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Introduction.

There is an axiomatic theory of harmonic functions or an axiomatic po-
tential theory, developed by M. Brelot for the most part and investigated
further by others. (See [5] for a bibliography.) The starting point of this
theory is the introduction of a sheaf of functions on a locally compact space
satisfying certain axioms (see (3], [4] and [5] for details). These axioms
are abstracted from the characteristic properties of harmonic functions in
the classical potential theory on a Euclidean space or on a Riemann surface.
Thus the sheaf is called a harmonic structure.

On the other hand, a notion of full-superharmonic functions on a Riemann
surface was introduced by Z. Kuramochi [ 9] and thoroughly investigated by
C. Constantinescu and A. Cornea [67]. (Also, see [11] and [13].) The theory
of full-superharmonic functions is, for the most part, quite parallel to that
of superharmonic functions in the classical potential theory. Therefore, the
axiomatic theory by Brelot, which gives a methodology to the classical the-
ory of superharmonic functions, is readily extended to an axiomatic theory
of full-superharmonic functions, once a suitable additional structure is given.
In this paper, we shall show how this extension is carried out.

There are many variations in axioms to be assumed for the harmonic
structure. In this paper, we choose Axioms T and H, which are Axioms 2
and 3 of Brelot (3], [4] or [5]). We introduce an additional structure in
§2 and assume two axioms (Axioms S and 7) for it. The structure thus
given will be called a full-harmonic structure. Besides the one on a Riemann
surface introduced by Kuramochi, we have examples of full-harmoniec struc-
ture defined for solutions of second order elliptic partial differential equa-
tions.

From this full-harmonic structure, we construct a theory of full-super-
harmonic functions. We follow the author’s previous paper [117] for the
construction of the theory, while we apply Brelot’s methods to the proofs.
Definitions and properties of full-superharmonic functions are discussed in
§3 and §4. In particular, §4 is devoted to the study of full-superharmonic
functions of potential type. We shall call them 9-functions. In Kuramochi’s
theory on Riemann surfaces, a kernel (Green function) for the full-harmonic
structure is introduced and integral representation of 9-functions with re-
spect to this kernel is discussed. (See [67], [97] [11] and [18]; the kernel is
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denoted by &, in [6] and by N(p, z) in the others.)) A %-function is thus
decomposed into two functions, one with its associated measure on the ideal
boundary and the other with its measure inside the space. We shall show
in §5 that in our axiomatic setting we can also make the corresponding de-
composition, a decomposition into a 9P,-function and a 9P;-function, without
introducing a kernel. Then we proceed to consider an integral representa-
tion of 9P;-functions in §6. In this paper, we omit the discussion of integral
representation of 9;-functions, since it would be similar to that of super-
harmonic functions, extensively studied in M. Brelot [3] and R.-M. Hervé
[87].

Finally we remark that the Martin boundary as well as the Kuramochi
boundary is obtained from a full-harmonic structure (Examples in §6).

§ 1. Preliminaries.

1.1 Notation. Let 2 be a locally compact Hausdorff space. For a sub-
set 4 of 2, we denote by 04, A and A’ the (relative) boundary, the closure
and the interior of 4, respectively. Given a function f on 4 and a subset B
of A, the restriction of f on B will be denoted by f|s. We consider only ex-
tended real valued functions.

1.2. Brelot’s harmonic structure (cf.[3],[4]and [5]). Suppose, to every
open set G of £, there corresponds a linear space X of (finite) continuous
functions on G such that 9= {# s} forms a sheaf’ on 2.

A relatively compact open set G is called regular (with respect to ) if
for each continuous function f on G there exists a unique continuous func-
tion ks on G such that hs|c € X and hs|sc=f and if f>>0 implies A;>0. If
G is a regular open set and x € G, then there exists a positive Radon measure

#$ on 0G such that hf(x)zg fduS. 1f D is a component of a regular open set

G, then D is regular and x#2=x¢ for x ¢ D.
We assume the following two axioms of Brelot.
Azxiom T: Regular domains form a base of open sets.
Axiom H: For any domain D, if {4}, is an upper directed family of

functions in &p, then sup &, is either =+ oo or € Xp.
tE€]

For a domain D, the following properties are derived from the axioms:
1) If he Xp, h>>0 and h(x)=0 for some x € D, then h=0.
2) If f is a lower semi-continuous function on 8D and if D is regular,

then the function A(x)= Sfd,af is either =+ oo or € &p.

1) ie,if GiCG; and he S, then hic, € #¢, and if G=\UG,, h is a function on G and k|g.€ H#c.
for all ¢, then h e #.
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3) For any x € D and a compact subset K of D, there exists a positive
constant M such that A(y) << Mh(x) for all ye K and h € Xp with Ah>>0.

