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I. Introductions Throughout this paper D will denote an integral
domain with 1^0 and quotient field K. An ideal A of D is called a valuation
ideal provided there exists a valuation ring Dv such that DCDvCK and
ADvr\D=A ([10; 340]). Denote by Q the set of primary ideals of D, by 09 the
set of valuation ideals of D, by d the set of semi-primary ideals of D, (i.e.
ideals with prime radical) and by Φ°P the set of prime powers of D. The
significance of the various containment relations between these classes of
ideals has been investigated in [1], [2], [5], [6] and [8]. The notion of
valuation ideal can be generalized by replacing the valuation ring Dυ in the
above definition by other types of domains, e.g., Prϋfer domains, almost
Dedekind domains, Dedekind domains, rank one valuation rings, and rank
one, discrete valuation rings (which are the generalizations considered in this
paper). The purpose of this paper is to investigate certain of the containment
relations between the classes of ideals obtained in this manner and the classes
listed above. We will usually follow [9] and [10] in matters of notation and
definitions. Containment will be denoted by C and proper containment by
<. An ideal A of D is proper provided (0)<A<D.

II. Preliminaries. A domain D is called a Prύfer domain provided Dp

(the quotient ring of D with respect to the prime ideal P, [9; 228]) is a
valuation ring for each proper prime ideal P in D, (see [1], [11; 554], [12;
127], and [13]) and is called an almost Dedekind domain provided Dp is a
rank one, discrete valuation ring (i.e., a valuation ring which is a Dedekind
domain) for each proper prime ideal P in D (see [3] and [7]). An ideal A of
D is a Prϋfer ideal if there exists a Prufer domain / such that DCJCK and
AJί\D = A. Almost Dedekind ideals, Dedekind ideals, etc.. are defined in an
analogous manner. Denote by φ, 2), and /J, the set of Prufer ideals, Dedekind
ideals, and almost Dedekind ideals, respectively of the domain D.

In Section III necessary and sufficient conditions are given in order that
ΦCQ, $> = Q, @Cd, 9 = β,τ4Cd,j4 = d, φc@Φ. Furthermore, it is shown
that D is Dedekind if and only if each proper ideal of D is a Dedekind ideal.
In Section IV it is shown that D is almost Dedekind if and only if Q C© and
proper prime ideals of D are maximal. Also, the prime ideal structure of D
is studied in case that
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III. Some relationships between <2, #>, d, A and

THEOREM 3.1: ΦCO. in a domain D if and only if there exists only one
proper prime ideal in D.

PROOF: If there exists only one proper prime ideal in D, then every
ideal in D is primary, hence Pruf er ideals are primary. Conversely, if Prίίfer
ideals are primary, then valuation ideals are primary and hence the proper
prime ideals of D are maximal (£1; thm. 3.1]). Suppose Pi and P2 are distinct
maximal ideals of D. There exist valuation rings Vι and V2 containing D and
contained in K, with maximal ideals Mi and M2 respectively, such that
M1r\D=P1 and M2Γ\D=P2. If V\ C V2, then M2r\Vι CMi since Mi is maximal
in Vι and hence P2CP\ Since P2(tPι we see that VιCtV2 and in a similar
manner V2CtVι. We set Vxr\V2=J, then Mxr\J=Qi and M2r\J=Q2 are the
only maximal ideals in / and JQχ — Vu JQ2 = V2 [14; 38], hence / is a Prufer
domain. Furthermore, Qx and Q2 are distinct since neither Vi nor V2 is
contained in the other. We have P1ΓΛP2 = (QιfΛD)r\(Q2r\D) = (QιΓ\Q2)r\D is

a Prufer ideal, hence \lPιΓ\P2~=PιΓ\P2 is maximal. Therefore PiC^2 or
PzC.Pi. This contradiction establishes the converse.

THEOREM 3.2: §>=Q if and only if Ώ is a rank one valuation ring.

