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In [27] and [3] we computed the extremal length of harmonic subflows
in an n-dimensional &-space. In this paper we shall compute the extremal
length of a certain class of measures in an abstract space. The main results
of [ 3] are special cases of the results in the present paper.

1. Let X be an abstract space and 2 be a o-fieldV of subsets of X. By a
measure in this paper we shall mean a non-negative countably additive
set-function. Let x be a measure on 2. With each x€ X, we associate an
abstract space Y, a o-field B, of subsets of Y, and a measure v, defined on B,.
We shall denote by Z the set of all couples (x, ), x€ X, y€Y,. Suppose that
there is a o-field @ of sets in Z” which contains all sets of the form {(x, y);
w€AeU, yeV,}¥ and which, for every Ec @, satisfies

(1) E.,={yeY,; (x,y)€E} belongs to B, for every x€ X not belonging to
Ap e with F’(AE) = 0,4)

(2) v,(E,) is an A-measurable function defined on X — Ar. We set
a(B) = qu,, (E)du(x)  for ECG.

If E®, E®, ... are mutually disjoint sets of &, then a«(\VE™)=Sa(E™).

Thus, « is a measure on & If f is non-negative and (-measurable, it is
inferred that f(x, y) is a B,-measurable function of y on Y, for p-a.e. x€X,

that SY fdv, is an 2-measurable function defined for p-a.e. x€X and that

~

Sfdac - gx(SYxfdux>d#(x)'

1) This means that % is not empty, A€W implies X— A4 and A, 4,, ...€2 implies \UA, &Y.
n

Sometimes, it is called a Borel field or s-algebra.

2) The existence of € will be discussed in Section 6.

3) Any set of this form satisfies conditions (1) and (2) imposed below, because ZEE satisfies
condition (2).

4) This fact will be expressed as “for p-a.e. x& X”.
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Let = and « be non-negative G-measurable functions in Z, and assume
that «(x, y) restricted to Y, is B,-measurable for each x€ X. We shall call
an ¢-measurable function p=0 in Z x-admissible (in association with {v,})

if SY kpdy,” is well-defined and =1 for every x€X. For p, 0 <p<oo, we
deﬁnxe a module by

M,({o}; 7, ©) = inf g,,p»da,
p

where inf is taken with respect to x-admissible p. Although M,({v.}; =, «)
depends also on the choice of ., A, &, ete. we shall not write them explicitly
in it. If there is x such that Sy «dv, =0, there exists no x-admissible p. We

x

set then M,({v.}; =, k)=oco. If SY kdv; >0 for each x€ X, then p=co is

r-admissible. We shall call 1/Mp({'l,,}; w, ) the k-extremal length of {v.} with
weight =. This is a special case of the extremal length defined in [1]. An

admissible p which gives Sxp”da = M,({v:}; =, ) will be called extremal. In

this paper we shall assume that Sfcd')x >0 for all x«.
We shall state a property of M,({v.}; =, «); see (1) for a proof.

3) Let A4, 4y, --- €2 be all mutually disjoint, let 4], 45, ... €A and let
U, vA)=X. If My({o.; x€A,}; =, k) =0 for every n, then

Mp({"’x}; g2 K) :;MP({V:C; xEAn}; 7T, K>'

2. We begin with a preliminary remark that we may assume that =>0
and «>0 everywhere on Z in computing M,({»,}; =, ). Actually let p be
x-admissible, and denote by =*, «* and v} the restrictions of =, « and v, to
E; ={(%, y); «(x, y) >0} and to E;NY, respectively. We observe easily that
the restriction of p to E* is «"-admissible in association with {v;} and derive
My({vi}; =", k") < M,({»:}; 7, ). The inverse inequality is evident, and the
equality is established. Thus we may consider E; instead of Z. For this
reason, we shall assume hereafter that «>0 everywhere on Z.

Next we set ES={(x, y); w(x, y) =0} €€ and

X¥={x; E¢NY, is a set of B, with positive v,-measure}.
This set belongs to 2 and M,({v,; x€ X¥}; =, x) =0, because p equal to o on

{(», y)€E; x€X}} and to 0 elsewhere is «-admissible in association with
{v;; x€ X¥} and hence

5) In this paper we set cce0 =000 =0.
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M, ({oe; 5€ X3} 7, /c)ggn‘ppdazo.

