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In [2Γ\ and [βj we computed the extremal length of harmonic subflows
in an 7z-dimensional <f-space. In this paper we shall compute the extremal
length of a certain class of measures in an abstract space. The main results
of [ΊΓ] are special cases of the results in the present paper.

1. Let X be an abstract space and SI be a σ-field1} of subsets of X By a
measure in this paper we shall mean a non-negative countably additive
set-function. Let μ be a measure on 2ί. With each xeX, we associate an
abstract space Yx, a σ--field 33* of subsets of F* and a measure vx defined on 23*.
We shall denote by Z the set of all couples (x, y), Λ G I , y G Y*. Suppose that
there is a σ-field @ of sets in Z2) which contains all sets of the form {(x, y)
x e A e §1, y e Yx}

3) and which, for every E e ©, satisfies

(1) Ex= {yeYx; (x,y)eE} belongs to S3* for every xeX not belonging to
AEe% with

(2) vx(Ex) is an 2ί-measurable function defined on X — AE. We set

a(E)=\ vx(Ex)dμ(χ) for E£®.

If E{1\ E(2\ ... are mutually disjoint sets of ©, then a(\JE{n))
n n

Thus, a is a measure on ©. If / is non-negative and ©-measurable, it is
inferred that f(x, y) is a S3*-measurable function of y on Yx for μ-&.e. x 6 X,

r
that \ fdvx is an §ί-measurable function defined for μ-a.e. x<eX and that

1) This means that 2ί is not empty, AQU implies X—A and Aί9 A2, ...^li implies XJA^H.
n

Sometimes, it is called a Borel field or cr-algebra.
2) The existence of @ will be discussed in Section 6.

3) Any set of this form satisfies conditions (1) and (2) imposed below, because Z£ί@ satisfies

condition (2).

4) This fact will be expressed as "for μ-a.e. Λ ζ l " .
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Let it and K be non-negative ©-measurable functions in Z, and assume
that κ(x,y) restricted to Yx is ^-measurable for each xeX. We shall call
an ©-measurable function p :> 0 in Z /c-admissible (in association with {vx})

r
if I κpdvx

5) is well-defined and > 1 for every xeX. For p, 0 < p < o o 5 we
JY x

define a module by

•M/>({y*} 7T, /c) = inf I τtppda,
P J

where inf is taken with respect to /c-admissible p. Although Mp({vx} τr5 /c)
depends also on the choice of μ , 2ί, @, etc. we shall not write them explicitly

in it. If there is x such that I κdvx = 0, there exists no /c-admissible p. We

set then Mp({vx}; 7t, κ) = oo. If I κdvx>0 for each x e X, then p = oo is

^-admissible. We shall call 1/Mp({vx} τr5 K) the ^-extremal length of {vx} with
weight it. This is a special case of the extremal length defined in [1]. An

admissible p which gives \τtppda = Mp({vx} τr5 K) will be called extremal. In

this paper we shall assume that \κdvx > 0 for all x.

We shall state a property of Mp({vx} τr? K); see (1) for a proof.

(3) Let Au A2, e2I be all mutually disjoint, let A'u A'2, .. e% and let
\J (An \J A'n) = X. I f Mp({vx;xe A'n} ;π,κ) = 0 f o r e v e r y n, t h e n

n

Mp({vx}\ 7τ, κ) = 'ΣiMp({vx; χeAn}; τr5 /c).

2. We begin with a preliminary remark that we may assume that τr>0
and /c>0 everywhere on Z in computing ^({v*}; ?r, K). Actually let p be
/c-admissible, and denote by ?t+, κ+ and v+ the restrictions of ?r, /c and ^ to
Et = {(Λ;, y); κ(x, y) > 0} and to E«r\Yx respectively. We observe easily that
the restriction of p to E+ is /c+-admissible in association with {»+} and derive
Mp({vx}; τr+, κ+)<;Mp({vx}; π, /c). The inverse inequality is evident, and the
equality is established. Thus we may consider Ei instead of Z. For this
reason, we shall assume hereafter that /c>0 everywhere on Z.

Next we set El = {(*, y); τt(x, y) = 0} £ © and

X* = {x; E°Γ\ Yx is a set of $5X with positive ^-measure}.

