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The present paper is a continuation of the previous paper [12] of the
same title collaborated with R. Shiraishi. We investigated there multiplica-
tion between distributions centering around the two definitions of multiplica-
tive product of two distributions one is due to Y. Hirata and H. Ogata [SJ
and the other J. Mikusiήski [SJ. We have shown that these two definitions
are entirely equivalent. In the sequel the multiplicative product of two
distributions 5, TeQ)XRN\ if it exists, will be denoted by ST. It has been
pointed out there that multiplication under consideration has the following
properties :

(1) if ST exists, then (aS)T, S(aT) also exist for any a e S and

(2) if -J^_Γ, = 1, 2, ., N, exist, then ST, S-f̂ -, / = 1, 2, ..., N, also

exist and

With necessary modifications, our treatments will also hold for distribu-
tions defined on an open subset of RN. The multiplication is of local charac-
ter. For the case iV=l, the first part of (1) and (2) are postulated by
H. Kδnig [X] as fundamental in his axiomatic approach to a multiplication
theory for distributions. It might as well be said that these properties
together with local considerations express a precise statement of Schwartz's
observation that the multiplicative product of two distributions is well de-
fined if locally one is "more regular" than the other is "irregular".

On the other hand, H. G. Tillmann [13, 14] has investigated the repre-
sentation theory of distributions by the boundary distributions of locally
analytic functions with certain properties. In accordance with the idea of
H. J. Bremermann and L. Durand [ΊL], he suggested another approach of
defining multiplication between distributions when N=l. Let S(z) and f(z)
be locally analytic functions corresponding to S and T respectively. Putting
§£(χ) = §(x + is) - S(x - ίe) and T6(x) = f(x + ίέ) -f(x- is), ε > 0, he defined
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the product S T to be lim S €f6 if it exists, or more generally the finite part

of SεTε (in Hadamard's sense) if it exists. We shall concern ourselves mainly
with the case when lim SεTε exists, and write SOT = lim Sεfε which is re-

ferred to in this paper as the multiplicative product of S and T in Tillmann's
sense.

Our main purpose of this paper is to investigate this multiplication by
making a comparison with the former one.

Section 1 is concerned with a supplement to our previous paper [12].
We shall show that (Si<g)S2) (7Ί(g>:Γ2) exists and coincides with SiS2<g>7Ί72 if
SιS2 and TλT2 exist (Proposition 3). In Section 2, after giving a short discus-
sion on Tillmann's product which is confined to the case N=l, we shall
remark that a natural extension of his definition to the case iV>2 presents
serious difficulties. This will be shown by examples. However, in a special
case, where distributions are of compact support and certain conditions are
satisfied, the existence of ST implies the existence of the multiplicative
product of 5 and T in Tillmann's sense and both products coincide with each
other (Proposition 4). Section 3 is devoted to a comparison of multiplication
between two distributions in accordance with the two definitions mentioned
above. Hereafter we confine ourselves to the case N= 1. It is shown that
multiplication in Tillmann's sense has a really wider range of application
than the former one, and that both products coincide with each other when
the product in the former sense exists (Theorem 1). However, the multiplica-
tion SOT in Tillmann's sense fails to satisfy the properties (1) and (2) cited
above. In the final Section 4 the two definitions are compared from another
standpoint, by considering scalar product of two distributions in a fairly
general sense. This concept of scalar product was introduced by S. Lojasie-
wicz [5] by making use of the concept of the value of a distribution at a
point. We have shown in [12] that ST exists if and only if S*(aT)y, a e 2),
when restricting it to a neighbourhood of 0 which may depend on a, is a
bounded function continuous at 0. Thus S*(αΓ)v, a e 2), has the value at 0,
which we denote by (S*(aT)v) (0). But, if we require only that the value
(S*(aT)v)(0), αe2), exists, the multiplicative product ST need not exist.
However, if we then define after S. Lojasiewicz the scalar product <S, aT>
by the equation

then since the linear form α-><S, aT> is continuous on 2), it will be
natural to define a multiplicative product S X T by the equation

= <S, aT>, a e 2),

where the left side of the equation denotes the scalar product between the
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spaces 2)' and 2). We can show that in this case SXT coincides with SOT.
This is a special instance of a more general result (see Theorem 2). A
necessary and sufficient condition in order that SOaT may exist for every
a e & is given (Theorem 2 and Proposition 9).

§ 1. Supplement to the previous paper [12].

We denote by Q>'(RN), or simply by 2)', the space of distributions S, T,
• defined on iV-dimensional Euclidean space RN. Q)r is the strong dual of
2), the space of infinitely differentiable functions with compact support in
RN. We denote by &' the space of distributions on RN with compact support.
&' is the strong dual of the space S of infinitely differentiable functions on
RN equipped with the usual topology. Unless otherwise stated, the symbol
< , > is, used to denote the scalar product between 2)' and 2), or between
<§' and <S. We understand by ST the multiplicative product of S and T in
the sense of Y. Hirata and H. Ogata ([3], p. 151), or equivalently in the sense
of J. Mikusiήski ([8], p. 254). We have shown in [12] (p. 229) that ST exists
if and only if there exists for any given a e Q) a neighbourhood U of 0 in RN

on which aS*T is a bounded function continuous at 0, or more precisely
speaking, the restriction of aS*T to U is equivalent to a bounded measurable
function continuous at 0. U may depend on α, and <ST, a> = (aS*T) (0),
where the right side denotes the value of distribution aS*f at 0 in the sense
of S. Lojasiewicz [5]. Let us denote by L°°(U) the Banach space of bounded
measurable functions defined on U with the usual norm. If K is a compact
subset of RN, then Q)κ will stand for the space of functions in 2) with sup-
ports contained in the same K. We note that Q)κ is a space of type (F).