On account of (8) it suffices to compute M,({v,; x € X—X}}; =, «). Furthermore
we may assume that = >0 everywhere on {(x, y); x€ X — X}}. For, if we
change the values of = so that it is positive on {(x, y); € X— X7}, the value
of M,({v.; x€ X — X}}; =, k) remains the same. Consequently, we shall
assume in the sequal that = >0 everywhere on Z.

Before calculating the extremal length we prove

Tueorem 1. Let p>1. We can find {v.}, each defined on B,, such that
4 My ({vi}; , 1) = Mp({0}5 1, 50),

where we allow v, =0 for some x.

Proor. First we note that if M,({v.}; =, k) = oo then (4) is true with
{v,=0;x€X}. We shall write ¢ for 1/(p—1). We denote by E; the set
{(x, 9); w(x, y) =0} €. First we consider the case that ExNY.€®B, and
v, (Y,—E7)=0 for x belonging to 4€ A with x(4)>0. If p is k-admissible,
p(x, ¥)>0 on a set of B, of positive v,-measure for all x. For x€ 4, SY wpldy,

=oo and hence

S wplde = SX (ngn'pi’dux> dp (x) = oo,

It follows that M,({-.}; =, k) =oco. This case was already taken care of at
the beginning of our proof.

Next, we consider the case that »,(Y,—E>)>0 for p-a.e. x. We denote
by X, the set of », for which v,(Y,—E7)>0 and =(x, y) is B,-measurable as

a function of y. Then (X —X,)=0. For x€X, we define »; by Snr‘qdux,

and for x€ X — X, we set v.,=v,. Evidently M,({v;; x€ X — Xo}; =, «) =
M,({v.; € X — Xo}; 1, k) =0. On account of (8) it suffices to show M,({v,;
x€ Xo}; 7w, k) =M,({v.; x€ Xo}; 1, ). Consequently, we shall assume in the rest
of the proof that =(x, y) is a B,-measurable function of y and »,(Y,—E7)>0
for all «.

Let p be x-admissible in association with {v.} such that Sfrp"da <eoo. It
holds that p=0 a-a.e. on E;. If p=0v,-a.e. on E;NY, we set p'==% on Y,,

and otherwise we set p'=co constantly on Y,. If p’=#% onY,,

S/qo’dpj’czg0< y /cp'du;=go< _ kerlpr™dy,
oo 7T < oo

= dy, = g Vr =2 1.
S0<”<m/cp v kpdy



90 Makoto OHTSUKA
If p=c on Y,

S/cp’dv; = §O<”<MK‘OO dv,, = oo,

Hence p’ is x-admissible in association with {v;} and it follows that

(s Lo = |[prasdn =] wtpraidp=|mptda.

0L oo
Hence
My({vi}; 1, ©) = Mp({u:}; , ©).

On the other hand, let p’ be x-admissible in association with {v.}. We
define p by =%’ everywhere. We observe

1< S/cp'du; = g kpln'dv, < gfcpdux.
0

7 <oo

We derive

My({vs}; m, ) = Sﬂ‘(p/ﬂf_q)pda = g SO p P dv.dp = S Sp"dv;d;b

<re
and conclude

My ({oi}s , ©) <My ({vi}s 1, ).
Now (4) follows.

3. Let p>1. We write [(x,y) for «/?Dzp-1@=D  and- h(x) for
SY f(x, ¥) dvi(y). This is an 2-measurable function defined for p-a.e. x€X.
WZ shall prove

Tueorem 2. Let p>1. Then the equality

® My({o.}s m, k) = SX h‘ﬁﬁi%%)

holds if and only if M,({v.; s€X3}; 7, ) =0 for X5 = {x; h(x) =c0}. If, in
particular, 0<h(x)<oco for p-a.e. x€ X, then an extremal function ts given by

1 1
( kp~lg p-1

®) =i b
' oo otherwise.

if 0 <h(x) < oo,
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Proor. First we consider the case that E;NY, belongs to B, and i(x)
vanishes for x belonging to A€ with x(4)>0. Since x>0, #=00 y,-a.e. on

Y, for x€ A. Let p be any «-admissible function. It follows that gn‘ppdux=0°

for every x€ A4 and hence that ggﬂp"duxd,u: oo, Thus M,({v.}; 7, k) = oo.

