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I. Introduction: Throughout this paper D will denote an integral
domain with 140 and quotient field K. An ideal 4 of D is called a valuation
ideal provided there exists a valuation ring D, such that DCD,CK and
AD,ND=A ([10; 3407)). Denote by Q the set of primary ideals of D, by O the
set of valuation ideals of D, by J the set of semi-primary ideals of D, (i.e.
ideals with prime radical) and by 9% the set of prime powers of D. The
significance of the various containment relations between these classes of
ideals has been investigated in [17], [2], [6], [6] and [8]. The notion of
valuation ideal can be generalized by replacing the valuation ring D, in the
above definition by other types of domains, e.g., Priifer domains, almost
Dedekind domains, Dedekind domains, rank one valuation rings, and rank
one, discrete valuation rings (which are the generalizations considered in this
paper). The purpose of this paper is to investigate certain of the containment
relations between the classes of ideals obtained in this manner and the classes
listed above. We will usually follow [9] and [10] in matters of notation and
definitions. Containment will be denoted by < and proper containment by
<. An ideal 4 of D is proper provided (0)<<A<D.

II. Preliminaries. 4 domain D is called a Priifer domain provided D,
(the quotient ring of D with respect to the prime ideal P, [9; 228]) is a
valuation ring for each proper prime ideal P in D, (see [17], [11; 5564, [12;
1277, and [13])) and is called an almost Dedekind domain provided D, is a
rank one, discrete valuation ring (i.e., a valuation ring which is a Dedekind
domain) for each proper prime ideal P in D (see [3] and [7]). An ideal 4 of
D is a Priifer ideal if there exists a Priifer domain J such that DCJCK and
AJND=A. Almost Dedekind ideals, Dedekind ideals, etc... are defined in an
analogous manner. Denote by 9, D, and #, the set of Priifer ideals, Dedekind
ideals, and almost Dedekind ideals, respectively of the domain D.

In Section III necessary and sufficient conditions are given in order that
PCQ, P=Q, P, P=3, ACI, d=J, PPP. Furthermore, it is shown
that D is Dedekind if and only if each proper ideal of D is a Dedekind ideal.
In Section IV it is shown that D is almost Dedekind if and only if QD and
proper prime ideals of D are maximal. Also, the prime ideal structure of D
is studied in case that < CO.
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III. Some relationships between Q, P, J, 4 and P9P.

Tueorem 3.1: P CQ in a domain D if and only if there exists only one
proper prime ideal in D.

Proor: If there exists only one proper prime ideal in D, then every
ideal in D is primary, hence Priifer ideals are primary. Conversely, if Priifer
ideals are primary, then valuation ideals are primary and hence the proper
prime ideals of D are maximal ((1; thm. 3.17]). Suppose P, and P, are distinct
maximal ideals of D. There exist valuation rings ¥, and V, containing D and
contained in K, with maximal ideals M; and M, respectively, such that
M;N\D=P; and M;N\D=P,. If V;CV,, then MonV; C M, since M, is maximal
in ¥, and hence P,CP,. Since P,G P, we see that V&V, and in a similar
manner V,GV,. Weset ViN\V,=J, then MinJ=Q, and M,NJ=Q, are the
only maximal ideals in J and Jo, =V, Jo,=V: [14; 38], hence J is a Priifer
domain. Furthermore, Q; and Q, are distinct since neither V; nor 7, is
contained in the other. We have P N\P,=(Q:N\D)N(Q:N\D)=(Q:N\Q:)N\D is

a Priifer ideal, hence VP ,N\P,=P,NP, is maximal. Therefore P,CP, or
P, CP,. This contradiction establishes the converse.

TureoreMm 8.2: P=0Q if and only if D is a rank one valuation ring.