This set belongs to 21 and Mp({vx; x£X*}; π, /c) = 0, because p equal to oo on
{(x,y)eEl; x£X%} and to 0 elsewhere is /c-admissible in association with
{vx x e Xϊ} and hence

5) In this paper we set oc 0 = 0 oo = 0.
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On account of (3) it suffices to compute Mp({vx\ xeX—Xί}; it, K). Furthermore
we may assume that τ r > 0 everywhere on {(x, y); x<EX — Xϊ}. For, if we
change the values of it so that it is positive on {{x, y); x<εX—Xϊ}, the value
of Mp({vx; Λ G X —Xϊ}; it, K) remains the same. Consequently, we shall
assume in the sequal that it > 0 everywhere on Z.

Before calculating the extremal length we prove

THEOREM 1. Let p > 1. We can find {vx}, each defined on 33*, such that

(4) Mp({vx};7t,fc) = Mp({vx};l,κ),

where we allow v'x = 0 for some x.

PROOF. First we note that if Mp({vx}; it, K) — °o then (4) is true with
{v'x = 0;xeX}. We shall write q for l / ( p - l ) . We denote by E* the set
{(x, y); it(x, y) = oo} e@. First we consider the case that E^ί\Yx^^&x and
vx(Yχ — E~) = 0 for x belonging to Λ^% with μ(A)>0. If p is/^-admissible,

p(x, y)>0 on a set of $8X of positive ^-measure for all x. For xeΛ,\ τtppdvx

= oo and hence

Γ f
\ itppda = \
J r

 J
itppdvx )dμ(x) =

It follows that M^({vx}; 7?, κ) = 00. This case was already taken care of at
the beginning of our proof.

Next, we consider the case that vx(Yx—Eπ)>0 for μ-a.e. x. We denote
by Xo the set of x, for which px(Yx—E~)>0 and it(x,y) is ^-measurable as

a function of y. Then μ(X — X0) = 0. For # e X 0 we define vf

x by \7t~gdvx,

and for Λ G X — X O we set v'x = vx. Evidently Mp({vx; xeX — Xo}; τt9κ) =
Mp({vx; xeX — Xo}; 1, /e) = 0. On account of (3) it suffices to show Af^ζί^;
xe Xo}; 7T, /c)=M/,({^; Λ G Xo}; 1, K). Consequently, we shall assume in the rest
of the proof that it(x, y) is a ^-measurable function of y and vx(Yx—EZ)>0
for all x.

Let p be /^-admissible in association with {vx} such that \ itppda < 00. It

holds that p = 0 α-a.e. on E«. If p = 0 v^-a.e. on EZΓΛYX we set p' = itqp on F*,
and otherwise we set p' = oo constantly on Yx. If p1 — itqp on F^,

SKp1 dv' = \ /φ'dy!l = \ fcitqpit qdvx

JOOO Jθ<7Γ<oo

= \ icpdvr = \ Kpdvγ ^ 1.
Jθ<*<oo J
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If p=oo on Yx,

Sκpdv'x >̂ \ κ cxo dv'x = oo.

Jθ<τr<oo

Hence p is /^-admissible in association with {v'x} and it follows that

Mp«v'x}; 1, <c)^ J0<7r

Hence

On the other hand, let p be /c-admissible in association with {v'x}. We
define p by τt~qp everywhere. We observe

5S \ κpfdv' = \ κp7tQ7t~g dvx ^ \/
J j0<τr<o O J

We derive

and conclude

Now (4) follows.

3. Let p > l . We write f(x,γ) for κPKP'λ)7t-ιl{p-ι\ nnά* h(x) for

\ f(x,y)dvx(y). This is an Si-measurable function defined for /x-a.e.

We shall prove

THEOREM 2. Lei p > 1. Then the equality

(5) M , ( M . ^ )

if and only if Mp({vx; x£X^}; rt, K) — 0 /or X£ = {#; A(Λ;) =C>O}. J/? m
"particular^ 0<ΛO*0<°° /or /z-α.e. Λ G I , then an extremal function is given by

(6)

otherwise.
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PROOF. First we consider the case that E~Γ\YX belongs to 33* and h(x)
vanishes for x belonging to AG2ί with μ(A)>0. Since /c>0, τt = °° vΛ-a.e. on

Yx for x€A. Let p be any ^-admissible function. It follows that \τtppdvx = oo

for every xeA and hence that \ \τtppdvxdμ = °°. Thus Mp({vx}; τr? K) = °o.