For our later purpose we show

PROPOSITION 1. // ST exists and K is a compact subset of RN, then there
exists a neighbourhood U of 0 in RN such that the restriction of aS*T, a e Q)κ,
to U is an element of L°°(U). The linear map a->aS*T of Q)κ into L°°(U) is
then continuous.

PROPOSITION 2. // ST exists and K is a compact subset of RN, then there
exists a neighbourhood U of 0 in RN such that the restriction of aS*(βT)v,
α, /? e 2)#, to U is an element of L°°(U). For such a U the bilinear map (α, /9)->
aS*(βT)v of Q)κxQ)κ into L°°(U) is then continuous.

We shall here give the proof of Proposition 2 since the proof of Proposi-
tion 1 will be carried out along the same line.

Proof of Proposition 2. Let us denote by Ek,# for a positive integer h
and βeQ)κ the set of all a e Q)κ such that the restriction of aS*(βTy to
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5(0, ——) is an element of L°°(5(0, ——) ) whose norm does not exceed kr

k \ k /
where generally B(x, r) denotes the open ball with center x and radius r > 0.

Eh,β is a closed convex subset of Q)κ. Evidently it is a convex subset of Q)κ.

We shall show that it is closed. Consider any sequence {an}, an e Ek,β, con-

verging in Q)κ to a. Then for any φ e Q)B(O,±)>
 w e have because of the

definition of Ek,β just mentioned

Passing to the limit as n^oo^ we obtain

\<aS*(βT)\φ>\<k\ \φ\dχ forany φ e Q)miy

Consequently, the restriction of aS*(βT)v to 5(0, ——) is an element of
k

L°°(5(0, — ) ) whose norm does not exceed k, that is, a e Ekfβ, as desired.
\ fc J

It follows since ST exists that any a c Q)κ is an element of some Ek,β, that
OO

is, ζΰκ=\jEk,β. Q)κ is a space of type (F). Owing to Baire's category
1

theorem some Ek,β must be a zero neighbourhood of Q)κ-
Let {ilk} be a fundamental system of zero neighbourhoods of Q)κ. Let

us denote by Fk the set of all β e Q)κ such that the restriction of aS*(βT)v

to 5(0, -y—) is for every a e <Uk an element of L°°ίi3(0, -—) ) with norm
—

From the first part of the proof we see that any β e Q)κ is an element
of some Fk- As before we can show that Fk is a closed convex subset of Q)κ.
Therefore, applying again the category theorem, we can conclude that there
exists a neighbourhood U of 0 in RN such that for some k the restriction of
aS*(βTy, α, β e Uk, to U is an element of L°°(JJ) with norm <&. Consequently,
we see that the first statement of Proposition 2 holds.

If there exists a U stated in the first part of Proposition 2, the bilinear
map considered there is always continuous. This is an easy consequence of
the closed graph theorem. Thus the proof is complete.

From the preceding proposition we have immediately

COROLLARY. If S, T € & and ST exists, then there exists a neighbourhood
UofOin RN such that the restriction of aS*(βTy, α, β e <§, to U is an element
of L°°(U) and the map (a, β)^»aS*(βTy from <8x<o into L°°(U) is continuous.
There exists for any positive ε a positive δ such that aS*(βTy is for any
a, β c Q)B(X>8) an element of L°°(B(0, ε)).
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If S1 e 2)'(R*0 and S2 e Q)'(RN*\ where NX + N2=N, we denote by Si<g)52

the tensor product of Si and S2, a distribution on RN. By making use of
Proposition 1 we show

PROPOSITIONS. Let Si, 7\ € 2)'(R*0 and S2, T2 e Q)'(RN*\ where N =
NιJrN2. If SiTi and S2T2 exist, then (Si£ξ)S2) (Tι<S)T2) does exist and coincide
with Si7\(g)S2Γ2.

PROOF. For any φ e Q)(RN), we can write

where U M < 1 and {αΛ}, {&,} are bounded subsets of ©(Λ^O and
respectively ([2], p. 51, [9], p. 98).

By virtue of Proposition 1 we can choose zero neighbourhoods UιCRNί

and U2CRN2 such that {(αΛSi)*fi} and {(βnS2)*f2} are uniformly bounded
functions on U1 and U2 respectively. Since

n) (Si (g) S2)) * (21! (g) Γ2) = ( α Λ * 2Ί)

we obtain for any sequence {P; }5 P; e Q)(RN), of regularizations

(1) < (Si (8) S2) ((Γi ® Γ2) * Py), ^ >

f ( f 2 ) ) P y>,

where we may assume that supp Py CUιxU2.
Now there exists a positive constant M independent of n, j such that

I < (a A * ΓO 0 (βHS2 *T2),Pj>\<M\ Pjdx = M.

