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l Introduction

Given a differential equation

(l.l) y'=f(*,y\

where f(x, y) is assumed to be a sufficiently smooth function.
In numerous papers [1 — 16]υ, various methods are obtained for bounding

or approximating the errors in numerical integration of (1.1) by one-step
methods with the aids of the functions that bound or approximate the
function fy (#, y), the truncation error and so on.

To avoid the use of such functions for practical purposes, in this paper, n
steps of integration with a fixed step-size are considered as one step and a
simple method is obtained for approximating the errors without computing
explicitly any function other than f(x, y). The method is illustrated by two
numerical examples.

Since usually the step-size is not changed so often and the estimate of
the error is not always necessary for each step of integration, it will not be
a serious restriction to fix the step-size for the n steps of integration, and
this method may be used as an integration method with a check on the
accuracy of the numerical solution.

2. Preliminaries

In this paragraph and the next, we state five lemmas and one theorem
without proof, but they are proved in paragraph 6.

In the sequel, for simplicity, we assume that/(a, y) is defined, continuous
and bounded in the strip

S : xo^x^xo + nhQ, \y\ < oo?

and that the partial derivatives of f(χ, γ) up to the necessary order, say s,

1) Numbers in square brackets refer to the references listed at the end of this paper.
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exist and are continuous and bounded in S, where n is a positive integer and
ho is a positive number.2)

For any u and v such that %o<Lu<Lxo + (rι—Y)ho and \v\ < ° o , l e t y(x; u, v)
be the solution of (1.1) such that y(u;u, Ό)=Ό, and Φ(u,v; h) be the increment
function of any one-step method of order p (pi>l) for approximating

; u, v) (0<h^h0) [6]. Then y(u + h;u,v) can be written as follows:

(2.1) y(u + h;u,v) = v + hΦ(u, υ; h) - T(u, v; h)

= v + hA(u, v h),

where T(u,v;h) is a truncation error,

(2.2) T(μ,υ;h) = O(hp+1)3\

and A(u, v; h) is the exact relative increment function [QJ.

We are concerned with the solution

(2.3) y(χ)=y(*;χo,yo)

and consider the case where the equation (1.1) is integrated numerically from
x0 to xo-\-nh with step-size h (0<Ch<^h0). Hence we put

(2.4) xj+1=xo + (j + l)h,

(2.5) pj+ι = Φ(xJ9yj;h),

(2.6) yJ+1 =yj + hpj+1 (/ = 0, 1,.. , n - 1),

(2.7) di=yi-y(xi\

and

(2.8) fi=f(χi,yd (i = 0,l,-,n).

To take into consideration the propagation of error, along with y(x) we
consider a neighboring solution

(2.9) y (x e) = y (x x0, y0 - e),

and put

(2.10) c(x)=y(x)-y(x;e).

2) The assumptions stated here are too severe for practical purposes but they are relaxed at the end

of paragraph 3.

3) Here it is assumed that s^p.



Approximate Computation of Errors in Numerical Integration 99

Then it is seen that, if e is an approximate value of the error of y0? then c(xf)
+ di provides an approximation to the error of y{ and that di is the local error
of ji. For these reasons we try to obtain the approximate values of c(xi)
and di (0<ί<^n).

We note that c(x) is the solution of the differential equation

(2.11) c'=F(x,y(x),c)

satisfying the initial condition

(2.12) c(xo) = e

and that it can be written as

(2.13) c(*) = e O(l),

where

(2.14) F(x, y, u) =/(*, y) - / ( * , y - u).

Let r be a positive integer not greater than n, and let

(2.15) m = 2n - r + 1,

(2.16) T(x, y; h) =hp[_±hiφi(x, y) + OQιm+ι)J\

(2.17) AΔ(*, y h) = ± tiA{(x, y) + O(hm+ι\
/ = i

and

(2.18) dj = hpej (; = 0, 1,. . . ,Λ).