PROOF : Let D be a rank one valuation ring, then D has only one proper
prime ideal, hence ΦCQ by Theorem 1. Since every ideal of D is a Prufer
ideal, QCΦ, whence Φ — Q. Convervely, suppose Φ — QL. By Theorem 3.1,
there exists only one proper prime ideal M in D, therefore every ideal of D is
primary, hence Prufer. If A is an arbitrary proper ideal of ΰ, let / be a
Prufer domain such that A Jr\D=A. Let C denote the set of maximal ideals
in /, then J=Γ\JM and A-J=r\A-JM [10; 94], where each A JM is valuation

MfC Mec

ideal since JM is a valuation ring for each proper prime ideal M of /. There-
fore A=A JΓ\D=(Γ\A JM)Γ\D=Γ\(A'JMΓ\D) where each A JM/ΛD is a valuation

Mec M€C
ideal in D. Therefore every proper ideal of D can be expressed as the
intersection of valuation ideals, hence D is a Prufer domain [1; thm. 2.2].
Since D=DM> D is a rank one valuation ring.

THEOREM 3.3: In a domain Z), §> C c5 if and only if the prime ideals of D
are chained.

PROOF: Suppose $> C c$ and let Pi and P2 denote arbitrary prime ideals
of Zλ Let Vι and V2 be valuation rings, containing D and contained in K,
with maximal ideals M1 and M2 respectively, such that Mιί\D=Pι and
M2r\Ό=P2. If F1CF2, then M2r\VxCMu hence P2CP1. Similarly, V2CVX
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implies PiCP 2 . If VχttV2 and V2c£Vι thenJ=Vii\V2 is a Prufer domain with
maximal ideals Qί = M1ίλJ and Q2=M2Γ\J [14; 38). Now (QiΓ\Q2)r\D=P1r\P2

is a Prufer ideal, thus V P I A P 2 = P I A P 2 is prime. If PiC£P2 and P2c£Pu there
is an element xePu x&P2 and an element y €P2, j $ P i such that ^ePιΓΛP2.
Since neither a nor y is an element of PiAP2, we have contradicted the fact
that P\ί\P2 is Prime. Therefore Pi CP2 or P2 CPi and hence prime ideals in D
are chained. Conversely, if the prime ideals of D are chained, every ideal of
D has prime radical, hence

THEOREM 3.4: In a domain Ό^ — ό if and only if D is a valuation ring.

PROOF: If ^ = d, the prime ideals of D are chained, by Theorem 3.3
Hence every ideal of D has prime radical and is therefore a Prufer ideal,
hence D is a Prufer domain as shown in the proof of Theorem 3.2. Since the
prime ideals of D are chained, D has only one maximal ideal M, hence D=DM

is a valuation ring. The converse is obvious.

THEOREM 3.5. If the prime ideals of D are almost Dedekind ideals, then
if and only if the prime ideals of D are chained.

PROOF. If the prime ideals of D are chained, then §> C d by Theorem 3.3,
hence j4CcS. Conversely, if ^JCd, let PφQ be arbitrary proper prime ideals
of D. Let / and / be almost Dedekind domains contained in K with the
property that P Jr\D=P and Q-fr\D = Q. Let M=D\P, then clearly P-DMC

P-JMΓ\DM. Let xeP-JMr\DM. Then χ=α(—) = — where d ej, α € P, r 6 D,
\ m J n

and m, ne M. Therefore ϊi α-d—r m and n α d e P /, r m e D, so r m e P JΓΛD = P.

Since m, n€ M, then e DM, hence r ml ) = -̂ — =x e P DM- Therefore
m n \m n/ n

P DM = P'JMΓ\DM and in a similar manner Q DN = Q Jf

NίλDN where N=D\Q.
Now P DM is the unique maximal ideal in DM so there exists a maximal ideal
R of JM, such that P-JM CR and Rr\DM=P-DM Therefore Rr\D = (Rr\DM)r\D
=P-DMΓ\D=P. Similarly, there exists a maximal ideal 5 in J'N such that
Q-JN CS and Sr\D = Q. Since the domains JM and fN contain/ a n d / respec-
tively, they are almost Dedekind domains [7; thm. 1.3]. Therefore (JMR and
(J'NX a r e discrete rank one valuation rings and unequal since PφQ. If either
(JM)RC(JN)S