And

lim < (anS1 * f 0 <g> (βnS2 * f 2), p} >

<S2T2,βn>

since (α»Si * 7Ί) (g) (/?M52 * Γ2) is bounded on b\xU2 and is continuous at 0 in
i?w. Therefore from (1) we have
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lira < (Si (g> S2) ((7Ί <g> T2) * Pj), φ >

which was to be proved.

§ 2. Multiplication in the sense of Tillmann.

Let C be the complex number field with usual topology. According to
H. G. Tillmann ([14], p. 122) we shall denote by H*(C\R) the space of locally
analytic functions g(z) on C\R satisfying an inequality | g(z) \ <M( \z\)\y\~n(lz{)

for all z = x + ίγ, where 0 < | y | < l and M(r\ n(r) are continuous functions
which may depend on g. Let us denote by g£(x) the difference g(x+iε) —
g(x—ie\ where ε is any positive number. Tillmann proved that gε converges
in Q)'(R) to a distribution ^ as e-^0 and the map g-+g of H*(C\R) into
Q)\R) is an epimorphism whose kernel is the space of entire functions. It is
to be noticed that g(z) is analytic in C\suppg . The fact is not explicitly
stated in his paper [14], but is really shown in the proof of Satz 3.3 there.
In accordance with the idea of H. J. Bremermann and L. Durand ([1], p. 251)
he has suggested the definition of multiplication between distributions of
2>'(R) as follows: Let S(z) and T(z) be locally analytic functions of H*(C\R)
which correspond to S and T respectively by the process just mentioned.
A distribution W e 2)'(R), denoted by S J1, is by definition a multiplicative
product of S and T when W is the distributional limit of S€f€ as ε -> 0, or
more generally when the finite part of S€fε (in the sense of Hadamard) exists
and equals W. W, if it exists, does not depend on the choice of 5 and T
corresponding to S and T respectively. We shall concern ourselves mainly
with the case where the distributional limit of S€f€ exists and we denote the
limit by SOT instead of S T to distinguish the case. In the sequel SOT,
if it exists, will be called simply a multiplicative product of S and T in the
sense of Tillmann. If S e &\R)y we define S(z) by the equation:

It is shown in Q13] (p. 77) that 5 is an element of H*(C\R) corresponding
to S.

The generic point of the product, space CN is denoted by z = (zu z2, , zN\
zj£C. Similarly the generic point of RN is denoted by χ = (χu #2, -- ,XN),

1 ^ 1
xj e R. We use an abbreviation for \[ . Let <x = (0Ί, σ2, •-, (?N) be

X — Z 1 Xj — Zj
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any vector, where ΰj = db 1. Then (C\R)N is the open subset with 2^ com-
ponents Gσ={z : ΰj Im ^y>0}.

For any distribution S e &'(RN), we put

as before. Let S'Cz) denote the component of S(z) in Gσ. We define for any
ε > 0 the function S€(x) by the equation:

We can write S€=S*h£, where hB(x) = 3<? converges in

2>'(R") to S as ε->0 ([13], p. 77).
We can define SOT1 for S, T e &r(RN) as in the 1-dimensional case:

SθϋΓ = limS£f6 if the distributional limit exists. However, the fact that,

generally, Ss does not converge in <§(R^\supp S) to zero as ε-*0, causes
some difficulties. For it is possible that S€T€ does not converge to zero in
the case supp Snsupp Γ=0. The example will be given later on. We note
that the analogous statement to Proposition 3 concerning tensor products
holds also for the multiplicative product under discussion. This follows
easily from the definition of multiplication just given.

H. G. Tillmann has developed the representation theory for distributions
on RN of finite orders ([14], p. 117), where locally analytic function S(z) with
certain properties determines the distribution S of finite order as the bound-
ary distribution as mentioned in the case S 6 <§'. Here the map S-+S is not
unique as in the 1-dimensional case. If we attempt to define SOT in the
same way as in the case S, T e <§', we shall be led to some serious difficulties.
It occurs that Sets does not converge to zero even in the case S = 0.

EXAMPLES. Consider the case N=2. Let S, T be the Dirac measures
concentrated at point (1, 0) and (0, 0) respectively. We obtain

1

To carry out the estimation of S£Tε it is convenient to note that, in the
case N= 1, we have for the Dirac measure d and for any φ e Ω)(R)
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(i)

(2)

as ε—•().

By making use of these relations we obtain

as

This is an example which shows that SεTε does not converge in 2)' to zerc
as ε->0 in case that supp Snsupp T = 0.

Now let S = 0 = 0(g)δ and let T be the same as above. Then S(z) =

-~^~-. Therefore S€(x) =—£±?-—. Then we obtain because of (1)
Δπi z2 π (%2 + ε )

as

This is an example which shows that S€f6 does not converge in 2)' to zerc
even when S = 0.

The first example shows also that, for 5, Γ e &(RN\ N>1, even if 57
and SOT exist, they may not coincide. Under certain conditions we can
show that the existence of ST guarantees the existence of SOT and ST =
SOT. From our previous paper ([12], p. 229), we know that if S(rhT) exists
for S, Ta&(RN) and for every translation th of RN, then aS*(βT)v is a
continuous function on RN for any α, /? e <8. In such a case the existence of
S71 will imply the existence of SOT as the following proposition shows.

PROPOSITION 4. Lei 5, T € S'(RN). If ST exists and S*(/?71)v, β e 8, is a
bounded function on RN, then SOT does exist and coincide with ST.