Then we have the following

LEMMA 1. e, and F(XJ, y;, dj) can be written as follows:

m

(2.19) ej

(2.20) F(*y, yj, dj) = h»tΣ h Q ,</) + O(^+1)] (y = 0,

4) Here it is assumed that s^
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where Pi(x) and Qi(χ) are polynomials in x of degree at most ί,

(2.21) P, (0) = 0

and

(2.22) Q, (0) = 0 (ί = l,2,...,T O).

LEMMA 2. There exist constants akJ and bkJ (fc,/ = 0, 1, , zz) ίfeαί satisfy
the conditions

(2.23) ZΣ/- 1 α*y+ ί^fbkj = kι (I = 1, 2,..., m)
j=0 j=0

and

(2.24) ί]/δ*y = O (Z = O,l,. . .,r).
i = 0

LEMMA 3. For ^(Λ;) ΐί is vαίid that

(2.25) yfe) - y(*o) = h 1] ^ / f e ) + i ] bkjy(xj)
j = o y = o

(2.26) *Σbkjy(xj) = ι

where akj and bkj (fe, y'^O, 1, 2,. , n) are constants satisfying (2.23) and (2.24).

Corresponding to (2.25), we put

(2.27) Sk=yk—yo — h^ akjfj — h^ bkj $] pq9

y=o y=i 5=i

( 2 . 2 8 ) £*# = d>k — Sk (k == 0, 1, , 7z),

and define dk by the formula

' n

1, if Σ/r+1δft/ = 05

(2.29) δk = y = 0

,0, otherwise.

Then we have the following

LEMMA 4. gk can be written as follows:
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m m

(2.30) gk
i = 1 i = r +1

where

(2.31) Λί+1(iO = \UQi(t)dt (i = 1, 2,..., 7τ*)?

Jo

ĉ j's are constants,

(2.32)

(2.33) c*r+i = 0 when δk = l.

3. Approximate error formulas

From lemma 4 it is readily seen that, if

(3.1)

then

(3.2)

Hence we have

THEOREM 1. Under the condition (3.1), the local error of yk satisfies

(3.3) yk-y(χk) = Sk + O(hp+2) (fc = 1, 2,..., n).

To obtain better approximation to the error, in the sequel, we consider

the case where the condition

(3.4) wι^p + r + 1,

namely the condition

(3.5) 2(n-r)^p>l

is satisfied.

Let

(3.6) x = xu=x0 + uh (0<^<^7z)

and, corresponding to (2.19) and (2.30), we define the functions e(x) and g(x)

by the formulas
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m

(3.7) e{x) = Σ h*Pi(μ) + hm+1a(u)
1 = 1

and

(3.8) ί ( * ) = 4 ' [ Σ * ί + 1 Λ + i ( » ) + Σ A^ ίiifl + A^^δCα),
i=l ι=r+l

where α(w), C, (M) and 6(i*) are interpolation polynomials of degree at most n
such that

(3.9) e(xk) = eΛ, c/(fc) = cki, g(xk) = gk (fc = 0, 1, ., ra).

Making use of these functions and y(»), we define the functions d(x\ v(x)
and S(x) as follows:

(3.10) d(x)

(3.11) v(j*)=yQ*) + d(χ),

and

(3.12) S(,) = dW-^(4

Then evidently

(3.13) d(xk) = dh vQch) = yh, S(xk) = Sk,

and we have the following

LEMMA 5. Let w(x; e) be the solution of the differential equation

(3.14) w' = F(x, υ(x), S(x) + w)

satisfying the initial condition

(3.15) w(xo;e)=e.

Then, under the condition (3.5), it is valid that

(3.16) yh -y(xk; e) = Sk + w(xk; e) + O(hp+r+8*+1) Qc = 0, 1,. ., ή).

Since 5* (fc=0,1,. , Λ) are computable, this lemma shows that, for the
estimation of the error of yk9 we have only to obtain the approximate value
of w(xk; e). For this purpose we use some one-step method. It is desired,
however, to use such a one^step method as requires only the values of the
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derivative for equidistant abscissas, because the values of S(x) and v(x) are
known only for χ—χk (k = 0,1, , n). Among such methods are Euler, improved
Euler, modified Euler, Kutta, Heun, and Runge-Kutta methods and so on.