Proor: Let D be a rank one valuation ring, then D has only one proper
prime ideal, hence 9 CQ by Theorem 1. Since every ideal of D is a Priifer
ideal, QC %, whence P=Q. Convervely, suppose 9=Q. By Theorem 3.1,
there exists only one proper prime ideal M in D, therefore every ideal of D is
primary, hence Priifer. If 4 is an arbitrary proper ideal of D, let J be a
Priifer domain such that 4-JN\D=2A. Let C denote the set of maximal ideals

in J, then J=n’" and A-J=nNA-Jy [10; 947, where each A4/ is valuation
MeC MecC

ideal since Jy is a valuation ring for each proper prime ideal M of J. There-
fore A=A-Jf\D=I(M/\A-JM)f\D= N(A4-JunD) where each A-J,N\D is a valuation
€C MeC

ideal in D. Therefore every proper ideal of D can be expressed as the
intersection of valuation ideals, hence D is a Priifer domain [1; thm. 2.27].
Since D=Dy, D is a rank one valuation ring.

TueoreM 3.3: In a domain D, P C3 if and only if the prime ideals of D
are chained.

Proor: Suppose P CJ and let P, and P, denote arbitrary prime ideals
of D. Let 7V, and V; be valuation rings, containing D and contained in K,
with maximal ideals M; and M, respectively, such that M;N\D=P, and
M,N\D=P,. If ViCV,, then MynV,CM,, hence P,CP,. Similarly, V.V,
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implies P, CP,. If ViV, and V, V, then J=V,NV, is a Priifer domain with
maximal ideals Q;=M;NJ and Q,=M,NJ [14; 38). Now (Q1N\Q)N\D=P,N\P,
is a Priifer ideal, thus VP,N\P,=P, NP, is prime. If P, P, and P,/ Py, there
is an element x € Py, x& P, and an element y € P;, y &€ P; such that xy € PN\ P;.
Since neither x nor y is an element of P1N\P,, we have contradicted the fact
that P,N\P, is Prime. Therefore P, C P, or P, C P, and hence prime ideals in D
are chained. Conversely, if the prime ideals of D are chained, every ideal of
D has prime radical, hence 9 CdJ.

TureoreMm 3.4: In a domain D, P=J if and only +f D is a valuation ring.

Proor: If P=JI, the prime ideals of D are chained, by Theorem 3.3
Hence every ideal of D has prime radical and is therefore a Priifer ideal,
hence D is a Priifer domain as shown in the proof of Theorem 3.2. Since the
prime ideals of D are chained, D has only one maximal ideal M, hence D=Dy,
is a valuation ring. The converse is obvious.

Tueorem 3.5. If the prime ideals of D are almost Dedekind ideals, then
ACS if and only vf the prime ideals of D are chained.

Proor. If the prime ideals of D are chained, then 9 C by Theorem 3.3,
hence 4 CJ. Conversely, if #CJ, let P==Q be arbitrary proper prime ideals
of D. Let J and J' be almost Dedekind domains contained in K with the
property that PJN\D=P and Q-/N\D=Q. Let M=D\P, then clearly P-DyC
P-JunDy. Let x¢€ PJynDy. Then x=a<~%>=% where d¢J, a€P,reD,
and m, n € M. Therefore n-a-d=r-m and n-a-d € P-J, r-m € D, 8o r-m € PJN\D=P.
Since m, n € M, then 1. Dy, hence rm<~1—> =" =xePDy. Therefore