PROOF. From the assumptions it follows that S*T is a bounded func-
tion with compact support and is continuous at 0. Let φ be any element of
2). Let a e 2) be equal to 1 on a sufficiently large ball with center origin in
such a way that a — ά, 0 < α < l and ((supp 5 W supp Γ) + supp (1 — α)) A supp φ
= 0. We then obtain, because of the fact that (S * (1 — a) hs) φ = (T* (1 — a) h6) φ

<3eT€, φ> - <(S*ah£) (T*ah6), φ>.

Our aim is to show that \im<5εT€i φ> = <ST, φ>. To this end we evaluate

the right side of the equation. Since S*ahε, T*ahε are of compact support
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we may assume that φ is periodic with period 21 for each coordinate with a
sufficiently large L Then we can write

where _̂] | cm | (1+ | m \ )k < oo for any integer h > 0.
Now we obtain

<(S*ahε)(T*ahε\φ>

where we put gm>€ — ahe*e~xΊ<m"x>ahε.

We shall show that (i) the set {(S*gm>ε)T}m>ε is bounded in &' and that
(ii) (S*gm>ε)T converges in <§' to 571 as ε-^0. Suppose these are true. We
can then find an integer &>0 and a constant M such that

I <(s*gm,e)τ9 en<m>x>>

Consequently, since ^] |c w | (1 + \m\*)<oo? the series

is normally convergent where each term is considered as a function of ε.
And

lim <(S*gm,£)T, eiΊ<m>*>> = <ST, eiπι<m'x>>.

Therefore we have

as desired.

Now we shall turn to the proof of (i) and (ii). To begin with, we note
that
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\ \gm,ε\dx<ly

£-+0

lim \ I βm s I dx = 0 for any positive δ.
€^Q J | X | > δ

Let β be any element of <§. Then

<(S*gm.€)T9 β> = <S*(βT)\ g-m,e>.

If we remember that S*(βT)v is a bounded function and is continuous at
origin, we can confer with the aid of the properties of gm>s noted above that

\<(S*gm,e)T,

where the constant Mi depends on β, but not on m, e, and that

#w,£) Γ, β> = (S*(βTy) (0) = <ST,
€-+0

Thus the proof of Proposition 5 is complete.
In the statement of Proposition 4, if we take N = 1, the condition imposed

on S*(βT)v may be omitted. This follows from the fact that S(z) is analytic
in C\supp S as the proof of the following proposition shows.

PROPOSITION 5. Let S, Te &'(R). If ST exists, then SOT does exist and
equal ST.

PROOF. With the aid of a decomposition of unity we can confer that it
is sufficient to show that there exists a neighbourhood B(x> δ) for every x e R
such that lim <S6Te, φ> = <ST,φ> for any φ e 2)5(*,8).

Owing to Corollary to Proposition 2 there exists a positive number δ
such that aS*(βTy is a bounded function continuous at 0 for any α,
β € Q>B(x,3sy Let φ€Q)s(x,sy We take an αe2)j(ίl3ί) such that a=l on
B(x, 2δ). Then (l-a)S*ft* and (l~α)Γ*Ae converge in <§(£(#> 2δ)) to zero
as ε -> 0. We can write

e, Φ> = <(αS*/*£) (aT*h£\ Φ>

+ <aS*h6, ((l-a)T*h€)φ>

+ <T*h6,((l-a)S*h€)φ>.
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Consequently, we can confer that lim <SεTε, φ> = <ST, φ> if we can show

that Um<(aS*hε) (aT*hε\ φ> = <ST, φ>. But a is taken so that ctS and
£-•0

aT satisfy the conditions of Proposition 4. Therefore

lim <(aS*hδ) (aT*hε\ φ>
ε-+o

(aT), φ> = <a2ST, φ>

which was to be proved.

§ 3. Comparison between the two definitions on multiplication*

Hereafter we assume that N = 1.

PROPOSITION 6. If S,TeQ)f and ST exists, then ST = lim 5£Γ=lim ST€.

PROOF. First assume that S is of compact support, that is, S e &'. Then
we have for any φ e 2)

lim <56T, φ> = lim <(S*hε)T, φ>
ε-+o ε-^o

v, hε>

where we used the fact that the restriction of S*(φT)v to a neighbourhood
of 0 in R is a bounded function continuous at 0.

Next we turn to the general case. Let / be any open interval. We choose
a e 2) so that a takes the value 1 on /. Put Si = aS and S2=S—Sι. Then
we can write for any S corresponding to S

where S2(z) is analytic in C\(R\I).
Consequently, (S2)εT converges in 2)'(I) to zero as ε->0. Now using the

first part of the proof we obtain for any φ e ©(/)

lim <SεT, φ> = lim <(5i)£Γ, φ>
ε-*o ε-+o

= <aST,φ> = <ST,φ>.
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Since / is arbitrary, we have Ίim SεT=ST. Similarly for lim Sfε = ST, com-

pleting the proof.
In the preceding proposition, if we do not assume that ST exists, it may

occur that lim5£Γ, limST^ and lim Set€ exist, but differ from each other.
£->o

For example, let S=δ and Γ = Pf—. Then S(z) = - - ί - , f(z) = A- for
x 2πίz 2z

Im z >0 and - - - - - for Im z<0. By calculation we shall have lim S€T =
Δz £-»o

-δ\ limSΓ6=0 and lim S £ ? £ = - ~ δ ' .