Let φ(t, w; h) be the increment function of such a one-step method of
order q (l<ί<jr£Sp+r + l) for approximating w(x; e) that does not require the

evaluations of the derivative for % other than x = t + -rrjh (/ = 0, 1, , &),
rC

where k is a positive integer not greater than n. Let I be an integral multiple
of k not greater than n, i be the greatest integer not exceeding n/l and put
v=rf.

We consider the case where the equation (3.14) is integrated numerically
from XQ to xu with step-size lh, and put

(3.17) qj+ι(e) = φ(xh wj(e); lh)9

(3.18) wj+ι(e) = e + lhzj+ι(e) (j = 0 ,Z, 2/, . , (t- 1)Z),

where

(3.19) zyf/(β) = zy(e) + ? y +/(e),

(3.20) wo(e) = e,

and

(3.21) zo(e) = O.

Then we have the following

THEOREM 2. Under the conditions (3.5) and

(3.22)

iί is

(3.23) y y - y ( x j ; e) = Γy(e) + β O(^ + 1 ) + O(^ + / ; + 1 ) (/ = Z, 2Z, , rf),

(3.24) Γy(e) = Sy + tι;y(e),

(3.25) Zy = min (q, r + δj).

Tj(e) is the desired approximate error formula for yh where e is an
approximate value of the error of y0.
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REMARK 1. In the case where rc=v, y(χn) can be written as follows:

(3.26) y(x0 + nh) = y(x0) + nhθ(xo, yo; nh)

where

(3.27)
"> j = 0 " 7 = 1 q = l

Hence Θ(x, y; h) can be considered as the increment function of a one-step
method of order p+ln. In this way we can generate one-step methods of
higher orders from those of lower orders.

REMARK 2. The assumptions stated at the beginning of paragraph 2 can
be replaced by the assumption that there exists a positive number M that
satisfies the following conditions:

1°. f(x9 y) is defined and continuous in the domain

G :

and the partial derivatives of f(x, y) up to the order s exist and are continuous
in G, where s=max(p+77z5 q+1);

2°. y(x) and y(x; e) exist over the interval \jco, XnJil

3°. Φ(xi9yi; h) (i=0, 1 5 . ? n—1) are defined;

4°. ιi7(Λ) and w(χ; e) exist over \jxo9 xH~2',

5°. φ(xh ws(e); Ih) (/=0, Z, 2Z, . , ( ί-l)Z) are defined.

4. Round-off errors

In this paragraph, we take into consideration round-off errors and denote
by a the computed value of a.

The computed values yh wj(e) and fj(e) can be written as follows:

(4.1) # = f^ + hpi - r{ (ί = 1, 2, ., a),

(4.2) 0y(e) = e + ZMy(e) - Sj (/ = Z, 2Z5 ., ri),

and

(4.3) 2^(β) = £y + 0y(e)-ίy,

where r , «y and tj are round-off errors,

(4.4) Jo=Jp, ^o=β.
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From these we have

(4.5) ft -y{ = j>f._! - yi_x + h(pi - Pi) - r'i

and

(4.6) wj(e) - wj(e) = to[>y(e) - zy(e)] - sj.

Let

(4.7) /ί

(i = l, 2,..., τι;/ = Z, 2Z,...,ίZ; ft = 0, 1,..., n).

Then ShWj(e) and fy(e) can be written as follows:

(4.8) 5, = j>* - yA + S* + O(AJ«) - r* (4 = 1, 2, .., »),

(4.9) WJ (e) = wj (e) + 0 Qiβ) - Sj (j = Z, 2Z, •., rf)

and

(4.10) fj(e) - ^y - yj + Γy(e) + OQiβ) - Tj - sj - th

where r̂ 's are round-off errors.
From these we obtain the following

THEOREM 3. Under the condition (3.1), the local error of γk satisfies

(4.11) γk -y(χk) = §> + O(hp+2) + OQiβ) + rk (ft = 1, 2,..., n)

and, under the conditions (3.5) and (3.22), it is valid that

(4.12) j>, - y(x; e) = fy(e) + eΌ(¥+1) + O(hp+ίJ+ι)

(/ = /, 2Z, .. ? ίZ),

A is defined by (4.7) α?td r*3 5y and ίy are round-off errors in computing
Sk,wj(e) and §j + wj(e) respectively.