4) ([10]) For any x € D, the family {he Xp; h>>0, h(x)=1} is equi-
continuous at .

The following lemma is a consequence of properties 3) and 4):

LemMa 1. If D is a domain, then {h € Hp; h>>0, h(x)=1} is compact with
respect to the compact convergence topology.

1.3.  Superharmonic functions (cf. [37],[4]and [5]). Let G be an open
set in £. Any function in & is called harmonic on G.

A function s on G is called superharmonic (with respect to ) on G if (i) s
is lower semi-continuous on G; (ii) s> — o0 and s== + oo on any component of
G and (iii) for any regular domain D such that DCG and for any x € D,

s(x)zgsd/zf.

Lemma 2. (Local criterion) Suppose s satisfies conditions (i) and (ii)
the above definition. If for each point x € G, there exists a base B(x) of neigh-
borhoods of x such that each D € B(x) is a regular domain such that D CG and

for each D e B(x), s(x)zgsd/,zf, then s is superharmonic on G.

A function s on G is called nearly superharmonic on G if (i) s is locally
bounded below and sz= + oo on any component of G and (ii) for any regular

domain D such that D CG and for any x € D, s(x)> Ssdﬂ?.

Let B(x) be a fundamental system of neighborhoods of » consisting of

regular domains. If s is nearly superharmonic on G, then 3(x)= liBm Ssdﬂ,?z
D€Bxd

inf {lims( y), s(x)} for x ¢ G defines a superharmonic function 3, the regulariza-

yox
tion of s.

Properties of superharmonic and nearly superharmonic functions:

(a) If s is superharmonic (resp. nearly superharmonic) on G and a >0,
then as is superharmonic (resp. nearly superharmonic) on G.

(b) If s, and s; are superharmonic (resp. nearly superharmonic) on G,
then s;+ s;, min (s;, s;) are superharmonic (resp. nearly superharmonic) on G.

(¢) If {s,} is an upper directed family of superhamonic functions on a
domain D, then sups, is either = + oo or superharmonic on D.

(d) If Jis a family of nearly superharmonic functions, locally uniform-
ly bounded below, then inf J is nearly superharmonic.

PN
(e) 1If s, and s, are nearly superharmonic, then s;+s,=3;+ 3.

(f) No superharmonic function assumes + oo over an open set.

(g) If s is superharmonic on G and D is a regular open set such that

D CG, then h(x)= gsdﬂ,’? is harmonic on D.
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(h) If s is non-negative superharmonic on a domain D and if s(x)>0 for
some x € D, then s >0 everywhere.

Lemva 3. (Minimum principle) Let G be a relatively compact open set and
suppose there exists a continuous superharmonic function sy such that so=>0>0
on G. If s is a superharmonic function on G and ©f lim, ¢ .ecs(x)>>0 for all
& € 0G, then s>0 on G.

1.4. Perron’s family (Saturated family; see [4]). Let G be an open set
and let I be a family of superharmonic functions on G. J is called a Per-
ron’s family if (i) J== ¢ and J is lower directed; (ii) for any regular domain
D such that D CG, the superharmonic function

s(x) if xeG—D
si(x)=
1 lgsd,u,? if xeD

belongs to J whenever s € J and (iii) J is locally uniformly bounded below.

Perron’s theorem. If 3 is a Perron’s family on G, then inf S is harmo-
nic on G.

§ 2. Full-harmonic structure

2.1. Axioms. Let D be the family of domains D in 2 such that D is not
relatively compact and 8D is compact. In order to assure that ® is not
empty, we hereafter assume that £ is not compact. Let & be the family of
open sets G in £ such that 0G is compact.

Suppose, to each D € D, there corresponds a linear subspace Hp of p.
Let $={#p}pey. For G €@, let

He={ue He; ulp, € QEDL for each component D, of G such that D, € .}

Then g is a linear subspace of X. If G is relatively compact, then He=HKe.

In the previous section, a regular domain was assumed to be relatively
compact. We extend the notion of regular domains for not relatively compact
domains.

A domain D € ® is called regular (with respect to $) if, for any continu-
ous function f on 0D, there exists a unique continuous function u; on D such
that us|pe€ 921), and us|sp=f and if f>>0 implies u;>>0. In this case, there
exists a positive Radon measure x#2 on 0D for each x € D such that uq(x)=

S fdu2. An open set G ¢ @ is called regular if its components are all regular

either in the above sense or in the sense defined in §1. For x € G, we define
uS=uP, where D is the component of G containing x. We denote by D,
(resp. &,) the set of all regular domains in ® (resp. regular open sets in ®).
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We assume the following two axioms for §:

Aziom S(Sheaf): Let De®. () If uedp, D'CD and D' ¢D, then
ul|lp € Xp. (i) If u € Hp and if there exists a compact set K such that
K’)@D and ulp_K € %D—K, then u € gép.