With the aid of Proposition 5, and by proceeding in the same way as in
the proof of the Proposition 6, we have

THEOREM 1. If S, Te2X and ST exists, then SOT does exist and
coincide with ST.

PROOF. Let / be any open interval. Choose a € Q) as in the proof of
Proposition 6. Put S1 = aSy S2=S-SU Tλ^aT and T2 = T-Ti. Since each
of (S2)ε(T1)e, (52)6(f2)e and (Sι)£(T2% converges in ©'(/) to zero as ε->.0,
it follows from Proposition 5 that S€T€ converges in ©'(/) to ST as ε->0.
Now / is arbitrary. Therefore we obtain SOT = lim S€fε=ST, which was
to be proved.

REMARK 1. S is an element of S if and only if SOT exists for every
T e 2)', or more generally for every T e §'. Indeed, if S 6 <§, then ST exists
for every Te 2)', and therefore SOT does exist by Theorem 1. Conversely,
assume that SOT exists for every T e &\ then for a fixed S corresponding
to 5, we have

SOT = lim (S)6(T*he).

Since the map T-+(S)6(T*h€) from & into Q)' is continuous and & is bar-
relled, it follows from a theorem of Banach-Steinhaus that the map T->SOT
of <S' into 2)' is continuous. Then for any 0 6®, there exists an element
f(φ) e & such that for every Te&

If T happens to be an element a e 2), then from the equation we have

<φS, a> = <SOa, φ> = <f(φ), oc>.

Consequently, ^5 —f(φ) £ δ, which shows that S e δ, as desired.
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REMARK 2. S(z) and f(z) are analytic in C\supp S and in C\supp T
respectively, so S£Tε converges in 2)'(R\(supp SΆsupp T)) to 0. Therefore,
if SOT exists, then supp 5O7XsuppSAsupp T. This support theorem is
also valid for ST as easily shown from the relation a(βT) = (aS)T = S(aT\
aeS. Assume that xOT = 0 and SOT exists for every SeL1. Then T
must be zero. In fact, since xT = xOT = 0, it follows that suppTC{0}.
Consider the map S-+SOT of L1 into 2)' which will be continuous as easily
shown. From the support theorem just noted, SOT is of the form SOT =
ao(S)δ + α1(S)ί' + ... + an(S)δ(n). Then aj being a continuous linear form on

L1, we can write aj(S) = \gj(x)S(x)dχ, where g; e L°°, j = 1, 2, , n. If we

take 5 for any φ e 2) such that 0 £ supp 0, then aj(φ) = 0. This implies that
gj= 0, that is, SOT = 0 for every S € L1. Putting 5 = 1, we see that T = 0,
as desired. As a result we see that if xOT = 0 and SOT exists for every S
with the form S = F'\ F being a continuous function, then T must be zero
(compare with Satz of [4J, p. 392).

The following remarks are related to the axioms of H. Kδnig [4] as
explained in the introduction.

REMARK 3. We have shown in [12] (p. 225) that if ST exists, then (aS) T
and S(aT) exist also for any ae& and the relation (aS)T = S(aT) = a(ST)
holds. The statement is not true in general for SOT. In fact, if we take

S=Pf-V, T = δ\ then SOT= L p f * But (xS)OT and Sθ(χT) do not
XΔ ΔTCl ΛΓ

exist. On the other hand, if we take S = δ and Γ = Pf—, then SOT =
x

--1-S' (D3, P 251). But, for any a e <S, (aS)OT = --^°-V and α(SθΓ) =

-ί-α'CO)*--4-α(0)ί r , so that (aS)0Tφa(S0T) for α e g such that

REMARK 4. We have shown in [12] (p. 229) that if S^f~ exists, then
ax

sτ^dS_τ exist and -4~(ST)=~—T^S^. The statement is not true in
ax ax ax ax

general for the multiplication in the sense of Tillmann. In fact, if we take

S^Pf-1- and T=Y (Heaviside function), then Sθ^~= - I δ' but -β- OT
x ax Δ ax

does not exist. However, it is easily seen from the definition that if SOT

and SO^f- exist, then dSoτ exists and -f-(SθΓ) = d

Ί

S -OT + SO ~~
ax ax ax ax ax

holds.

When S is a tempered distribution, we use the notation S to denote the
Fourier transform
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^Sxdx.

Now, let S and T be ^'-composable tempered distributions. It is known
([3], p. 151) that ST exists and 5(S* T) = ST. Therefore, by Theorem 1, we
can also write

LEMMA 1. If S and T are tempered distributions with supports in the
positive real axis, then S and T are y'-composable.

PROOF. Let φ, φ be any elements of 2), and x be any element of y.
Consider the expression

(1) (S*φ)(x)(T*φ)(y)x(x + y).

Since 5*0, T*φ belong to 0M, there is a positive integer k such that we have
for a constant M

(2) |(S*tf)(*)|, \(T*φ)(x)\<M(l+\x\)k.

On the other hand, since % is an element of y, there is a constant Mi such
that we have

(3) (l+M^Mxtol^M!.

Since the supports of S*φ and T*φ are limited on the left side of the real
axis, we can find a constant M2 such that for any #esuppS*0 and
y 6 supp T*φ

(4) (l + | , ; | )( l + | j | ) < M 2 ( l + | ^ + y | ) 2 .

