, 9], Legendre functions [8], repeated integrals of the error function
[ΊΓ], and so on.

Let Pn(k) be defined by the formula

(1.2) Pn(k - 1) - akPn(Jc) + buPnik + 1) (k = n + 1, n9 . , 1),

where

Then Miller's algorithm is applied in the following two ways:

1°. when the normalizing condition

(1.4) mofo + πufi + = c (cφΰ)

is known, put

(1.5)

where

(1.6)

2°. when f0 is known and foφO, put

1) Numbers in square brackets refer to the references listed at the end of this paper.
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(1.7) TΛk)=£φf^ (fc = 0,l, ,n).

Under suitable conditions, which are reported to have been obtained by
Gautschi [3, 6], it is valid that

(1.8) SnQz\TnQz)^fk as z ^ c o .

In the sequel, we consider the case where (1.8) holds.

There arises the question how large n should be in order to obtain the
approximate values of fk (fc = 0, 1, •••, N + 1) to the desired accuracy. Such
a value n will depend on the value iV, the desired accuracy, the coefficients
as and 6's, and so on. Until now theoretical bounds for the starting value
n have been obtained for spherical Bessel functions [2Γ\, and for the repeated
integrals of the error function [ΊΓ|, and empirical bounds have been obtained
for Jk(χ) [ΊΓ]. In the case where such a bound is not known, usually Miller's
algorithm is applied repeatedly for different values of n\ the results obtained
are compared in accordance with a preassigned tolerence and the process is
repeated with n increased by a fixed amount until the criteria for acceptance
are satisfied pΓ].

In the first part of this paper, recurrence formulas are derived for
generating PnQz) and Rn for increasing n with k fixed. By generating Sn(N)
and Sn(N + ΐ) for increasing n through these formulas, the approximate
values of fN and fNΛ i can be obtained to the desired accuracy and then the
approximate values of fk Qz = N — 1, •-, 1, 0) can be generated through (1.2).
This process seems to be more efficient than the above iterative process.

In the second part of this paper, we consider the case where α r >0 and
bry0 (r = 1, 2, •••), and show the methods for generating the approximate
values of fk (fc = 0, 1, > , N + ΐ) to the desired relative accuracy.

2. Recurrence formulas

We shall first show the following

THEOREM 1. Pn(k) (n = k — l, fc, ) satisfy the recurrence formula

(2.1) Pn+10c) = aH+ιPn(k) + 6Λ-i(i)

where

(2.2) Pk(k) = 1, Pk^(k) = 0, PA_2(fc) -

Proof. Since by definition
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(2.3) Pn-1(n+ΐ) = l/bH, Pn(?ι+l) = 0, PH+I(n+Ϊ) = l9

and

(2.4) Pn_1(7i) = 0, Pn(n) = l, Pn+i(n) = aH+u

(2.1) ia valid for k = n + 1, n. Hence suppose that (2.1) holds for k = n + 1, n,
> ,q (g>0). Then we have

(2.5) PH+1(q) = an+1Pn(q) + bnPt-tiq),

and

(2.6) Pn+ι(q + 1) = an+1Pn(q + 1) + 6Λ ?„_!(? + 1).

On the other hand, from (1.2) it follows that

(2.7) Pn+1(q - 1) - aqPn+1(q) + bqPn+1(q + 1).

Substituting (2.5) and (2.6) into (2.7), we obtain

(2.8) Pn+ι(q - 1) - an+1 ίaQPn(q) + bqPn(q + 1)] +

This proves the theorem.

Next put

(2.9) Un(k) j
i = k

Then we have the following

THEOREM 2. Un(k) (n = k,k + l, •) satisfy the recurrence formula

(2.10) Un+1(k) = an+1Un(k) + bn Tingle) + mn+ι

where

(2.11) tf*-i(&) = 0, t/*(fe) = ^ .

Proof. Since

(2.12) ί/Λ(fe)
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and

(2.13) Uk+ί(k) = mkPk+1{k) + mk+1Pk+1(k + 1

(2.10) is valid for n = k.