 o r
 (J'N)S^(JM)R9 the theorem would be proved since then QCP or

PCQ' 'We assume that neither containment holds, hence T=(JM)Rr\(J'N)s is a
Prufer domain with exactly two maximal ideals [14; 38]. Furthermore, T has
no other proper prime ideals since both (JM)R and (J'N)S are discrete, rank one
valuation rings, hence T is an almost Dedekind domain. Therefore (Rr\T)r\D
=P, (Sr\T)r\D = Q, and {(Rr\T)r\(Sr\T)} r\D=Pr\Q are almost Dedekind
ideals. Since ^?Cc5, then Pr\Qe/} implies PCQ or Q C P This completes
the proof.
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We remark that prime ideals are not necessarily almost Dedekind ideals-
eg. the maximal ideal of a rank one, non-discrete valuation ring.

THEOREM 3.6: // j4 = d in a domain D, then D is a valuation ring.

PROOF: The prime ideals of D are almost Dedekind ideals since
Then j4Cd implies prime ideals are chained, by Theorem 3.5. Therefore,
every ideal in D has prime radical, in particular ίPCd. Now j4 = S implies

hence Φ — ό. By Theorem 3.4, D is then a valuation ring.

THEOREM 3.7. In a domain Dy Φ C ΦΦ if and only if D is contained in
only one valuation ring, it being P-adic for some prime ideal P of D.

PROOF: If ^ C ^ Φ , then 09 C ^ , hence Q$ = φφ and D is one-dimen-
sional [2; cor. Γ]. Furthermore, ΦCΦΦ implies ίPCd, thus the prime
ideals of D are chained, by Theorem 3.3. As a consequence, D has only one
proper prime ideal, and since every valuation of K, finite on D, is P-adic for
some prime ideal P of D [2 thm. 1] then there exists only one valuation ring
V between D and K. Conversely, if D is contained in only one valuation ring
V, it being P-adic for some prime ideal P of D, then D has a unique proper
prime ideal. Therefore QPCίPίP [2; thm. 1]. Now let. A be any Prίifer ideal
in D and let / be a Prύfer domain with the property that A Jr\Ό=A. Since
/ lies between D and J£, there is only one valuation ring containing /, hence
Jp is the same valuation ring for every prime ideal P in /. Therefore / is a
valuation ring, hence A is also a valuation ideal, thus ^ = 09. This equality
with 09 C ΦΦ gives §> C ΦΦ to complete the proof of the theorem.

THEOREM 3.8: A necessary and sufficient condition that D be a discrete,
rank one valuation ring is that D be integrally closed and

PROOF : By Theorem 3.7 D is contained in only one valuation ring V, it
being P-adic for some proper prime ideal P of D hence V is discrete and rank
one. The intersection of all valuation rings of K containing D is the integral
closure of D in K, hence D=V since D is integrally closed in K. Conversely,
if D is a discrete, rank one valuation ring, it is clear that D is integrally
closed and

THEOREM 3.9. // every proper ideal of D is a Dedekind ideal (not neces-
sarily for the same Dedekind domain), then D is a Dedekind domain (and
conversely).

PROOF : If A and B are proper ideals of D, let /i and J2 be Dedekind
domains such that A J1r\D=A and B-J2ίΛD=B. In/i, we have AJι=Pe

1

1^--'Pe

n

n
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where P, is a prime ideal of JΎ and e, is a positive integer, for each ί. Let

/ ? = Λ ( / I ) P . . We wish to show t h a t A-Ji = (A-Ji) JΪπ/i Clearly A Λ C U Λ >

JΐrJt. Now J Λ =Pf> . . .p = P f A . . . Λ/*;« = {(PV ••• Pe

n

n) ( / O Λ A / I } A ...