Combining (2), (3) and (4), we can easily find that (1) is an integrable func-
tion in x and y. Therefore S*0, T*φ are ^'-composable, so S and T are
also ([113, P 27), completing the proof.

Let S be a tempered distribution with support in the positive real axis.
Consider the complex Fourier transform

5(C) = [eiζxS(x)dx, Im ζ > 0 , ζ = ζ + iv.

5(C) is analytic in the upper open half plane and S(£ + ̂ )->S in Sf' as v-^0.
It is known ([103, P 75) that 5(0 is slowly increasing in the half plane
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Ifri ζ>0 in the sense that for a positive integer k and a constant M

Therefore if we define 5(ζ) = 0 for Im ζ < 0. Then the locally analytic
function S(ζ) belongs to H*(C\R) and $6(ξ) = $(ξ+iέ) converges in y' to S.
From these considerations we see that if S and T are tempered with support
in the positive axis, then, by Lemma 1, S and T are ^'-composable and

Any tempered distribution S is written in the form

where the supports of S+ and 5_ lie in the positive and negative real axis
respectively. Consider the complex Fourier transforms S+(C)> Im ζ > 0 and
£_(ζ), I m ζ < 0 . The pair (5+(ζ), 5_(C)) is a locally analytic function
e H*(C\R) and determines 5 as a boundary distribution. If we put

then Sε->S in Sf' as ε-»0. Therefore if 5 and T are two ^-composable
tempered distributions, then

£(S*T) = lim S€f€ = §θf.

It is open to us whether we can conclude that S and T are ^-composable
when ST exists, or more generally when §OT exists.

§ 4. The value of a distribution at a point. Scalar product and
multiplication.

Let us recall some definitions and results concerning the value of a
distribution at a point.

After S. Lojasiewicz ([ΊΓ], p. 239, [6], p. 2), the value of a distribution
S e Q)'(R) at a point x0 is defined as the distributional limit

(1)
λ->0

provided that such limit exists. If it exists it is always a constant function
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([7], p. 479, [15], p. 519). The value S(χ0) of S at x0 is defined as the value
of this constant function.

S has the value c at x0 if and only if there exists an open interval / con-
taining x0 such that the restriction S to / is written as DnF = S and

(2) 1 ™ - ^ ^ - = -C, ,
χ^χo yx—xo) n-

where n is a non-negative integer and F is a continuous function on / ([6],
p. 5).

A distribution S is called to be bounded at x0 if the family of distribu-
tions S(λb + x0), O<Λ<1, is bounded ([16], p. 28). This is equivalent to

requiring instead of (2) that , F("x\ is bounded ([16], p. 29).
(x — xo)n

Lojasiewicz has also defined the right (resp. left) hand limit of S at x0

([6], p. 3). S is said to have the right hand limit c for x-+xo+ if the dis-
tributional limit \imS(λx + χ0) exists in a neighbourhood of χ0 for x>x0 and

λ-»0

if it is a constant distribution c. We write lim S = c. He proved in [6]

(p. 5) that for the existence of lim S=c it is necessary and sufficient that there
X~*XQ +

exist a non-negative integer n and a continuous function F in a neighbour-
hood of XQ for x>x0 such that S = DnF and

lim - F(χ) _ c

(x—xo)n n\

Similarly for the left hand limit of S.

PROPOSITION 7. If S e ζbr(R) has the value c at the point x0 e R, then
SθdXo exists and equals cdXo, where dXQ is the Dirac measure concentrated
at XQ.

1 ε
PROOF. We may assume that x0 = 0. d£ = he(x) =•• —w-—„-. Let φ be

It xΔJr£

any given element of 2). We take a e Q) with value 1 in an open interval
/ containing supp φ and 0. Let Sι = aS and S2 = (l — cz)S. Then Si has the
value c at 0. We can write

where S2 is analytic in C\(R\1).
It is clear that (S2)s converges in <§(/) to zero as ε^O, so that

<(S2)£§<c, ^>->0 as ε->0. Therefore it remains to show that <(3i)£dU Φ>^
cφ(0) as ε->0. Now we write Si in the form
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where supp Wr\I— 0 and T is the n-th derivative of a continuous function

F such that l i m ^ ^ = -^-. As before <W£δe,Φ>-+0 as ε-»0. Therefore
+o xn n\xn n\

we have only to show that lim <^Tεdε, <̂ > = cψ(O).

Teds, φ> = <(Γ*Ae)Ae, φ> = <T, h(ψ*hε>.

After a change of variable x-*εx, we can write with h(x)= - —
π x2+l

, hsφ*hε> = (-1)» J- i ϊ f i (h(x)φ(ex)*h(x))wdx

= (-1)" \-*'£φ- xn(h(x)φ(εx)*h(x)y")dx.
j ε x

On the other hand

xn(h(x)φ(ex)*h(x))(n)

= i ] ( - l)n-k (7i-k)! ( ^ Y(χk (h(x)φ (ex) *h(χ)))w

1] (

Now

{xph(x)φ(ex)Jp)

±(

= ± ( p

Similarly for (xqh(x))(q) we have

Since (εx)"φm(εx) is bounded and tends to 0 for fc]>l as ε->0, | Λ;
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<>Ckh(x) for a constant C*. Using Lebesgue's theorem concerning dominated
convergence we obtain

n\

which was to be proved.
For example let S be a locally summable function f(x). If the indefinite

integral I f(t)dt has the ordinary derivative c at the point x0, then /, as a
Jo

distribution, has the value c at x0. Then Proposition 7 shows that fOδXQ =
cδXQ. On the other hand SδXQ exists if and only if 5 is a bounded function
continuous at x0 in a neighbourhood of x0. Of course, there may occur the
case where S has not the value at a point x0, but SθδXQ exists: Yθδ=-^-δ.