Axiom T: For any compact set K in 2, there exists another compact set
K, such that KD K and 2—K; € ®,.

We call § a full-harmonic structure subordinate to . In this paper, we
fix © and § once for all.

Remark: Here, we first considered a harmonic structure {#¢} and then
defined a full-harmonic structure {5’20} in terms of {#;}. Instead, we may
define a full-harmonic structure directly by giving a sheaf of linear spaces
& p, considered for all domains D with compact boundary. In this case, #¢
is defined as the family of all functions z on G such that u|p e Xp for all D in
a family of relatively compact domains which covers G. If we assume Axioms
T, H, S and T for these spaces, then we have a full-harmonic structure.

2.2. Consequences of axioms. N

Lemva 4. Let Ge®, DeD, and DCG. Then, for any u € X and x € D,
gu dul=u(x). Conversely, if uc X and gu dul=u(x) for all DeD, such
that D CG and for all x € D, then u € K.

Proor: u|p is continuous and u|p € &p by Axiom S, (i). Since D is re-
gular, the first part of the lemma follows from the uniqueness of u;. Sup-

pose u € X and Su dul=u(x) for all De D, with DCG. By Axiom T, there

exists a compact set K such that K >0G and 2—K € ®,. If D is a component
of G—K, then it is a component of £—K, so that D is regular and DCG. If

D is relatively compact, then gu duP=u(x), since v is harmonic on G; other-

wise D € ®,, so that gu duP?=u(x) by assumption. Hence Su duS X =u(x)
for all x € G—K, so that u € £¢_g. It follows from Axiom S, (ii) that u € He.

Lemma 5. Let D €D and let {u,}.e; be an upper directed family of func-

tions in Xp. Then sup u, 18 either =+ oo or € Xp.
L€]

Proor: Let uy,=supu, and suppose uo7= +oo. Then, by Axiom H,
uo€Xp. Let D'eD, ar;d D’'CD. By Lemma 1, we see that u,—u, uniformly
on aD’. Since Su” du’=u,(x) for x € D’ by the above lemma, we have SuoduQ'
=u(x) for x € D’. Hence, again by the above lemma, we have u, € Xp.

CoroLrary. Let D €D, and let f be a function on 0D.

(1) Iff islower semi-continuous and >—oo, then the function u(x)——:g fdu?
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18 etther =40 or u € Xp.

(ii) If f s arbitrary, then the function u(x)= g fdub is either =+ oo,
=—0 0ruct HZD.

2.3. Examples of full-harmonic structure.

Example 1. (Kuramochi, Constantinescu and Cornea). Let £ be an open
Riemann surface and let $={H} be the classical harmonic structure on £.
If K is a compact set with sufficiently smooth boundary 0K and if f is a C~-
function near 9K, then, by [97], [13] or [ 6], there exists a unique harmonic
function f¥ on 2—K which has the smallest Dirichlet norm among functions
on 2—K* assuming the value f on 0K. Kuramochi’s full-harmonic structure
is given by

) Hp= j u€Hp; u=u’ "? on D—K for some compact set KI

1 such that K'>oD. [

We can carry out similar definitions if 2 is a space of type & in the sense of
Brelot-Choquet (see [117]).

Example 2. Full-harmonic structure for solutions of Au=qu.

If we replace harmonic functions by solutions of a second order self-
adjoint elliptic differential equation, then we have a full-harmonic structure
by applying the method of Example 1, under certain condititions imposed on
the coefficients of the equation (cf. [12]). To avoid inessential complications,
we here restrict ourselves to the equation Lu=Au—qu=0 on a domain £ in
the n-dimensional Euclidean space (n >>2), where A is the Laplacian and ¢ is
a non-negative C~-function on 2. Let H¢={u; Lu=0 on G}. Then, it is
known by Hervé [ 87] that $={H&;} is a harmonic structure. A full-harmonic
structure subordinate to  is defined as follows.