From this result it is seen that round-off errors other than r*, sj and tj
appear in (4.11) and (4.12) in the form multiplied by h so that S*, wj(e) and
Sj + wj(e) should be computed minutely.

To compare Sk with round-off errors, we rewrite S* as

(4.13) Rk = yk - γ0 - h Y> akJfj -
j=0 j
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so that theoretically

(4.14) vk=Rk-Sk = 0.

Then Rk and vk can be written as follows:

(4.15) Rk = fk - y0 - h Σ akjfj - ± bkj ± Qιpq - r'q) - 4

and

(4.16) vk = i ] 64y i ] r ; + r , - 4 - 4

where 4 a n d 4 a r e round-off errors. Clearly vk is an aggregate of round-off
errors.

From these we may conclude that, if the local error of yk dominates
round-off errors, then ϋk must be significantly smaller in magnitude than Sk.

5. Numerical examples

In the following examples, T2=Z = 4 and the Runge-Kutta method is used
for approximating γ(x) and w(x; e), so that p=q=4. 52, 54 and Λ4 are
computed by the following formulas:

(5.1) S2 =y2 -γo-hP+ _

(5.2) S4=y4-y0

and

(5.3) R,= -~[β(y, -y0) + 32(y3 -yϊ)l - 2h(2f2+ -ψA2^ + ^ A 4 / 0 ) ?

where

(5.4) P = 2/2 + -4~ Δ 7i + ^ 5 Γ Λ 4 / O + - | f (P4 -P3 + pi -P2),

(5.5) 77i = 8, r = l , ί 4 = l ,

and Δ is the forward difference operator.

Computation is carried out in the floating-point arithmetic with 39 bits
mantissa and rounding is done by chopping. At the start of integration, e
and h are set equal to 0 and 0.05 respectively. One step of integration in our
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extended sense is performed in accordance with the following program:

(1) set parameter a = 0
(2) compute y{ (£ = 1, 2, 3, 4) and S4;
(3) when the inequality

(5.6) ε | j>4 |^ l&l (e = 5 x 10~7)

is not satisfied, halve the step-size, set a = l and go to (2);
(4) when (5.6) holds, compute v4

(5) when the inequality

(5.7) δ\S,\^\vA\ (δ = 5 xlO- 4)

is not satisfied, if α = 0, double the step-size and go to (2); if α = l, stop the
machine (for then computation must be performed in multiple precision.);

(6) when (5.7) holds, compute S2 and Γ4(e);
(7) replace y0, x0 and e with #4, j>4 and Γ4(e) respectively.

The criterion (5.6) is set up to control the local error and (5.7) is made so
that round-off errors may not dominate the local error. By our experience
the criterion (5.7) improves the accuracy of the numerical solution in some
cases.

EXAMPLE 1.

(5.8) / = 2*y, y(0) = l.

The solution is y=expx2 and the results are shown in table 1. The actual
errors of the numerical solution computed by the above program with process
(5) omitted are -1.487-06, -1.218-04 and -3.226-02 for x=1.0, 2.0, and
3.0 respectively. Comparing these results with those in table 1, we can
understand the significance of the criterion (5.7). The only difference in the
computation procedure is that the step-size used in the first and the second
step of integration in our sense is 0.1 and 0.05 for the program with process
(5) but 0.05 and 0.1 for the program without process (5).

EXAMPLE 2.

(5.9) / = 12*3--£, y(-l) = l.
x

The solution is y—x4 and the results are given in table 2. For this equation
the origin is a singular point. Since the general solution is y=x4-\-Cx~s

:) even
a small error will cause a great trouble. In fact, integrating (5.9) by the
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Runge-Kutta method with a uniform step-size 2~w/10 (Λ = 1, 2,-., 9), we could
not have even one significant figure for x= — 0.1. Without knowing the
actual solution, however, we can readily see from table 2 that even one
significant figure is not obtained for x— — 0.3, —0.2 and —0.1.