Both sides of (5) are now equal to co.
Next we assume that i2(x) >0 for p-a.e. x€X. We begin with the special

case that =1. Since Sxdvx>0 for each x, A(x) =S;c"’("‘”dvx>0 for each x.

Suppose h(x)<eco for u-a.e. x. Let p be x-admissible. If i(x)<co for x, we
apply Holder’s inequality and obtain

1/p (p~1)/p ! 1/p (p-1)]p
< Pdy, <S pI(p-1) —! S » )
1*<Syp du) ;< dvx) Uy P dv.) h (%)

x x x

or

1
— P
W () = SY"P dvs-

This is true for all x and it holds that

SX %‘LT%Z)W = Sp”da.

Hence

dp() :
o ey SMabds 1,0

On the other hand, we observe that p, is €-measurable and check that p,
is k-admissible. It follows that

dp ()

M, (ks 1,0 = | hdund = ()

and the equality is concluded. It is seen that p, is extremal.
In the case when ux(X3)>0, we have by (3)

My({ve}; 1, 0) = Mp({vr; 6 € X735 1, 1) + My ({vs; w€ X — X7} 1, ),

and infer that

o dp(x dp(x
Millri we X=X L 0=, ?zﬂl-lf(; =1, ;lp’-‘f& '



92 Makoto OHTSUKA
Hence (5) holds if and only if M,({v.; x€ X3}; 1, «) =0.
Finally we are concerned with a general =. The inequality v.(Y,—E?)>0

is equivalent to A(x)>0. Let us assume this for each x. Let v,= Sﬂ‘l’“"”dvx.

We observe that 7/(x) defined by Sfc"’(""”du; is equal to 2(x). Hence the set

X5, = {x; W' (x)=o0} is identical to X;. By Theorem 1 we have M,({v.}; =, k)=
M,({v2}; 1, 0) and M,({v.; x€ X3} m, 0)=M,({v.; x€ X5, }; 1, k). The relation

n. _( dpl) *_S dp(x)
Mk 1o = | et = |
holds if and only if M,({v.;; x€ X;}; =, x)=0. Furthermore, in case h(x)<oo
for p-a.e. x, we define pj by «"?Php~' if h(x)<oo and by oo otherwise. It
is extremal in association with {v.} as seen above. We observe that p, is
rx-admissible in association with {v,} and

Sn’pgda = “K”@ngduxd/ﬁ = ggo<”<mp6pdu;dp- =M,({v.}; 1, «)
= MP({Vx}; 7T K)-

Thus p, is extremal.
It remains to treat the case when A4(x) =0 for some x. We set X)=
{x; h(x)=0}. Since u(X?) =0,

dp (%)
xh B x)

My (o3 2 € X35 7, 1) = 0= |

We know that

d
My({z; € X — Xf}; 7, 1) = SX_XW'%’)"

if and only if M,({v.; x€ X}; =, «©) =0. It is concluded that (5) holds if and
only if M,({v.; x€ X;}; m, «)=0. It is easy to check that (6) is extremal if
0<h(x)<co for p-a.e. x. Our proof is completed.

4. A condition for M,({v,; x€ X}}; 7, «x) =0 is found in

Tueorem 3. Let p>1. Suppose that h(x)=co for all x€X. Then
M,({v:}; , ©)=0 if and only if p is o-finite and there exists Zo€ & with the
Sollowing property: The restriction of « to Z, is o-finite and

) fdvy = oo for p-a.e. x,

Syxnzu
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where f=x? P Dz=1®=D qg before.
Proor. We may assume that = (x, y) is ®B,-measurable on Y, for each x.

It does not happen for any » that = (x, y)=oco v,-a.e. on Y,, because it implies
h(x)=0. Hence by taking Sn—"l/(’"”dux for v, M,({v.}; 1, ) = M,({v.}; =, ©)

by Theorem 1, and for any set B€%,, it holds that SB fdv, = SBM”’“"”dv;.

Consequently, it suffices to consider the case »=1.