Let G be an open subset of £ and let &(G) be the set of all BLD-functions
f (see [117]; they are called “fonctions (BL) précisées” in [7]) in G such that

[ ardx<es. Let Eo(f, =Dl g)+gcqudx for [, g€ &(C), where

D¢(f, g) is the mutual Dirichlet integral of f and gon G. Identifying func-
tions which are equal almost everywhere, &(G) becomes a Hilbert space with
the inner product Ec(f, g) (cf. [7]). Next, let K be a compact set in 2 such
that its boundary 0K consists of a finite number of closed C~-surfaces. Let
Ex={ue&®R); u=0q.p. on K}. We can show that & is a closed subspace
of (). If fis a C-function defined in a neighborhood of 9K, then there
exists at least one C*-function u; on £ such that u; € &(2) and u;=f on 9K.
Let v, be the projection of u; onto &x. We can show that v, can be chosen to
be continuous (cf. [127]) and that the value of u;—v; on 2—K is independent
of the choice of u;. Thus, we write fX=u;—v; on 2—K. The following
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proposition can be proved by the same methods as Satz 15.1 of [6] (also see
L7D.

Proposition. (i) Lf¥=0on 2—XK, ie., f* € o k.

(i) f—f" is a linear mapping of &(L) into &(2—K).

(iii) If £>>0, then fX>>0.

(iv) If KCKi, then (f%)%1=f¥ on 2—K..

(v) If Dis a component of 2—K, then f*=f°” on D.

For D € D, we define &p by () in Example 1. Then the above proposi-
tion implies that {QZD} pep Satisfies Axioms S and 7.

Similar discussions hold in case 2 is an open Riemann surface.

Example 3. Let £ be an open Riemann surface (or a non-compact space
of type &) and let D= {X} be the classical harmonic structure. For an open
set G ¢ & and a continuous function f on G, let H¢ be the Dirichlet solution
on G with boundary values f on 9G and 0 on the ideal boundary (cf. [6] and
[147)]). If we take

Hop = Jf u € Xp; there exists a compact set K such that L

1 K >oD and u=HP ¥ on D—K. [,

\

then H= {5’2 p}pep is a full-harmonic structure subordinate to 9.

Example 4. Full-harmonic structure associated with an Li-operator.

Let 2 be an open Riemann surface or a non-compact locally Euclidean
space. If De D has a sufficiently smooth boundary, then the L;-operator
(with respect to the canonical partition of the ideal boundary) in the sense of
L. Sario is defined for D (see[1] and [15]). Wedenote it by L; p. We take
the classical harmonic structure $={# s} and we define

Xp= J u € Xp; there exists a compact set K such that 0K is smooth, \L
7 K'>0D and u=L; pu on D’ for any component D’
| of D—K. J

Then we can see that {#p} pep is a full-harmonic structure subordinate to .

§ 3. Full-superharmonic functions

3.1. Full-superharmonic functions.
Definition. Let G € ®. A superharmonic function u on G is called full-
superharmonic (with respect to 9) if, for any D € D, such that D CG, u(x)>

Su du? for all x € D.

By Lemma 4, we see that a function z on G belongs to e if and only
if x and —u are both full-superharmonic on G. A function of #. will be
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called full-harmonic on G.

The following properties are immediate consequences of the definition
and the corresponding properties of superharmonic functions.

(a) If u is full-superharmonic on G and if >0, then au is full-super-
harmonic on G.

(B If u, and u, are full-superharmonic on G, then u;+ uy, min(u;, usz)
are full-superharmonic on G.

() If {u.}. is an upper directed family of full-superharmonic functions
on D € D, then sup u, is either =+ oo or full-superharmonic on D.

(0) If u is full-superharmonic on G and if G'€@®,, G'CG, then A(x)=

Su du€ is full-harmonic on G'.

Tueorem 1. (Minimum principle) Let G € & and suppose there exists a
non-negative continuous full-superharmonic function s, on G such that so>06>0
near 0G, i.e. on VNG for a neighborhood V of 0G. If u is a full-superharmonic
Sfunction on G such that lim,_; ,cc u(x) >0 for all & € 0G, then u>0.

Proor: It is enough to consider on each component of G. By virtue of
Lemma 3, we may assume that G € ®. Let K be a compact set in 2 such that
K'>0G and G—K € ®, (Axiom 7). Let a=inf,coxnc(u(x)/s0(x)). Since u/so
is lower semi-continuous, @ > —co. Put f=inf,cc(u(x)/so(x)).