Table 1
error

X

1.0

2.0

3.0

4.0

5.0

computed

-8.361-07

-9.946-05

-3.057-02

-6.386+01

-9.764 + 05

actual

-8.720-07

-9.941-05

-3.039-02

-6.343 + 01

-9.687 + 05

Table 2

error

X

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

computed

-2.374-07

-8.889-07

-2.925-06

-1.007-05

-4.331-05

-2.581-04

-2.575-03

-6.599-02

-1.688+01

actual

-2.370-07

-8.877-07

-2.922-06

-1.006-05

-4.328-05

-2.580-04

-2.578-03

-6.706-02

-1.691+01

In both examples errors seem to be approximated fairly well and this
method may be used as an integration method with a check on the accurracy
of the numerical solution.

6. Proof

6.1 Proof of lemma 1

From (2.7), (2,6), (2.4) and (2.1), it follows that

(6.1) dJ+ι - dj = A[Δ(*y, y(xj) + dj; A) - Δ(*y, y(xj); h)l +

+ T(xh y(Xj) + dj; h) (/ = 0, 1,..., n - 1).

Since do=O, from (2.2) it is readily seen that

(6.2) di

and so

(6.3) e,

By (2.16), (2.17) and (2.18), (6.1) can be written as follows:

(6.4) e y + 1

UΌ L
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Making use of the fact that

m 1

(6.5) γ(Xj)=γo+^.-Σ Λ
4 = 1 H'

dι dι

and expanding <Pi(χj, y(xj)), -^Aifa, y(xj)) and —q>i(xh y(Xj)) at x0, we can
write (6.4) as follows:

(6.6) ej+ι - ej = Σ A V I ( ; + 1) + Σ h%ι2x (j + l)e) + 0{hm+ι)

where ai-i(x) and b(

i

ι21(x) are polynomials in x of degree at most ί — 1.
Since eo = O, summing (2.28) from j = 0 to i—1, we have

(6.7) e*= | ] A* Σ «,•-!(;)+ Σ A'Σ^ΛOOej.-x
/έl

Substitution of (6.3) into (6.7) yields

so that (2.19) and (2.21) are valid for m = l and ί = l respectively, where

Let Bn(χ) be the Bernoulli polynomial of degree n. Then it is well known
that

(6.9) Σ / ' = TrT[_Bι+ί(k + 1)-B / + 1 (1)] (Z^O).

The right hand side of (6.9) is a polynomial in k of degree l + l without the
constant term. From this fact follow readily (2.19) and (2.21) by induction.

Although (2.19) is proved only for / ; > 1 , since eo = O and (2.21) holds,
(2.19) is valid also for y=0.

By (2.14), (2.17) and (2.18) we have

(6.10) F(xh yh dj) =f(χh y(χj) + dj) -f(χj9 y(χj))
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dι

Substituting (2.19) into (6.10), making use of (6.5) and expanding -^-ξf(χj9 y(%j))

at #o, we obtain (2.20) and (2.22). This completes the proof of lemma 1.

6.2 Proof of lemma 2 and lemma 3

Let E, Δ and D be the shifting, forward difference and differential
operators respectively [T]. Then by the well-known formulas

(6.11) £ = 1 + Δ

and

(6.12) AD = log(l + Δ),

Δ and Ek — 1 can be rewritten as follows:

(6.13) Δ = (ao + csiΔ + α2Δ
2 + .)hD

and

(6.14) Ek - 1 - (1 4- Δ)* - 1 = i ] ( ^

= (rk0 + r«Δ + r,2Δ
2 + ...)AD (fe = l, 2,...),

where

(6.15) r« = Σ

(6.16)

(6.17)

and

(6.18) 0 ) = O f o r

Then by (6.13) and (6.14), for any function z{x) which is m+l times continu-
ously differentiable on [_x0, xo+mfi], it is valid that

(6.19) z(χk) - z(x0) = h ΣVWΔ'/CΛO) + 0{hm+ι),
ί = 0

and
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(6.20) - A
ί = 0

O(hm+1) (I = 1, 2,. ., m).