me1n /(341 n

P-Dy=P-Jyn\Dy and in a similar manner Q-Dy=Q-JyN\Dy where N=D\Q.
Now P-D;; is the unique maximal ideal in Dj; so there exists a maximal ideal
R of Jy, such that P-J,y CR and RN\Dy=P-Dy. Therefore RN\ND=(RNDy)N\D
=P-DyND=P. Similarly, there exists a maximal ideal S in J} such that
Q-Jy CS and SND=Q. Since the domains J,, and Jj contain J and J' respec-
tively, they are almost Dedekind domains [7; thm. 1.8]. Therefore (Jy, and
(J)s are discrete rank one valuation rings and unequal since P==Q. If either
() CUn)s or (J3)sC(Jum)y the theorem would be proved since then Q CP or
PCQ. +We assume that neither containment holds, hence 7=(J,,) . N\(Jy)s is a
Priifer domain with exactly two maximal ideals [14; 38]. Furthermore, T has
no other proper prime ideals since both (Ju), and (Jj), are discrete, rank one
valuation rings, hence 7 is an almost Dedekind domain. Therefore (RNT)ND
=P, SNT)ND=Q, and {(RNTINENT)}\D=PNQ are almost Dedekind
ideals. Since # Cd, then PNQ € 4 implies PCQ or QCP. This completes
the proof.
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We remark that prime ideals are not necessarily almost Dedekind ideals-
eg. the maximal ideal of a rank one, non-discrete valuation ring.

TueoreM 3.6: If A= in a domain D, then D is a valuation ring.

Proor: The prime ideals of D are almost Dedekind ideals since <& C 4.
Then #CJ implies prime ideals are chained, by Theorem 3.5. Therefore,
every ideal in D has prime radieal, in particular 9 CS. Now A= implies
JCYP, hence P=J. By Theorem 3.4, D is then a valuation ring.

Tueorem 3.7. In a domain D, P PP if and only if D is contained in
only one valuation ring, it being P-adic for some prime ideal P of D.

Proor: If PCPP, then NVNC PP, hence NW=9P%P and D is one-dimen-
sional [2; cor. 1. Furthermore, 9 C9P%P implies P CJ, thus the prime
ideals of D are chained, by Theorem 3.3. As a consequence, D has only one
proper prime ideal, and since every valuation of K, finite on D, is P-adic for
some prime ideal P of D [2; thm. 1] then there exists only one valuation ring
V between D and K. Conversely, if D is contained in only one valuation ring
V, it being P-adic for some prime ideal P of D, then D has a unique proper
prime ideal. Therefore W C PP [2; thm. 1]. Now let 4 be any Priifer ideal
in D and let J be a Priifer domain with the property that A-J\D=A4. Since
J lies between D and K, there is only one valuation ring containing J, hence
J» is the same valuation ring for every prime ideal P in J. Therefore J is a
valuation ring, hence 4 is also a valuation ideal, thus 9=0). This equality
with VCPP gives P CPP to complete the proof of the theorem.

Tueorem 3.8: A necessary and sufficient condition that D be a discrete,
rank one valuation ring 1s that D be integrally closed and P CPP.

Proor: By Theorem 8.7 D is contained in only one valuation ring 7, it
being P-adic for some proper prime ideal P of D; hence V is discrete and rank
one. The intersection of all valuation rings of K containing D is the integral
closure of D in K, hence D=V since D is integrally closed in K. Conversely,
if D is a discrete, rank one valuation ring, it is clear that D is integrally

closed and P C PD.

TueoreM 3.9. If every proper ideal of D is a Dedekind ideal (not neces-
sarily for the same Dedekind domain), then D is a Dedekind domain (and
conversely).

Proor: If 4 and B are proper ideals of D, let J; and J, be Dedekind
domains such that 4-/;\D=A4 and B-J,ND=B. In J;, we have AJ,=P;.....P¢»
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where P; is a prime ideal of J; and e; is a positive integer, for each ;. Let
JE= é}(]l),:i. We wish to show that A-J;=(4:7)-J¥NJi. Clearly 4], C(4-],)-
JinJ;. Now A-Jy=Pjr...Pr=Ppn... \NPyp=A{Pf--.-Py) (Jp, NI} N -
AP Pim)-()p, N = {(AJDTDe, AT NN Al T)p, N1} = él{(A'.h)'
Ui} = AT N D AP AAUDP} N Jr= (A-T)-JE N1 These