LEMMA 2. £(w) δ = 0 /or z = 0, 1, .. . δ(n)θ δ does not exist (a0 δ + ax δ
f

+ . + anδ
{n))Oδ exists if and only if a0 = aλ — = an = 0.

PROOF. We have δ€ = he and (δ^)£=h6

Cn\ Since Γ he^hεx
n+1dχ= 0,

we have for any φ e Q)

k=o
Γ
J - i

as ε -• 0. The first term of the right side of the equation tends to zero as
ε->0 since xn+ιh£

in) and xhε are bounded. After a change of variable x->εx,
we can write

as ε -> 0. If n is an even number 2m, we have
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s, φ>

as ε-»0. If n is an odd number 2m— 1, we have

<hε

C2m~Ώh6, φ>

_ ΦXO) r - h{2«
2m — 1 \

ε J -oo

(2m — l ) !ε J-oo

as ε-*0. Since Γ Qι{τn)fdx, Γ (Λ ( w - 1 } ) 2 ^^0 ? it follows that tf(w)θ£ does

not exist but (ϊ(w) (J exists and equals 0.

Next we show that if (aod + c&i<ϊ/+ + αw5(w))O^ exists then ao = aι =
• •• = βw = 0. Suppose the contrary. Assuming that an Φ 0, we shall deduce
a contradiction. If n is an even number, we choose φ e. 2) such that 0(0) Φ 0
and if TZ is an odd number, we choose φ e © such that 0(0) = 0 and 0r(O)^O.
Then lim | < ( α 0 ^ + + anh6

Cn^)h€, φ> | = °o? whiίSi is a contradiction.

By making use of Lemma 2 we shall show

PROPOSITION 8. Let T be a distribution such that lim T — c+^ lim T — c^.
χ-+-0

Then T-d exists and equals -=-(c+ + cJ)δ. TOS exists if and only if T is

bounded at 0, and we then have

PROOF. If we put S = T- (c+ - c_) 7 then lim 5 = c_ = lim S. Therefore
*-+ + 0 JC—— 0

there exists a distribution i ί such that H coincides with S for xφO and
jff(0) = c_ ([6], p. 15). Then we can write S -H = a0δ + aλδ

r + . + anδ
(n) with

some constants α, and we have

oδ + a1δ
/+ ••• +anδ

(n\
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Since δ(n) δ = O by Lemma 2, Yod=-^-δ and Hθδ = c_δ by Proposition
Li

7, it follows that T δ exists and

Moreover if T is bounded at 0, then α, = 0 for j = 1, 2, ..., 72. Therefore
we obtain

Conversely, if TOδ exists then (aoδ + αi#' + ••. + anδ
{n))Oδ exists, so that

by Lemma 2 we have αf = 0 for i = 0, 1, . , n. Consequently, T is bounded
at 0. Thus the proof is complete.

When S*f exists and has the value at 0, S. Lojasiewicz ([52, p. 241) has
suggested the way of defining the scalar product <S, T> as follows:

<5, Γ>=(5*f)(0).

This mode of defining the scalar product will lead us to define a product SXT
by the equation

provided that <S, φT> exists in the above sense. We note that the linear
form φ-> <S, φT> is continuous on Q). In fact, we can write (S*(φT)v)θδ
= ((S*(φT)v) (0))δ. Now let φ run through any Q)κ, K being a compact
subset of R. We can take a e © in such a way that α takes the value 1 in
a neighbourhood of K such that aS*(φTY coincides with S*(φT)v in a
neighbourhood of 0. Then

(S * (0Γ)v) O δ = (aS * (0r)v) O δ

y)* h€) h£.

Then by virtue of the Banach-Steinhaus theorem, we see that the map
φ-+(S*(φTy) (0) is a continuous linear form on ©.

Consider the case where ST exists. We know that S*(φTyχ is a bounded
function continuous at 0 in a neighbourhood of 0 and <ST, φ> =(S*(φTy)(0).
Consequently, SXT does exist and coincide with ST. Conversely, when one
requires only that S*(φTy has the value at 0 for every 0 6®, we can not
conclude that ST exists. However, SOT exists and coincides with SXT.
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This follows from the following Theorem 2, which contains Theorem 1 as a
special case. The following lemma will be needed for the proof of Theorem 2.

LEMMA 3. Let E and F be spaces of type (F). Let G be a locally convex
space. If a family of separately continuous bilinear maps ua, cc e A, of ExF
into G is bounded at each point of ExF, then {ua}aeA is equicontinuous.

PROOF; Let W be an absolutely convex closed zero neighbourhood in G.
Let Fx= {y e F; ua(χ, y) eW.aeA}. Then clearly Fx is a barrel in F, there-
fore a zero neighbourhood in F. Let {Q9W} be a fundamental sequence of
zero neighbourhoods in F. Put En= {% e E; ua(χ9 y) e W,ae A, for any y e Q9n}.
Then En is an absolutely convex closed subset of E and E = \JEn. Therefore
an En is a zero neighbourhood in E. Thus we see that there exist zero
neighbourhoods U in E and V in F, such that ua(U, V)CW9 a e A.