Suppose that n^r + 1 and let 4̂ be the matrix

(6.21) A —

where l=7i—r. Then, from (6.20), we have a system of linear equations

(hAH+1z'(xo))

(6.22)

[hAn+'z'(Xΰ)J

1

ί = 0

•AΣαίΔ r + /2 /(* 0) + O(A*+1)
/ =0

To show that A is non-singular, making use of (6.15) and (6.16), we rewrite
IAI as follows:

(6.23) \A\ =

o,

1+0' 1+1 '

__!_„_ l
2 + 0 ' "2 + 1"''

' "1+T !

' 2 + 1

1 + 0' Z + l + 1' ' l + l + l

Then, from the well-known identity due to Cauchy, it follows that

\Λ\ = ( - 1 ) ' 7(6.24)

Hence (6.22) can be solved and the solution can be written in the following
form:

(6.25) hA"*V(*o) = Σ α>*Δr+*z(»o) + A Σ ί / ^ ' W + O(hm+1)
*=1 *=r

Substituting this into (6.19), we can rewrite (6.19) as follows:
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(6.26) z(xk)- £
y=o y=r+i

Since

(6.27) AJ = (E-1Y= i](-iy~ι(l)E\

if we put

(6.28)

and

(6-29) ; i j + i (-l) '- y v w ( Z .) = 6« (/ = 0, 1,...,B),

then it follows that

(6.30) z(.xk)-z(x0:
y=o y=o

(6-31) Σ w ( ) i
y=r+i y=o

and

(6.32) αoy = δOy = O (/ = 0,l, ,»),

because ΐoi = O (i = 0, 1, 2, .., m— 1).
It is readily seen from (6.19) that (6.30), (6.31) and (6.32) are valid also

for the case n—r with vkj—bkj — § because m—l—n.
Since

(6.33)
1 = 0

(6.34) z'(xj) = Σ If^-jj-h'-'z^ixo) + O(hm+1),

(6.35) Δ

and Z(Λ?) is any function smooth enough, from (6.30) and (6.31) follow (2.33)
and (2.24). This proves lemma 2.

Lemma 3 follows readily from (6.30), (6.31) and (6.35).

6.3 Proof of lemma 4
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From (2.7), (2.6), (2.18) and (2.19) it follows that

(6.36) y(xk) —

(6.37) ± bkJy(xj) = ± bkjyj - ± bkjdh

j = o y=o y = o

(6.38) 2LΔ °kjyj =yo 2-J Okj
j^o y=o y = i q=i

and

(6.39) Σ bkjdj = Λ ΐ Σ A' Σ &*/#(;) + O(Am+1)D
y = o ί = i y = o

By (2.24), further (6.38) and (6.39) can be written as follows:

(6.40) Σδ*yJ0 = A Σ i

3=0 j=l

and

w m n

(6.41) ^bkjdj = hp Σ Af"Σ6*y
y=o i = r + i y=o

From (6.10) and (2.20) it follows that

m

(6.42) /(Λy) =/(*,., j f e )) = / y - A* Σ A'ρ<(/)
ί = l

Substituting (6.36), (6.42), (6.37), (6.40) and (6.41) into (2.25), we have

(6.43) yk-yo-dk = h*Σ <*kjfj + h Σ
y=o y=i

3

i = 1 y = 0 ί = r +1

Since by (2.23)

» 1 1 «
(6.44) Σ/'-1αw = - Γ * ' - - 7 - Σ W 0 = 1,2,...,

y=o ^ * y=o

from (2.31) it follows that

y=o y=o
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Further by (2.24) it holds that

(6.46) ΣhjRi+i(j) = 0 (ΐ = 0, 1,..., r-1).

Substituting (6.45) and (6.46) into (6.43) and making use of (2.27) and (2.28),
we have (2.30), where

(6.47) c, = Σ hj LPi (/) - R, (/)].