Assume the condition in the theorem. Let X* be the set of x for which
(7) holds. If we denote by v} the restriction of v, to Y.NZ, for x€ X*, then
M,({F; x€ X*}; 1, €)= My({v.}; 1, ©). Hence we may assume that Z=2, and
(7) holds for every x. Let {E,} be an increasing sequence in & such that
VE,=Z and «a(E,)<oco for every n. If we set min(x, n)=«,, we have

pI(p-1) 7, . pI(p—1)
SX(S yonE, " de> dp(x) <n SXW (Y. NE,) dp(x)
=nt/ D (E,) < oo

so that S k2 ®=Ddy, < oo for p-ae. x. Let us set X,,={x; 1<

SY . xﬁ"‘"“”dux}. We shall denote by »¢ the restriction of v, to E,. By
«NEy

Theorem 2 we have, for m=>n,

_ dp()
X, (S"ﬁkp_l)di/i"”)

If p(X)<oo, the integral decreases to zero as m—>oo. Since X =
UX,, My({0:}; 1, ©)=0 by (8). We obtain the same conclusion on account
of (3) if u is o-finite.

Conversely, suppose M,({v,;}; 1, «)=0. There exists a «-admissible p,

My({vas x€ Xobs 1, 63 2 Mp ({007 s € X5 1, 1) = S 5 = (XD,

satisfying gpﬁda<l/n. Since S/cp,,dvxg 1 for every x, S ptdv,>0 for every .

We set X, ={x;1/m< SY pidv.}. Evidently, X=UX,. We have

L(Xm):_l,g ,<S S b <Sp ,
de,uz . Yp"ded,lb: phda < 1/n.

m m

m x

This shows that y is o-finite. We set next Z,={(w, y); pa(x, y)>0}. We shall
show that U Z, may be taken for Z,. Let Z{ = {(x, y); pa(w, y)>1/m}.

Evidently Z,=\wZ{. Since the fact Sz(m>pgda< 1/n< oo implies a(Z{)<< oo,
m n
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the restriction of « to Z, and hence to U Z, is o-finite. Suppose that there
were M<oco and A€ with ;(4)>0 such that SY i fdv.<M for every
xN(UZy)

x€ A. It would hold

. p p-1
1< . x> < S 4 x)(g pito-1) x>
o gY,,nZ,,KP v _( Yxnz,,p"dJ Yan,,K d

p-1
= D, 8 -1 5
<S ¥ nz,,”"d”X> <gyxnznfd)x> =M Spndux.

x

Hence
(4 _ 1 . 1
0< _}lllp—l T M1 SAd/” = ggpﬁd%dﬂ- = Spﬁda<7l— .
This is impossible if » is large. Consequently S fdv,=oo for p-ae. x.

Y, ,N(UZy)
n

Thus all conditions on Z, are satisfied.

5. We shall apply Theorem 2. TUsing the notations of [3], we take
N[ "] for X, the flux ¢ restricted to rN\[ /"] for p, co for Y, and the length s
on co for v,. As & we take the class of all Lebesgue measurable sets in [ /"],
and given =’ in &, we take ='/|grad H| for =. Then, for any Ec@,

Encg

and

rge =\(\ _7p" =g .
Sﬁp det cho |grad H| ds>d¢)(@ ijpdv.

It is easy to derive Theorem 1 and its generalizations in [ 3] from our present
results.

Another choices are, with the notations of § 6 in [3], 7 for X, ¢ for ., S;
for Y, and & for v,. Then Theorem 5 of [37] is obtained immediately.

6. Next we are interested in the existence of & Suppose that Z, 2, .,
B, and y, are given. At the beginning we assumed the existence of &
satisfying the required conditions. One might wonder if & really exists.
Obviously it is a necessary condition that v.(Y,) =v.{y€Y.; (v, )€ Z} is an
A-measurable function. Conversely, assume that »,(Y,) is an 2-measurable
function. Then the class of all sets of the form {(x, y); x€ A€, y€ Y.} may
be taken as ¢ and is, in fact, the smallest one. Furthermore, if Z can be
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written as \UZ, such that each »,(Z,NY,) is a finite-valued A-measurable

function defined for u-a.e. x, then the class of all sets EC Z satisfying (1) and
(2) may be taken as & and is the largest one.

As an example, we take the interval 0<x<{1 on the x-axis as X and the
linear measure as p. Let X; be a non-measurable subset of X with the inner
measure mX;=0 and the outer measure mX;=1. For X,=X—-X;, mX,=0
and mX,=1. At each point of X; we take the interval 0<y<1 for Y., and
at each point of X, we take —1/2<y<1/2 for Y,. The linear measure is
taken for v, on each Y,. Since v,(Y,)=1 is a measurable function on X, there
exists ¢ satisfying the required conditions. By our Theorem 2 we have
M,({v;}; 1, 1)=1 for any choice of €.