two containments give A-/i=(4-J1)-J¥NJ;. In a similar manner we get a
Dedekind domain J§} such that B-J,=(B-J,)-J¥N\J;. We will show that j=
J¥NJ5¥ is a Dedekind domain by showing that the intersection of any finite
number of discrete, rank one valuation rings containing D and contained in
K is a Dedekind domain. The proof of this fact is by induction, we will give
the proof for the intersection of two such valuation rings. Let V; and V, be
distinet discrete, rank one valuation rings containing D and contained in K.
As shown in the proof of Theorem 3.1, V;N\V,=R is a Priifer domain with
exactly two maximal ideals, namely M;N\R and M,N\R where M; and M, are
the maximal ideals of ¥, and V', respectively, and Ry, nz)=V1 and Ruy,nzy="V>,
hence R is an almost Dedekind domain. There exists x € MiN\R, x&M2NR,

hence V(x) =M;\R. Therefore, (») is a power of M;N\R since R is an almost
Dedekind domain [7; thm. 1.17]. Then (x)=(M;N\R)" for some positive integer
n, hence (M, N\ R) is invertible since (x) is invertible [9; 2727. In an analogous
manner, we can show (My;N\R) is invertible, hence R is a Dedekind domain
since every proper prime ideal of R is invertible [15; 337]. Since both J} and
J 5 are finite intersections of discrete, rank one valuation rings, then J=JF\J}
is a Dedekind domain. Furthermore A=A-JN\D and B=B-Jn\D. We have
shown that any pair of ideals in D are Dedekind ideals for the same Dedekind
domain. Now if C=£0 is an ideal of D such that AC=BC, then (AC)-J=(BC)-J,
hence (A4:J)«(C-J)=(B-J)XC-J), thus (4-J)=(B+J) since the cancellation law for
ideals is valid in a Dedekind domain. But then A=A4.JN\D=B-JN\D=B, thus
the cancellation law for ideals is valid in D, hence D is an almost Dedekind
domain [4]. Let 4 be an arbitrary ideal of D, then if J; is a Dedekind domain
such that A.JiN\D=A4, we have 4-J,=P{'N\...N\P: as stdted earlier. Then
A=(P::N\D)N...N\(P:»N\D) where each (P¢¥N\D) is a primary Dedekind ideal.
We assume that this representation is reduced so that (Pg*N\D)X (P9 N\D) for
any k=j. Now since D is almost Dedekind, each (P¢\D) is a prime (maximal)
power [7; thm. 1.17]. For each i, let P \D=M’: where M; is a maximal ideal
of D and f; is a positive integer, then A=M{N...\M}r=M}:-...-Mj» since
the M/ are pairwise comaximal [9; 1777, Therefore A4 is the product of prime
ideals, hence D is a Dedekind domain.

IV. Some consequences of D> Q, PP CY, and I CN.

TrEOREM 4.1. A domain D is an almost Dedekind domain if and only if
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QCD and proper prime ideals of D are maximal.

Proor: Suppose QCD and proper prime ideals of D are maximal. Let
P be an arbitrary proper prime ideal of D and form the quotient ring D,.
Then PD, is the only proper prime of D, since proper prime ideals of D are
maximal. Furthermore, if Q is any P-primary ideal in D, then Q-D, is
primary in D,. If R is a Dedekind domain such that D CRCK and Q-RN\D=Q,
we can prove, as in Theorem 3.5, that Q-R,nD,=Q-D,. Therefore Q-D, is
also a Dedekind ideal, and hence every ideal in D, is a Dedekind ideal, thus
D, is a Dedekind domain by Theorem 3.9. Now D, has only one proper prime
ideal, hence is a discrete rank one valuation ring. Therefore D is an almost
Dedekind domain since P is arbitrary. Conversely, if D is an almost Dedekind
domain, then proper prime ideals of D are maximal. If P is an arbitrary
proper prime ideal of D, then D, is a Dedekind domain, and if Q is any P-
primary ideal in D, we have Q=Q-D,N\D, hence QCD.