Both sides of (5) are now equal to oo.
Next we assume that h(x)>0 for μ-a.e. χζ.X. We begin with the special

case that 7T = 1. Since \/c<i^>0 for each #, Λ(Λ ) = \/c/>/(ί~1)cί^>0 for each x.

Suppose h(x)<oo for μ-a.e. x. Let /o be *>admissible. If h(x)<°° for x, we

apply Holder's inequality and obtain

γP
pdvx) (\γ ^-"dvή =[\γP

pdvx) h (x)

or

This is true for all x and it holds that

Hence

On the other hand, we observe that p0 is ©-measurable and check that p0

is ΛΓ-admissible. It follows that

a»d the equality is concluded. It is seen that p0 is extremal.
In the case when /^(X^)>0, we have by (3)

Mp({vx};l9 K) = Mp({vx; xeX^}; I, K) + Mp({vx; x£X- X^}; 1, K),

and infer that
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Hence (5) holds if and only if Mp({vx; xeX^}; 1, K) = 0.
Finally we are concerned with a general it. The inequality vx(Yx —ΐ)

is equivalent to h(x)>0. Let us assume this for each x. Let v'x — \τt~ιι{p~ι)dvx.

We observe that h'(x) defined by \κPKP~ι)dvr

x is equal to h(x). Hence the set

XZ,= {χ; hr(x) = oo} is identical to X%. By Theorem 1 we have Mp({vx}; τr5 κ) =
Mp(iv'x};l,ιc) and Mp({vx; xeX^}; π, κ)=Mp({vx; χeX°°hr}\ 1, κ). The relation

Mp{{vx}, 1, «) =

holds if and only if Mp({vx; xeX%}; π, κ) = 0. Furthermore, in case h(x)<oo
for μ-a.e. x, we define p'o by K11^'1^'1 if h(x)<oo and by oo otherwise. It
is extremal in association with {vf

x} as seen above. We observe that p0 is
/c-admissible in association with {vx} and

\τrpζda = \\ itPldvxdμ = \\ p',pdv'xdμ = Mp({vx}; 1, K)
J JJθ<7r<oo JJθ<7r<oo'

= Mp({vx}; τt> fc).

Thus p0 is extremal.
It remains to treat the case when h(x) = 0 for some x. We set X°h =

{x;h(x) = 0}. Since

We know that

Mp({vx; xeX — X°h}; 7t9 κ)= * 0 /,_1, .

if and only if Mp({vx; x£X%}; π, K) = 0. It is concluded that (5) holds if and
only if Mp({vx; χζX%}; TT, K) = 0. It is easy to check that (6) is extremal if
0<h(x)<oo for μ-a.e. x. Our proof is completed.

4. A condition for Mp({vx; x^X^}; τr5 K) = 0 is found in

THEOREM 3. Let p > 1. Suppose that h(x) = °° for all xeX. Then
Mp({vx}; 7T, κ) = 0 if and only if μ is σ-finite and there exists Zoζ @ with the
following property: The restriction of a to Zo is σ-finite and

(7) 1 fdvx = oo for μ-a.e. x,
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where f= κ

PI(p-1)τr-ll(p-1) as before.

PROOF. We may assume that τc{x^ y) is %5X-measurable on Yx for each x.
It does not happen for any x that τt{x> y) = oo j^-a.e. on Yx, because it implies

h(x) = 0. Hence by taking \τt-ι>l{p-ι)dvx for v'x, Mp({v'x}; 1, K) = Mp({vx}; TΓ, *)

by Theorem 1, and for any set 5 e S , 5 it holds that I fdvx=\ κp^p-χ)dvx.
)BJ )B

Consequently, it suffices to consider the case T T Ξ I ,

Assume the condition in the theorem. Let X* be the set of x for which
(7) holds. If we denote by v* the restriction of vx to Yxr\Z0 for xeX*, then
Mp({v*; xeX*}; 1, κ)^Mp({vx}; 1, K). Hence we may assume that Z=Z0 and
(7) holds for every x. Let {En} be an increasing sequence in @ such that
\JEn — Z and a(En)<oc> for every n. If we set min(κ5 7z)=^5 we have