For n > k, we have

(2.14) Un+ι(k) = Σ mjPH+1(j) + τ^+ 1P,+ 1(7z +

= an+ϊ Un(k) + bn Un-i (k) + mn+u

because

(2.15) Pn+1(n + ΐ) = l, P«_iW = 0.

Thus the theorem has been proved.

Since Rn = Un(0\ from this theorem we obtain the following

COROLLARY. Rn(n = 0, 1, 2, • ••) satisfy the recurrence formula

(2.16) Rn+1=an+1Rn + bnRn^ + mn+ι (n>0\

where

(2.17) Λ-i = 0, Ro=mo.

Making use of (2.1) and (2.16), we can generate Pn(k), Sn(k\ and Tn(k) for
increasing n with jfe fixed. Hence, for a specified k, we can obtain the ap-
proximate value of fk to the desired accuracy by increasing n.

When Pn(N) and Pn(N + l) are obtained by means of (2.1), we can use
(1.2) to generate Pn(j) (j=N-l, , 1, 0). In that case, if Un(N) is computed,
Rn can be obtained by the formula

(2.18) Rn=NYl
j=0

Since by (1.5), (1.7) and (1.8)

(2.19) —feίr - fy- as
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we have the following

THEOREM 3. The ratio fk+i/fk (fkφO) can be expanded into the continued
fraction as follows:

(2.20) h±i

(2 2Γ)

=

fk «£ + l + «£ + 2 + «& + 3 +

Proof. By (2.19) it suffices to show that

_ 1 bk+i bm-ι bm

Pm+ι(k)

(τra = fc + l, ft + 2, ).

By (2.1), (2.3) and (2.4) we have

{Δ.ΔΔ) (Zk +

Ok+1

so that (2.21) is valid for m = k + l. Hence suppose that (2.21) holds for
m = k + 1, k + 2, ..., n. Then it is valid that

an+ιPnQz) + bnPn..ι(k) ak+ι+ " '

Replacing αΛ + 1 and bn in (2.23) with α«+2««+i + ^ + i and an+2b» respectively,
we have

(2 24) (gw+2a»+i + bn+ι)Pn(k+ 1) + an+2bnPn-ι(k + 1)
(fl»+2fl»+i + bn+ι)Pn(k) + an+2bnPn-i(k)

ak+\+ ak+2+ an+ an+2an+ι + bn+ι

Since by (2.1)

(2.25) (an+2θn+i + bn+1)Pn(r) + an+2bnPn-i(r) (r

= an+2Pn+i(r) + bn+iPn+i(r) = Pn+2(r\

and

/o OβΛ Q>n+2bn ___z3 bn+\

a
n+
2a

n+
ι + b

n+
χ a

n+
ι+ a

n
+2*

(2.21) is valid also for m = n+l.
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Now we shall show the examples to which the above results can be

applied.

EXAMPLE 1. Bessel functions of the first kind /*(#) (k = 0, 1, ••) satisfy

the recurrence formula [9~]

(2.27) /„_!(*) =^-Mx) -Jn+l(x)
X

with the normalizing condition

(2.28) yo(*) + 2 i]/2*(*) = l.
k = l

Hence we can use (2.1) and (2.16) to obtain the approximate values of J0(χ)

and /i 0*0 to the desired accuracy without knowing previously the starting

value n. They can be used also to determine the empirical bound for the

starting value n for J0(χ) and Jι(χ). Once such a bound is obtained, we can

use (1.2) to generate the approximate values of J0(χ\ Ji(χ) and so on ef-

ficiently.

EXAMPLE 2. Let

(2.29) ίn erfc x = f V " 1 erfc i dt (n = 0, 1, . •),

where

(2.30) Γ 1 erfcrt;=:^=e^2

?

and put

(2.31) yn = i"-1 erfc x.

Then yn (?z = 03 1, •) satisfy the recurrence formula pΓ]

(2.32) yn^ = 2xyn + 2jiyn+l.