Lemma 4.2, If P, >P, are prime ideals of D, then there exist prime ideals
P and P* such that P,>P>P*D>P, and there are no prime ideals properly
between P and P*.

Proor: The proof of this lemma is an easy application of Zorn’s lemma;
see [8; lem. 17].

LemMma 4.8. If R is a valuation ring and P is a proper prime ideal of R
such that P is the only P-primary ideal of R, then P=P?* Furthermore, if {P.}
denotes the set of prime ideals properly contained in P, then P=\UP,.

Proor: Suppose P#P? then N\P”=P* is a prime ideal since each P” is a
n=1

valuation ideal for each n [1; lem. 2.10]. Thus P>P* and if P; is any prime
ideal with the property that P> P, D P*, then either P*CP; or P*D P, for
each positive integer n. We consider the following two cases; either 1) P, D P*

for some n, or 2) P*> P, for alln. In case 1), P=yVP*CP, implies P=P;, and
in case 2), P,=P* since then PICF\P”=P*. Therefore, if P> P,>P*, then
n=1

P=P; and there are no prime ideals properly between P and P*. Then P* is
the intersection of all P-primary ideals in R [1; thm. 8.8, but this contradicts
the hypothesis that P is the only P-primary ideal of R. Hence P=P% For
the second part of the lemma, we consider two cases; either 1) there exists a
prime ideal P; such that P,<<P and there are no prime ideals properly between
P, and P, or 2) there exists no prime ideal statisfying case 1). If dase 1)
holds, then P, is the intersection of the P-primary ideals [1; thm. 3.37], hence
P, =P and therefore case 1) cannot hold. Since case 2) must hold, we let {P,}
denote the set of all prime ideals of R which are properly contained in P. All
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the ideals of R are chained, hence \UP, is a prime ideal and contains each P,,

thus P=\UP,.

Tueorem 4.4. If PP DV and if P is any prime ideal of D, then RP”zP*

n=1
18 a prime ideal. Furthermore, if {Q.} denotes the set of P-primary ideals of
D, then P*> NQ,.

Proor: The first part of the theorem is a special case of [1; lem. 2.107].
If P is an idempotent prime ideal, then f\P” P*=P> /'\Qa If P is not

n=1
idempotent, let n denote an arbitrary integer larger than one. Now P” is a
valuation ideal by hypothesis, so there exists a valuation ring R,D> D such
that P*R,ND=P". Furthermore, VP*-R,=P, is a prime ideal of R, and P,N\D
=P. Thus every P,-primary ideal of R, contracts to a P-primary ideal of D.
In R,, we have either 1) P*-R, contains a P,-primary ideal, or 2) P*-R, contains
no P,-primary ideal. If case 2) holds, then P*:R,C %Q,g, where {Qg} denotes

the set of all P,-primary ideals of R,. But NQg is a prime ideal [1;lem. 2.127],
8
thus P,=vVP"R,CNQs implies P,=NQz Then P, is the only P,-primary
8 8

ideal in R, and thus P,=P2, by the previous lemma. Since VvP*.R,=P,, we
have P"-R, contains every prime ideal which is properly contained in P,. If
{P,} denotes the set of prime ideals of R, which are properly contained in P,
then P”-R,D> UPa. But Pvz\JPa by the previous lemma, hence P”"-R,=0P,.

Now P"=P"-R,N\ND=P,N\D= P shows P is idempotent, thus case 2) cannot
hold. Therefore case 1) holds and thus P”-R,N\D=P” contains a P-primary
ideal. The integer n is arbitrary, thus P” contains a P-primary ideal for
every positive integer n, and hence P*> NQ, where {Q,} denotes the set of

all P-primary ideals of D.