\

J
( ^ μ { ) , vx(Yxr\En)dμ(x)

X\jYχf]En / jX

so t h a t \ κp

n

KP~ι)dvx < oo for μ,-a.e. x. Let us set Xn — \x; 1<Ξ
JYχf)En (

\ κpnl{p~ι)dvx\. We shall denote by yff the restriction of vx to £w. By

Theorem 2 we have, for m^n,

Mp({vx; xβXn}; 1, ^ ^ A f ^ C ί ^ ; x£Xn}; 1, O = \ ~7f~~ ^μ(

If /^.(X)<oo5 the integral decreases to zero as m-+°o. Since X —
\JXn9 Mp({vx}; 1, /c) = 0 by (3). We obtain the same conclusion on account
n

of (3) if μ is cr-finite.
Conversely, suppose Mp({vx}; 1, «) = 0. There exists a /c-admissible pw

satisfying Ugcto<l/7ϊ. Since γpndvx^l for every Λ;, \^<i^>0 for every x.

Weset Xm={x;l/m<,\ ppdvx}. Evidently, X=\JXm. We have
J Y x m

This shows that μ is σ--finite. We set next Zn— {(x, y); P«(Λ;, y)>0}. We shall
show that \J Zn may be taken for Zo. Let Z^m) = {(Λ, y); pn(χ, y)>l/m}.

n

Evidently Zn = \JZc

n

m\ Since the fact \ (m)p^(X<l/τz<oo implies
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the restriction of a to Zn and hence to \J Zn is σ--finite. Suppose that there
n

were M<oo and Ae% with μ(A)>0 such that \ fdvx<M for every

. It would hold

Pnx) \ P n x ) \

pv
γχnzn

Hence

This is impossible if n is large. Consequently \ fdυx — oo for μ-a.e. x.
n

Thus all conditions on Zo are satisfied.

5. We shall apply Theorem 2. Using the notations of Q3], we take
T A [ Γ ] for X, the flux φ restricted to τΛ[/ ' ] for μ9 cQ for Yx and the length s
on CQ for vx. As @ we take the class of all Lebesgue measurable sets in [ Γ ] ,
and given it' in <f, we take TC1 / |grad iJ| for TΓ. Then, for any £Έ@5

a(E) = \vx(Ex)dμ{χ) =\ (\ ds)dφ(Q)
J jQemcrΛ Jinnee /

and

It is easy to derive Theorem 1 and its generalizations in [βj from our present
results.

Another choices are, with the notations of § 6 in [θ], T for X, t for μ., S*
for Yx and σ- for vx. Then Theorem 5 of [3] is obtained immediately.

6. Next we are interested in the existence of Gf. Suppose that Z, 2ί, μ,
5&x and vx are given. At the beginning we assumed the existence of Gc
satisfying the required conditions. One might wonder if G? really exists.
Obviously it is a necessary condition that vx(Yx) = vx{y^ Yx; (x, y)G Z} is an
s2I-measurable function. Conversely, assume that vx(Yx) is an Sΐ-measurable
function. Then the class of all sets of the form {(x, y)\ xe Ae Sΐ, y e Yx} may
be taken as & and is, in fact, the smallest one. Furthermore, if Z can be
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written as \JZn such that each vx(Znr\Yx) is a finite-valued 3I-measurable
n

function defined for μ-a.e. x, then the class of all sets ECZ satisfying, (1) and
(2) may be taken as G? and is the largest one.

As an example, we take the interval 0 θ < l on the Λ -axis as X and the
linear measure as μ. Let Xλ be a non-measurable subset of X with the inner
measure mZi = 0 and the outer measure ϊnXι = l. For X2=X—Xu mX2 = 0
and mX2 = l. At each point of Xλ we take the interval 0 < y < l for Yx, and
at each point of X2 we take —1/2 <<y <l/2 for Yx. The linear measure is
taken for vx on each Yx. Since vx(Yx) = l is a measurable function on X, there
exists Gf satisfying, the required conditions. By our Theorem 2 we have
Mp({vx}; 1, 1) = 1 for any choice of Gr.