If SOδ exists and equals cδ, we shall define c as the generalized value
of S at 0 and denote it by S[0~]. Consequently, if S has the value c at 0,
or if S is bounded at 0 and has the right and left hand limits c+ and c_ at

0 respectively and if we put c = -~-(c+ + c_), then c is also the generalized
Li

value of S at 0.

THEOREM 2. If (S*(aTy)θδ exists for every a e 2), then SOT exists.
In particular, if S*(aT)v has the generalized value at 0, then SOT exists
and <SOT, α > = (5*(αΓ)v) [0], a e @.

PROOF. Let K be any compact subset of R and φ be any element of Q)κ.
We choose compact subsets Ku K2CR so that i£ (resp. K2) lies in the interior
of K2 (resp. Ki). Let aλ e Q) be chosen equal to 1 on Kλ so that <XιS*(ψTy,
φ e Q)κ2, coincides with S*(ψT)v in a neighbourhood of 0. Then (αiS*(0Γ)v)θ£
= (S*(0Γ)v)θtf for every φeθ)κ2. Let α2 ^ 2 ) ^ be chosen equal to 1 on
]f. Further, we choose /? e Q) so that ^ ^ ^ and equals 1 in a neighbourhood
of 0. As in the proof of Proposition 5 we have

lim <S6f£, φ> = lim <(α1S*/9A£) {a2T*βhε\ φ>
6-+Q

if the right hand side exists. To estimate the right hand side of the equa-
tion we may assume that φ is a periodic function with period 2/, where I is
taken large enough. We can write

where Σ | c w | ( l + \m\)k<°o for any integer /b>0.
Then we obtain
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(1) < (ajS*βhs) (aiT*βha), φ >

= Σcm<(a1S*βhs)(a2T*βhε),e (m) >

= Σ c m <(αιS*βhe*e(-m)βhe)α2T, e(m)>

On the other hand, it follows from the existence of (α!S*(ψτy)θδ,
φ e Q)κ2, that we have for any z f ^

<(αιS*(φTy)θd,x>

= lim <((α1S*(φT)v)*βhe)βh(, %>
6Q

£ - 0

Consider the family of maps

of Q)κ2 x @ into the complex number field. By virtue of Lemma 3 this family
of maps is equicontinuous. Therefore we have for some positive integer k
and a constant M

Consequently, we have for a constant Mi

^(e(m)α2Ty, βh£*e(m)βh£> 1^1^(1+ \m\fk

Therefore the series ^cm <α1S*(e(m)α2T)v, βhε*e(τn)βhε> is normally con-
vergent and each term has a limit as ε->0. Consequently, it follows from
(1) that <(αιS*βhε) (α2T*βhs), φ> converges as ε->0, that is, SOT exists.

In particular, if S*(αΓ)v has a generalized value at 0 for every α e 2),
then SOT exists by the first part of our theorem. The linear form defined
on & : χ-+(αιS*(xα2τy) [0] is continuous. Therefore we obtain for φeQ)κ

<SOT, ψ> = \im<(α1S*βh€) (α2T*βh€\ φ>
£-+0

) [0]
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Thus the proof is complete.
The existence of SOT does not imply the existence of SOaT, a e S.

However if this is the case, the condition of Theorem 2 is necessary and
sufficient in order that SOT may exist. This follows from Theorem 2 and
the following proposition.

PROPOSITION 9. // SOβT exists for every β € & then (S*(aT)v)θδ exists
for every a e 2).

PROOF. Let K be any compact subset of R and β e 2) be chosen equal
to 1 on K so that βS*(aT)v, a e Q)κ, may coincide with S*(aTy in a neigh-
bourhood of 0. Then βSOaT exists for any a e ζbκ and coincides with
SOccT, Further, we choose β0 e Q) so that βo = βo and equals 1 in a neigh-
bourhood of 0. We have for any φ e Q)

y φ> = Um<(βS*(aTy*βoh£)βoh€, φ>
£0

if the right hand side exists. We may assume that φ is a periodic function
with the same form as in the proof of Theorem 2. Then we obtain

*βoh€) βoh€, φ>

, βohe*e(m)βohe>

(e(-m)aT*βoh£), e(jn)>.

On the other hand, as in the proof of Theorem 2, it follows from the
existence of βSOxT for any % e Q)κ, that we have for any φ e &

I <(βS*0ohe) (xT*βohs), Φ> I <Msup|Z^%|sup|W

with some positive integer k and a constant M. Consequently, we have for
a constant Mi

I <(βS*βoh€) (e(-πι)aT*βQhε\ e(m)> \<Mλ(l + \m\)2k.

Therefore ^cm <(βS*βoh£) (e( — m)aT*βQh^, e(m)> is normally convergent
and \im<(βS*βoh€) (e(-m)aT*βoh£), e(m)> = <Sθe(-m)aT, e(m)>. Con-

sequently, we see that lim <(βS*(aT)v *βoh£)βohe, φ> exists. Therefore

(S*(aTy)θδ exists for every a e 2). Thus the proof is complete.
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