Since yλ = erfc x, it is valid that

(2.33) Tn(l) -+ erfc x as ?z->oo?

where

(2.34) ^W=vle""ί§)
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Hence we can use (2.1) to obtain the approximate value of erfc x.
On the other hand, from (6.20) it follows that

(2.35) erfc x = ^ e-2

J. Patry and J. Keller [7J obtained the expansion

(2.36) erfca = e-*2[-^τ- ^ T Γ — V H
y L c 0 * + cιx+ c2x+ J

where

(2.37) co=VF, C l = ^ , c , + i = - ^ j Γ - ^ - .

As is easily seen, this is equivalent to (2.35), but (2.35) is simpler than (2.36).

3. Case of positive coefficients

In this paragraph, we are concerned with the case where

(3.1) an>0, bn>0 (B = 1,2, ).

This condition is satisfied, for instance, by the recurrence formulas for In(x%
ίn(x) and ίn erfc x. Our problem is how to generate fk(k = O, 1, --., iV+1)
to the desired relative accuracy. To that end we need the following

LEMMA. Put

(3.2) fy±-=r

and

(3.3) _.

Then it is valid that

(3.4) ^ - ( 1 + W ^ - (* = 0, I,-,
/ * JN

(3.5) 0 = dN < dN^2 < • - < do < < djv-i < dN+ι = 1,

and
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(3.6) — 1 = eN < eN+2 < • • < 0 < ... < eN+3 < eN+u

where

(3.7) rfΛ=

Proof. It is easy to show by induction that

(3.8) Pn(k) = Pn(N)PN(k) + bNPn

and

(3.9) fk=fNPN(k) + bNfN+

From these, (3.2) and (3.3) we have

Pn(k) _Pn(N)

fk fN

, _rδ^ L _i(fe) η
P(k)^bP(k) ' w J

This proves (3.4).

Next, substituting (3.3) into

(3.11) F,+i(iV+ 1) = α,+1Pw(iV+ 1) + 6πPΛ_i(ΛΓ+ 1),

we have

(3.12) /WiPa+iCiV) = Γ,^ + 1P,(iV) + T

From this and

(3.13) Pn+i(iV) = an+1Pn(N) + bn

it follows that

vo.14; r n + i — rw — (/w_i — rn)— — > Λ

and

KO.ID) Tn + \ — Tn-i—\rn — rn-i) —
•* w + 1

Since

(3.16) r^ = 0, r^+i = - ^ — , Pm(N)>0
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from (3.14) and (3.15) we have

(3.17) 0 = rN<rN+2< - <r< <rN+3<rN,1.

This proves (3.6).
Lastly, from (3.7) we can easily deduce the relations

ak — a>k-\ — \βk — ak+i)Ok^—n

and

PN(JC+ l)-\-rbNPN-ι(k~\- 1)

Since dN = 0 and dN+i = l, from (3.18) and (3.19) follows (3.5). This com-
pletes the proof of the lemma.

Now we shall show the following

THEOREM 4. Let

(3.20) /? =/o(l + c) ( | c | ^ C o < l )

and

f * P (Pi

(3.21) Γ*(fc) = Iy^y- = d + e».*)/* (* = 0, I , - ,

where fξ is an approximate value of f0. Then, for n such that

(3.22) n = N+l + 2q (?^1),

iί is valid that

(3.23) ( l + c ) ( l - e κ ) < l + eB,*<(l + c)(l + eB) (fc - 0, 1,...,

and

(3.24) Jicir»±L < e n < _?«=.rJL-1 _
Tn+2 Tn-i

Proof. From (3.20), (3.21) and (3.4), it follows that

(3.25) l + β M = (l + C

We consider the case where n satisfies (3.22). Then it is valid that
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(3.26) l + doen>l,

because do>O and en>0 by (3.5) and (3.6). Further, from (3.5), it follows
that

(3.27) \dk-do\<l.

Hence we have the inequality

and (3.23) is proved.

On the other hand, since by (3.6)

(3.29) - 1 <ew_! <0, 0 <en+2

we have

and

(ό.dl) = < e
n
.