A {(Pj>- • 'Pe

n"HJ,)pnr\h] = {(A'JiXίύp, A/} A. . . A { U / I ) (Λ)P K Λ/i} = A {U /i>
ί = 1

(/OP.-A/J = {AU /O αO^.} A/i^U-/i>{AC/i)/'<> A / I = (A'Ji) Jί A/i. These
i = 1 ί = 1

two containments give A Jι = (A Jι) J*Λ/i In a similar manner we get a
Dedekind domain /* such that B J2 = (B J2) J2r\J2. We will show that / =
7? A/* i s a Dedekind domain by showing that the intersection of any finite
number of discrete, rank one valuation rings containing D and contained in
K is a Dedekind domain. The proof of this fact is by induction, we will give
the proof for the intersection of two such valuation rings. Let Vι and V2 be
distinct discrete, rank one valuation rings containing D and contained in K.
As shown in the proof of Theorem 3.1, VΎr\V2—R is a Prϋfer domain with
exactly two maximal ideals, namely MiίλR and M2ί\R where Mi and M2 are
the maximal ideals of V\ and V2 respectively, and R(M1DR)=VI

 a n ( i -ft(M2n#)~ ̂ 2,
hence R is an almost Dedekind domain. There exists xeM\f\R, x&M2r\R,
hence V(» =MιΓ\R. Therefore, (x) is a power of Mxr\R since R is an almost
Dedekind domain [Ί; thm. 1.1]]. Then (x) = (M1r\R)n for some positive integer
72, hence (MiίλR) is invertible since (x) is invertible [β; 272]. In an analogous
manner, we can show (M2r\R) is invertible, hence R is a Dedekind domain
since every proper prime ideal of R is invertible pL5; 33]. Since both/f and
/* are finite intersections of discrete, rank one valuation rings, then J=Jfr\J*
is a Dedekind domain. Furthermore A~A Jr\Ό and B=B Jr\D. We have
shown that any pair of ideals in D are Dedekind ideals for the same Dedekind
domain. Now if CφO is an ideal of D such that AC=BC, then (AC)-J=(BC)-J,
hence (-4 /) (C /) = (B /)(C /), thus (A-J) = (B J) since the cancellation law for
ideals is valid in a Dedekind domain. But then A=A Jr\D—B'JΓ\D = B, thus
the cancellation law for ideals is valid in Z), hence D is an almost Dedekind
domain [_4Γ\. Let A be an arbitrary ideal of D, then if Λ is a Dedekind domain
such that A-JιΓ\D = A, we have i / ^ P f A AP? as stated earlier. Then
A=(Pl1ί\D)r\ - ίΛ(Pe

n

nr\D) where each (Pfr\D) is a primary Dedekind ideal.
We assume that this representation is reduced so that (Pe

k

kr\D)Ct(Ppr\D) for
any kφj. Now since D is almost Dedekind, each (PfrxD) is a prime (maximal)
power [Ί; thm. 1.1]. For each ίy let Pfr\D = Mf

i

i where Af, is a maximal ideal
of D and /,- is a positive integer, then A=M{1Γ\ Γ\Mζ» = M{1 > M{» since
the Λf{* are pairwise comaximal [9; 177]. Therefore A is the product of prime
ideals, hence D is a Dedekind domain.

IV. Some consequences of 2)} G, ΦΦ C % and d C 09.

THEOREM 4.1. A domain D is an almost Dedekind domain if and only if
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Q C 2) ami proper prime ideals of D are maximal

PROOF: Suppose <2C® and proper prime ideals of D are maximal. Let
P be an arbitrary proper prime ideal of D and form the quotient ring Dp.
Then PDP is the only proper prime of Dp since proper prime ideals of D are
maximal. Furthermore, if Q is any P-primary ideal in D, then Q DP is
primary in Dp. If R is a Dedekind domain such that DCRCK and Q'Rr\D=Q,
we can prove, as in Theorem 3.5, that Q Rpr\Dp=Q Dp. Therefore Q DP is
also a Dedekind ideal, and hence every ideal in Dp is a Dedekind ideal, thus
Dp is a Dedekind domain by Theorem 3.9. Now Dp has only one proper prime
ideal, hence is a discrete rank one valuation ring. Therefore D is an almost
Dedekind domain since P is arbitrary. Conversely, if D is an almost Dedekind
domain, then proper prime ideals of D are maximal. If P is an arbitrary
proper prime ideal of D, then Dp is a Dedekind domain, and if Q is any P-
primary ideal in D, we have Q=Q Dpr\D, hence (2C®.