Clearly (2.33) holds and (2.32) follows from (6.32). Thus lemma 4 has been
proved.

6.4 Proof of lemma 5

Since by (2.14) and (3.11)

(6.48) Fix, υix), Six) + gix)) = Fix, vix), dix))

by the same reasoning as for (6.10), it is easily seen that

(6.49) Fix, vix), Six) + gix)) = hp[f] tiQiiu) + 0(Am+1)].

ί = l

Differentiating (3.8), we have

m m

i=1 i=r+l

Since m~^>p + r by (3.4), by our assumptions there exists a constant K such
that

(6.51) i ^ ) - ^ v(xX S(x) + g(x))\ ̂ Kh*+r (0^u<n).

Let L be a constant such that the inequality

(6.52) \Mx,y)\^L

is valid for any point (x, y) belonging to 5, then by (2.14) the inequality

(6.53) \F(x, v(x\ Six) + wx) - Fix, υix), Six) + w2) \ <LL\wx - w2 \
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holds for any numbers u\ and w2.
Since g (#0) = 0, if we put

(6.54) w(x) = w(x;0),

from the well-known theorem in the theory of ordinary differential equations,
it follows that

(6.55) \g(x)-w(x)\<hp+rf(eLuh-l) (0<u<n\

so that

(6.56) g(x) = w(x) + O(hp+r+1).

Therefore we put

(6.57) w(x) = , ),
ί = 1

where

(6.58) zφ) = z(09h) = 0.

Then we have

m

(6.59) w'(x) = hp S h'Qiiu) + hp+rz'(u) + hp+r+1zu(u, h).
1 = 1

On the other hand, since by (3.12), (3.8) and (6.57)

(6.60) S(x) + w(x) = d(x) + hf+r+1 [_z(u) - cr+ibtfβ + O(A"+!-+2),

it follows that

(6.61) F(x, v(x), S(x) + w(xj) =f(x, γ(x) + d(xj) -f(x, y(x)) +

+ f(x, y(xj) -f{χ, y{x) + d(x) - Six) - «(*))

m

= hp Σh'Qiiu) + hp+r+1fy(x0,y0) Zz(u) - cril(u)J + O(hp+r+2).
i = l

Comparing (6.61) with (6.59), we find that

(662) z(u) = 0,

so that
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m

(6.63) w(x)=hp^hi+1Ri+1(u) + 0(h"+r+2),
1 = 1

and

(6.64) d(x) = S(x) + w(x) + hp+r+1cr+ι(.u) + 0(hp+r+2).

Now, from (2.11) and (3.14), it follows that

(6.65) «'(*) + c'(x) = F(x, v(x), S(x) + w(x)) + F(x, y(x), c(x))

= F(x, v(x), S(x) + w(x) + c(x)) +F(x, γ(x), S(x) + w(x)-d(x))

- F(x, y(x) - c(x), S(x) + w(x) - d(xj)

= F(x, v(x), S(x) + w(x) + c(x)) + O(hp+r+1).

Since by (2.12), (6.54) and (3.15)

(6.66) w (xo) + c (xo) = e,

by the same reasoning as for g(x) and w(x), it is seen that

(6.67) w(x) + c(x) = w(x;e) + O(hp+r+2).

From (6.67), (6.64), (2.10) and (3.11), it follows that

(6.68) v(x)-γ(x; e) = S(x) + w(x; e) + hp+r+1cr+1(u) + O(hp+r+2).

Then, by (3.13), (3.16) holds. This completes the proof of lemma 5.

6.5 Proof of theorem 2

From (3.7) and (3.8) we have

(6.69) hk-^τe(x) = ~Σ tiPiίk\u) + hm+1a(k)(u)
ax i = i

and

(6.70) hh-frg{x) ± w

aX ^

Since a(u\ a(μ) and b(u) are polynomials of degree at most n, P, (M) and Λ, (w)
are polynomials of degree at most ί and m^a+1 by (3.5) and (2.15), from
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(6.69) and (6.70) it follows that

(6.71) h

and

dk \O(hp+k\ 0<:&<:r + l or k^n+1,
(6.72) AibfftoH

so that by (3.10) and (3.12) we have

(6.73)

and

(6.74)

where

(6.75) ak = min (ft, r + 1).