7. So far we have assumed that each B, consists of subsets of Y, and v,
is defined on ¥B,. Suppose now that Y, is contained in a larger space Y. for
each ». We take any o-field B, in Y, whose restriction to Y, coincides with
B,, and define v, on B, so that v,=», on B, and »(¥Y.—Y,)=0. Let & and
@ be o-fields of sets in Z={(x, y); x€ X, y€ Y.} and Z'={(», y); v X, y€ Y]}
respectively which satisfy the required conditions, and suppose ECE. We

define a(E) by Sva(Ex)dp-(x) for E€®, and o (E) by SXV;(E;) du(x) for
Ec®. If ECG,

& () = | B ) = | 1B ) = ()

Hence o’ is an extension of «. Furthermore, if f(x, y) is non-negegative and
& -measurable,

=S, g =1, = e

We see easily that M,({v,}: 7=, ©)=M,({v.}; =', ') if #’ and «" are non-negative
¢'-measurable extensions of = and « in Z’ such that the restriction of «" to Y
is B.-measurable for each x. Roughly speaking, the extremal length does
not change for any extension of Y, if v, is extended by the value 0.

Next we consider the special case that Y, is common. Namely, Z is the
product space {(x,y); x€ X, y€Y}. Furthermore, B, and v, may or may not
be common. To illustrate it, let us be concerned with the example discussed
at the end of Section 6. We take as Y the y-axis or any interval containing
the interval —1/2<y<1, and take as B, the common class B of linearly
measurable subsets of Y. We take as v, the linear measure on {(x,y); 0<y<<1}
(on {(x,5); —1/2<y<1/2} resp.) for x € X; (X, resp.), extended by 0 elsewhere.
Then again M,({».}; 1, 1)=1 for any choice of & However, we cannot take
the class of Lebesgue measurable sets in Z as &, because E= {0<x<1,
0<y<1/2}, for instance, does not satisfy condition (2). We add as a remark
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that inf ggpzdxdy=4/3 as computed in § 2 of [2], where p is a non-negative
o

1/2
Lebesgue measurable function satisfying glpdyg 1 if x€ X; and g pdy=1
0 —-1/2

if xeX,.

As another example in which ¥ and B are common but v, are different,
we consider again a harmonic subflow I" treated in Section 5. As before we
take TN\[ /"] for X and take the flux @ restricted to +n\[ /"] for .. Here, we
take the z-axis for the common Y and the class of linearly measurable sets
for the common B. As v, we take the measure which is equal to the linear
measure on the image of ¢; by t=H(P) and which vanishes outside the image.
As ¢ we take the class of Lebesgue measurable sets in the product space Z.
Given =’ in &, we take ='/|grad H|? for =, and obtain the same value of the
module as in Section 5. If we want to keep the same value of the module
while taking the linear measure on the s-axis as the common v, we take «’
which is the extension of « by 0. The same remark holds for the preceding
example.

Finally, we remark that we may limit ourselves to the case when Y and
B are common if we want. Let X, ¥, s, Y., v, and & be given as in Section 1.
We consider the sum-space Y =3"Y,. In order to avoid a possible confusion

between the points in the produc{: space X %Y and the points of Y,, we shall
write Y=31Y,. Let B be the o-field in Y whose restriction to Y, is equal

to B, for each u. If B is regarded as a o-field on {(,y); y € Y}, then we shall
use the notation B, Let v, be the measure on B such that v, =v, on B,
and v, (Y—Y,)=0, let ¢ be a o-field in X x Y containing & and let =’ and «’
be respectively non-negative ¢'-measurable extensions of » and « in X xY
such that the restriction of «" to {(x, y); y€ Y} is B-measurable for each x.
Then we have

My ({vs}s , ) = Mp({v3}; =, «).

If we want to take the common v,, we define v on B by the equality v=», on
B, for each » and set « =0 in X x Y outside {(x,y); x€X,y€Y,}. Asa
measure on {(x, y); y€ Y}, v being denoted by »*, it holds that M,({v.}; =, «)
= M,({}; =/, «).
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