LEMMA 4.2. // Pi>P2 are prime ideals of D, then there exist prime ideals
P and P* such that Pι^>P>P*^>P2 and there are no prime ideals properly
between P and P*.

PROOF: The proof of this lemma is an easy application of Zorn's lemma;
see [8; lem. 1].

LEMMA 4.3. If R is a valuation ring and P is a proper prime ideal of R
such that P is the only P-primary ideal of R, then P=P2. Furthermore, if {Pa}
denotes the set of prime ideals properly contained in P, then P~ UPα.

a

PROOF: Suppose PφP2, then r\Pn=P* is a prime ideal since each Pn is a

valuation ideal for each n [1; lem. 2.10]. Thus P>P* and if Pi is any prime
ideal with the property that P^P^P*, then either PnCPi or Pn>Pu for
each positive integer n. We consider the following two cases either 1) Pλ ̂  Pn

for some n, or 2) Pn>Pλ for all n. In case 1), P=VP^CPi implies P=Pi, and

in case 2), PX=P* since then P x C n P ^ P * . Therefore, if P>Pλ>P*, then
n = l

P=Pi and there are no prime ideals properly between P and P*. Then P* is
the intersection of all P-primary ideals in R [1; thm. 3.3], but this contradicts
the hypothesis that P is the only P-primary ideal of R. Hence P=P2. For
the second part of the lemma, we consider two cases either 1) there exists a
prime ideal Px such that Pi<P and there are no prime ideals properly between
Pi and P, or 2) there exists no prime ideal statisfying case 1). If dase 1)
holds, then Px is the intersection of the P-primary ideals [1 thm. 3.3], hence
Pi=P and therefore case 1) cannot hold. Since case 2) must hold, we let {Pa}
denote the set of all prime ideals of R which are properly contained in P. All
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the ideals of R are chained, hence \JPa is a prime ideal and contains each Pay

a

thus P=\JPa.
a

oo

THEOREM 4.4. If φφ C *-$ and if P is any prime ideal of D, then r\Pn=P*
n = \

is a prime ideal. Furthermore, if {Qa} denotes the set of P-primary ideals of
D, then P*D AQα.

a

PROOF: The first part of the theorem is a special case of [1; lem. 2.10]].

If P is an idempotent prime ideal, then r\Pn=P*=P^ fΛQa. If P is not

idempotent, let n denote an arbitrary integer larger than one. Now Pn is a
valuation ideal by hypothesis, so there exists a valuation ring RV^D such

that Pn-Rvr\D=Pn. Furthermore, \lPn-Rv=Pv is a prime ideal of Rv and Pvr\D
=P. Thus every Py-primary ideal of Rv contracts to a P-primary ideal of Ό.
In Rv, we have either 1) Pn*Rυ contains a P^-primary ideal, or 2) Pn Rv contains
no Pυ-primary ideal. If case 2) holds, then Pn>RvCί~\Qβ, where {Qβ} denotes

β

the set of all Py-primary ideals of Rυ. But r\Qβ is a prime ideal [1; lem. 2.12],
β

thus Pv = \lPn RvCί\Qβ implies Pv= Γ\Qβ. Then Pv is the only Py-primary

ideal in Rv and thus Pv—P\, by the previous lemma. Since \lPn'Rv=Pv, we
have Pn Rv contains every prime ideal which is properly contained in Pv. If
{Pa} denotes the set of prime ideals of Rυ which are properly contained in Py,
then Pn-Rυ^\JPa. But Pv=\Jpa by the previous lemma, hence Pn-Rv=Pv.

a a

Now Pn=Pn RvίλD=Pvr\D = P shows P is idempotent, thus case 2) cannot
hold. Therefore case 1) holds and thus Pn-Rvr\D=Pn contains a P-primary
ideal. The integer n is arbitrary, thus Pn contains a P-primary ideal for
every positive integer 72, and hence P*^ΓλQa where {Qa} denotes the set of

a

all P-primary ideals of D.