Further by (3.11) we have

and

(6-77) -jbrS(*)

because p ^ l by (3.5) and p + r + l -zz^O by (3.22). Also by (2.13), (6.60)
and (6.67) it is seen that

(6.78) S(x) + w(x; e) = e O(l) + O(hp+1).

Now, to determine the order of the truncation errors of Wi(e) (i — l, 2Z,
• , rf), we shall show by induction that

Jk + l

(6.79) hk+1--^+τw(x; e) = e^0Qιk+ι) + 0{h*+«**ψ Qc = 0, 1, .., p + r+ΐ).

By definition Z (̂Λ;; e) satisfies the equation
5) Here it is assumed that s ^
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(6.80) w'(x e) = F(x, υ(x), S(x) + w(x; e))

= f(x, υ(xj) -f(x, v(x) — S(x) — w(x; ej).

From this we have by (6.78)

(6.81) h~dχw(x; e) = CSW + w(*'>

because fy(x, y) is bounded in S. Thus (6.79) is valid for k — 0. Hence suppose
that (6.79) holds for k = 0, 1,.., / - I (j^p+r + ΐ). Then we have

(6.82) -f:^Γw(x;e)^e θa) + O(h"+a^k) = O(l) (fc = 0, l. . , / - 1 ) ,

and so

(6.83) S(i)(x) + «;«>(*; e) = 0(1) (i = 0, 1, ••, /),

because p + αA — k~^>0 provided fe^p + r + 1, where / ( 0(Λ;) denotes ——/(a

Further, from the assumption, it follows that

(6.84) /zi4 x [S(0(Λ;) + w(i)(x e)]

= /zy + 1-^'S ( 0Cx) + A1"^0^; e)]

= hJ+1-i[O(hp+a0 +

because (6.84) is evidently valid by (6.78) for ΐ = 0, and

' p + 1 + r + 1 + (/ - 0 (ί^r + 1)
(6.85) y + 1 - i + p + at =

and

(6.86) j+l-i + p + ai- L + 1 =

for ?;^1.

Differentiating (6.80) / times and multiplying it by hj+ι, we see that
hJ'nwu+1)(χ; e) can be expressed as a linear combination of the terms of the
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form as follows:

( 6 . 8 7 ) U(ffu A 2 , . . , βj; v u v 2 , . . , v , ; a , β) = / ^ + 1 [ ( ^ ^ /

^ ; e))],

where juiy vz (& = 1, 2,..., y), α, and β are non-negative integers not greater than
/ such that

(6.88) cc + β^j, Σ ^ v,.^/.
ί = 1

Making use of (6.76), 6.83) and (6.84), we can rewrite U as follows:

(6.89) [^^

, v(x) - S(x) - w(x; ej)

because the partial derivatives of f(x, y) are bounded by the the assumption.
Hence (6.79) is valid also for k=j.

From (6.79) it follows that

(6.90) w(xi\e) = Wi(e) + e O(hq+1) + OQιp+^+ι) (i=Ί9 21 y.., tl\

because a one-step method of order q (q<^p + r-\-l) is applied for approxi-
mating w(x; e). Substitution of (6.90) into (3.16) yields (3.23). Thus theorem 2
has been proved.

REMARK 3. When m=p + r, replacing cr+ΐ(u) by cr+ι(u) + b(u) in (6.60),
(6.61), (6.64) and (6.68), and modifying (3.16) as

(3.16X yu-y(xk\ e) = Sk + w(xk\ e) + O(hp+r+ι) (fc = 0, I,---, n\

we have the following

THEOREM 2'. Under the conditions (3.22) and

(3.5)' 2(ra-r) + l
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it is valid that

(3.23)' yj -y(xj; e) = Tj(e) + e-OQi^1) + O(hp+a+ι) (/ = Z, 2Z, , rf),

wfcere 7y(e) is defined by (%.24) and

(3.25)' α = min (?, r).
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