Tn+2 &n+2

Thus the theorem has been proved.

Now, by (3.24), it holds that

(3.32) en>k<en(l + c) + c<,en(l + c0) + c0

and

(3.33) eH,k > - en(l + c) + c ^ - e»(l + c0) - c0.

Hence we have the following

COROLLARY. Under the condition (3.22), if for a positive number β (β>c0)

(3.34) *^TSΓ.

then the inequality

(3.35) \en,k\</t
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is valid for k = 0, 1, , ΛΓ+1.

Next we shall show the following

THEOREM 5. Let

(3.36) SnQc)=fh(l + sH,k)

and suppose that, for a positive number β,

(3.37) K

Then the inequality

(3.38)

is valid for k = 0, I,---, N+l.

Proof. From (3.4) and (1.5) it follows that

(3.39) sn>k = sn>N + dken(l + sn,N) (ft = 0, 1, .., N+ 1)

a n d

(3.40) en(l + sHίN) = sn)N+ι — sn,N,

because ^ + 1 = 1. Substituting (3.40) into (3.39), we obtain

(3.41) sn>k = dksn,N+ι + ( 1 — dk)sn>N.

Since by (3.5)

(3.42) 0^dk^l (fc = 0, l,...,

from (3.41) and (3.37) follows (3.38).

Now we are in a position to apply theorems 4 and 5 for generating the
approximate values of fk (fc = 0, 1, •-, iV+1) such that

(3.43) \sn.k\<M (ft = 0,l, . . . , iV+l)

for a preassigned positive number β. For this purpose, the following three
methods can be considered.

Method 1. Generate PΛ(0), #w, P»(iV) and Pn(N+ΐ) for increasing TZ until
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the inequalities

(3.44)

and

(3.45)

Hisayoshi SHINTANI

u ι< β

|s«,o 1 ̂  2

are valid for n satisfying (3.22), and then compute Sn(k) (fc = 0, 1, , N+ΐ) by

(1.2).

Method 2. Generate Rn, Pn(N) and Pn(N+l) until the condition (3.37) is
satisfied, and then compute SnQc) (fc = 0, 1, , iV+1) by (1.2).

When there is known a bound M(μ) such that the inequality

(3.46)

implies (3.44), the following method becomes possible.

Method 3. Generate Pn(N\ Pn(N+1) and Un(N) until (3.45) and (3.46) are
valid for n satisfying (3.22), and then compute Sn(k) (fc = 0, 1, , N+ΐ) by (1.2)
and (2.18).

Among the three methods, the last one seems to be the most efficient,
and the methods 1 and 2 can be applied for determining the empirical bound
M(ju) with N=0.

EXAMPLE 3. Let In(x) (n = 0, 1, •••) be the modified Bessel functions of

the first kind and put

(3.47) yn = e-χIn(χ)

for a fixed value of %. Then they satisfy the recurrence formula

(3.48) yn-ι = —

with the normalizing condition

(3.49) yo +

Generating Sn(0) and Sn(ΐ) for increasing n until they were in the state
of numerical convergence [10] for * = 0.01, 0.05(0.05)1.0, 1.5(0.5)10,15(5)100,
and 110 (10) 500, we obtained the following empirical bounds for a digital
computer with 39 bits mantissa:
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62
I /v —L_ M . I l l < Q γ < Γ I I I )

(3.50) M(x, 10-6) = •]
_6270_ (l0<a;^500),

83

(3.51) M(x, 10-8) =
27*+10

0.1* + 99-- 1 0 8 , 0

o

0

Λ (10<*^500),

44

δx + 4
(3.52) "" '

These bounds mean that the inequalities

(3.53) 14,o I ^n.O ^ 2 , ^ n . l l ^ 2

are valid approximately provided n^M(x, β), where 5*,o and 4,1 a r e ^ e
relative errors of S«(0) and S»(l) to the computed values of e~xI0(χ) and e~*Ii(x)
respectively.
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