THEOREM 4.5. If d C ^ and P>P* are prime ideals of D such that there

are no prime ideals properly between them, then either r\Pn= P or r\Pn=P*.
w = l n=l

OO

PROOF: If P is an idempotent prime ideal, then r\Pn=P. If P is not

idempotent, then r\Pn is a prime ideal by the previous theorem. Further-

more, P* = r\Qa where {Qa} denotes the set of all P-primary ideals in D [1;
a

thm. 3.3]. But the previous theorem also states r\Pn^> r\Qa, so we have

P>r\Pn>Γ\Qa = P*. Therefore P * = A P W .

«=1 a n=\
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COROLLARY 4.6. / / d C ^ and Pi>P2 are prime ideals of Z>, then P\
for all positive integers n.

PROOF: By Lemma 4.2, there exist prime ideals P and P* such that
Pi^>P>P*7)P2, and such that there exist no prime ideals properly between

oo oo

P and P*. By the previous theorem, we have either r\Pn=P or r\Pn = P*>
n=l n=l

thus Pn

1'}Pn>P*>P2 for all 7i.

THEOREM 4.7. // d C 09 and P is a prime ideal of D with the property
that if P' is any prime ideal such that P*>Pr then there is a prime ideal
properly contained between P and P', then P—P2.

PROOF: By the previous corollary, Pn>P' for all n, hence
n = \

oo

But Γ\Pn is a prime ideal, by Theorem 4.4, and contains every prime ideal

Pf which is properly contained in P. We have, therefore, P^> Γ\Pn and there
n=l

are no prime ideals properly contained between these two prime ideals, hence

P = Γ\Pn and thus P=P2.
n = l

PROPOSITION. 4.8. Let d C 05 and suppose there are no proper idempotent
prime ideals in D. Let Pbea proper prime ideal such that there exists a prime
ideal P* with the property that P>P* and there are no prime ideals properly

oo

contained between P and P*. Then Γ\Pn=P* and if P is auy prime ideal
n = l

such that P>P, then

PROOF: The equality Γ\Pn=P* follows from Theorem 4.5. By Corollary
» = 1

4.6, we have Pn>P for all n, hence P* =

THEOREM 4.9. // d CQ9 and there are no proper idempotent prime ideals
in D, then the ascending chain condition for prime ideals is valid in D.

PROOF: Let Pi<P2<P3< be an ascending chain of prime ideals in D;
then \JP{ = P is also prime. If this chain is not finite, then P>Pj for each /,

i

hence P2>Pj for each /, by Corollary 4.6. Therefore P 2 ^ \JP{ and thus P=P2.
i

This contradiction establishes the ascending chain condition for prime ideals
inZλ

THEOREM 4.10. // όC°$ and if there are no idempotent proper prime
ideals in D, then D is a Prύfer domain.



Some Containment Relations between Glasses of Ideals in an Integral Domain 9

PROOF : By the above theorem, the ascending chain condition for prime
ideals in D is valid, hence the theorem follows from [1; thm. 3.8].

THEOREM 4.11. // semi-primary ideals (i.e., ideals of d) in D are rank
one valuation ideals and if the ascending chain condition for prime ideals is
valid, then D is a one-dimensional Prufer domain (and conversely).

PROOF: It follows that D is a Prufer domain from [1; thm. 3.8]. Let A
denote an ideal of D with prime radical P. Then there exists a rank one

valuation ring Rυ containing D such that A Rvr\D = A and \lA*Rvr\D=P. Let
Pυ denote the unique proper prime ideal of Rυ, then \lA-Rv=Pv, hence A-Rv is
Py-primary in Rv, and A is P-primary. Therefore every semi-primary ideal of
D is primary, so d = Q, and hence proper prime ideals of D are maximal [5;
Cor. 3.2].

THEOREM 4.12. If semi-primary ideals in D are rank one, discrete valua-
tion ideals, then D is an almost Dedekind domain (and conversely).

PROOF : Since prime ideals are rank one, discrete valuation ideals, there
are no proper idempotent prime ideals in D and therefore the ascending chain
condition for prime ideals is valid in D, by Theorem 4.9. By the previous
theorem, D is a one-dimensional Prufer domain, hence proper prime ideals
are maximal. Since rank one, discrete valuation ideals are Dedekind ideals,
the theorem follows by applying Theorem 4.1.
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