7. So far we have assumed that each 58X consists of subsets of Yx and vx

is defined on 33*. Suppose now that Yx is contained in a larger space Y'x for
each x. We take any σ -field ^8X in Yx whose restriction to Yx coincides with
23*, and define v'x on Ϊ8X so that vx = vx on S3* and v*(7;-F*) = 0. Let © and
©' be σ-fields of sets in Z= {(*, y ) ; ^ X , y G 7 , } and Z' = {(*, y);xeX,yeY'x}
respectively which satisfy the required conditions, and suppose G? C Gf'. We

define a(E) by ( vx(Ex)dμ(χ) for £€@, and α'(ίT) by f vf

x(βr

x)dμ(χ) for
J -X" J X

'. If

) ^ . ( Λ ) = f Vχ
j X

Hence a! is an extension of a. Furthermore, if f(x, y) is non-negegative and
©'-measurable,

We see easily that Mp({vx}: π, κ)=Mp({ι>x}; π', κr) if it' and κf are non-negative
©'-measurable extensions of TT and Λ: in Zf such that the restriction of κf to 7*
is 3^-measurable for each x. Roughly speaking, the extremal length does
not change for any extension of Yx if vx is extended by the value 0.

Next we consider the special case that Yx is common. Namely, Z is the
product space {(#, y) x e X, y e Y}. Furthermore, ^8X and vx may or may not
be common. To illustrate it, let us be concerned with the example discussed
at the end of Section 6. We take as Y the y-axis or any interval containing
the interval — l/2<y<l, and take as 33* the common class S3 of linearly
measurable subsets of Y. We take as vx the linear measure on {(x,y); 0<7<l}
(on {(χ,y); — l/2<y<l/2} resp.) for xeXλ (X2 resp.), extended by 0 elsewhere.
Then again Mp({vx}; 1, 1) = 1 for any choice of ©. However, we cannot take
the class of Lebesgue measurable sets in Z as @, because E— { 0 θ < l ,
0<y<l/2}, for instance, does not satisfy condition (2). We add as a remark
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that inf \\p2dχdγ = 4:/3 as computed in § 2 of pΓ], where p is a non-negative
P J J

S i r 1/2

pdyl>l if Λ G J I and \
0 J J - l / 2

if l

if 2

As another example in which 7 and 53 are common but vx are different,
we consider again a harmonic subflow Γ treated in Section 5. As before we
take T A [ Γ ] for X and take the flux φ restricted to T Λ [ Γ ] for μ. Here, we
take the ί-axis for the common Y and the class of linearly measurable sets
for the common S3. As vx we take the measure which is equal to the linear
measure on the image of cQ by t=H(P) and which vanishes outside the image.
As G? we take the class of Lebesgue measurable sets in the product space Z.
Given τcf in £, we take it'/|grad H\2 for rt, and obtain the same value of the
module as in Section 5. If we want to keep the same value of the module
while taking the linear measure on the ί-axis as the common y, we take K
which is the extension of K by 0. The same remark holds for the preceding
example.

Finally, we remark that we may limit ourselves to the case when Y and
S3 are common if we want. Let X, SI, μ , 7*, vx and G? be given as in Section 1.
We consider the sum-space Y = 'ΣYX. In order to avoid a possible confusion

X

between the points in the product space XxY and the points of Yx, we shall
write Γ = Σ y« Let 53 be the σ-field in Y whose restriction to Yu is equal

u

to 58U for each u. If 53 is regarded as a σ--field on {(x, y) y G Y}, then we shall
use the notation 53(*}. Let v'x be the measure on 58(x) such that v'x — vx on 53X

and ^ ( 7 — 7 ^ = 0, let Gf' be a σ--field in 1 x 7 containing @ and let π and */
be respectively non-negative ©'-measurable extensions of π and « in 1 x 7
such that the restriction of K to {(x, y); y e 7} is 53(x)-measurable for each x.
Then we have

Mp({vx}; 7T, κ) = Mp(Wx}; π', K ) .

If we want to take the common vx, we define v on 53 by the equality v = vu on
53« for each u and set /c' = 0 in 1 x 7 outside {(χ,y); xeX, y€Yx}. As a
measure on {(x, y); y E 7}, v being denoted by v(x\ it holds that Mp({vx}; ?r, /c)
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