Taeorem 4.5. If SCN and P>P* are prime ideals of D such that there

are no prime ideals properly between them, then either f\P” P or f\P" P*,

n=1 n=1

Proor: If P is an idempotent prime ideal, then RP”:P. If P is not

n=1

idempotent, then RP" is a prime ideal by the previous theorem. Further-

n=1

more, P*= r\Qa where {Q.} denotes the set of all P-primary ideals in D [1;

thm. 3.37]. But the previous theorem also states f\P”D f\Qa, so we have

n=1

P>NP"> NQ,=P*. Therefore P*=f\P”.
n=1 a

n=1
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CoroLLARY 4.6. If S CW and P,>P; are prime ideals of D, then P?>P,
Jor all positive integers n.

Proor: By Lemma 4.2, there exist prime ideals P and P* such that
P, D> P>P*>P,, and such that there exist no prime ideals properly between

P and P*. By the previous theorem, we have either AP"=P or ;\P”zP*,
n=1 n=1
thus P?>P*">P*>P, for all n.

Tueorem 4.7. If SCN and P is a prime ideal of D with the property
that if P’ is any prime ideal such that P>P’' then there is a prime ideal
properly contained between P and P’, then P=P2

Proor: By the previous corollary, P”>P’ for all n, hence ;\P"DP’.
n=1

But NP” is a prime ideal, by Theorem 4.4, and contains every prime ideal

n=1
P’ which is properly contained in P. We have, therefore, PD AP" and there
n=1

are no prime ideals properly contained between these two prime ideals, hence
P=NP" and thus P=P2

n=1

Prorosition. 4.8. Let S CN and suppose there are no proper idempotent
prime ideals in D. Let P be a proper prime ideal such that there exists a prime
ideal P* with the property that P>P* and there are no prime ideals properly

contained between P and P*. Then /:P”:P* and if P is auy prime ideal
n=1
such that P>P, then P*DP.

Proor: The equality ;'\P”:P* follows from Theorem 4.5. By Corollary
n=1

4.6, we have P”>P for all n, hence P*= F\P”)P.

n=1

Tureorem 4.9. If SCN and there are no proper idempotent prime ideals
wn D, then the ascending chain condition for prime ideals is valid in D.

Proor: Let Py<P,<P;<... be an ascending chain of prime ideals in D;
then UP;=P is also prime. If this chain is not finite, then P>P; for each j,

hence P?>P; for each j, by Corollary 4.6. Therefore P> \UP; and thus P=F?,
This contradiction establishes the ascending chain condition for prime ideals
in D.

Tueorem 4.10. If SCY and if there are no idempotent proper prime
ideals in D, then D 1is a Priifer domain.
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Proor: By the above theorem, the ascending chain condition for prime
ideals in D is valid, hence the theorem follows from [1; thm. 3.87.

Tueorem 4.11.  If semi-primary ideals (i.e., ideals of J) wn D are rank
one valuation ideals and if the ascending chain condition for prime ideals is
valid, then D is a one-dimensional Priifer domain (and conversely).

Proor: It follows that D is a Priifer domain from [1; thm. 3.87]. Let 4
denote an ideal of D with prime radical P. Then there exists a rank one

valuation ring R, containing D such that 4-R,\D=A4 and v4-R,N\D=P. Let

P, denote the unique proper prime ideal of R,, then VA-R,=P,, hence A-R, is
P,-primary in R,, and A4 is P-primary. Therefore every semi-primary ideal of
D is primary, so J=0, and hence proper prime ideals of D are maximal [5;
Cor. 3.27].

Tuaeorem 4.12.  If semi-primary ideals in D are rank one, discrete valua-
tion ideals, then D is an almost Dedekind domain (and conversely).

Proor: Since prime ideals are rank one, discrete valuation ideals, there
are no proper idempotent prime ideals in D and therefore the ascending chain
condition for prime ideals is valid in D, by Theorem 4.9. By the previous
theorem, D is a one-dimensional Priifer domain, hence proper prime ideals
are maximal. Since rank one, discrete valuation ideals are Dedekind ideals,
the theorem follows by applying Theorem 4.1.
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