" Suppose that $<0. If >0, then >0 on dKNG. Hence, u(y)>

Su du§~¥>0 for all ye G—K, Hence u/so>0>43 on G—K' If a<0, then
u—ase is full-superharmonic on G and non-negative on 0KNG. Hence
u( ) — s y)2g(u—a30)dﬂ§.;_K2 0 for all yeG—K. Therefore, u>>as, on

G—K'or u/sy>a>p on G—K'. Thus, we have seen that either infs_gi(u/
so)>B or a=p. By assumption, lim,_¢ .ec(u(x)/s0(x)) >0 for all £ € 9G. Hence,
it follows that 3> — oo and u/s, attains 8 inside G, say at x,€ G. Then the
superharmnic function u — Bs, is non-negative on the domain G and vanishes
at xo. Hence u—pBs0=0 on G or u/s,=p<0, which is impossible. Therefore,
3>>0 and the theorem is proved.

LEMMA 6. Let Ge®. If u 1s superharmonic on G and if, for each com-
pact set K in 2, there exists anmother compact set K, such that Ki>K\U0G,

G—K €O, and u( y)2gu du§—%: for all y € G— Ky, then u 18 full-superharmonic
on G.

Proor: Let DeD®, and DCG. Let g be any continuous function on 0D
such that g<<u on 0D and let u,(x)=u(x)— S gdp? for xe€D. Then

lim, .¢eop, zep ug(x)>>0. By assumption, there exists a compact set K; such
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that Ki>0G\UdD, G—K; € ®, and u(y)zgu duSK: for all yeG—K,. Then
D—K,e¢®, and u§ *r=uP~K: for ye D—K,. Hence u(y)zgud,af"‘* for
all ye D—K,. Then it follows that ug(y)zgug duP=K: for all ye D—K,.

Since D is regular, there exists a positive full-harmonic function Ay on D
such that h,>>0>0 near 0D(e.g., ho(x)zgd,af). Then, by arguments similar
to the proof of the above theorem, we conclude that u,>>0 on D. Hence

u(x)ZSg du? for all x € D. Since u=sup,..g, it follows that u(x)zgu du?

for all x € D. Hence u is full-superharmonie.

CoroLrLARY. Let G€® and let u be a superharmonic function on G. If
there exists a compact set K such that v is full-superharmonic on G—K, then
u 18 full-superharmonic on G.

3.2. Theorems on full-superharmonic functions.
Tueorem 2. Let Ge®, G'e€®, and G'CG. For a full-superharmonic
Sunction u on G, let

u(x) if x€G—G
uy—

Sudﬂf' if x€G.

Then u; is full-superharmonic on G.

Proor: It is easy to see that u; is superharmonic on G (cf. Lemma 2).
Let K be a compact set such that K’ D06\ U066 andG—K e ®,. If x € 6—G —K,

then ul(x)=u(x)2gud,af“KZgu1 duS~. If x€G —K, then Lemma 4 im-

plies Sul d,af’Kzgul dps’ ¥ =u,(x), since u, is full-harmonic on G’. Hence
u, is full-superharmonic by the above lemma.

If K is a compact set such that K‘>0G and G—K € &,, then the full-
superharmonic function u, defined in the above theorem for ¢'=G—K will be
denoted by ug.

TuareoreMm 3. (Perron) Let U be a family of full-superharmonic functions
on Ge®. Suppose that U is a Perron’s family on G and that, for each compact
set K with K' D0G and G—Ke€®,, u el implies ug € . Then infl is full-
harmonic on G.

The proof is similar to that of Perron’s theorem.

Turorem 4. Let G €S and u be a full-superharmonic function on G. If
there exists a full-superharmonic function v, on G such that uw> —uv,, then
there exists the smallest function vy among full-superharmonic functions v such
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that u>>—v. Furthermore, v, is full-harmonic on G, i.e., —v, s the greatest
Sull-harmonic minorant of wu.

Proor: Let %={v; full-superharmonic on G, u>—v}. Since v, €U,
U=~ #. 1t is easy to see that %/ satisfies the conditions of Theorem 8. Hence
vo=Iinf ¥ is full-harmonic and u > —v,.

3.3.  Nearly full-superharmonic functions. A function gon G € is cal-
led nearly full-superharmonic if it is nearly superharmonic on G and for any

D €D, such that DCG, g(x) 2& g du? for all x ¢ D.

Obviously, a full-superharmonic function is nearly full-superharmoniec.
If g is nearly full-superharmonic, then its regularization g is full-super-
harmoniec.

The following properties are easy to see:

() If gisnearly full-superharmonic and if >0, then a g is nearly full-
superharmonic.

(B) If g1 and g are nearly full-superharmonic, then g1+ g, min(gi, g2)
are nearly full-superharmonic.

(r) If U is a family of nearly full-superharmonic functions locally uni-

formly bounded below, then inf % is nearly full-superharmonic.

§ 4. Full-superharmonic functions of potential type

4.1. Full-superharmonic functions of potential type. We consider a do-
main 2, € ® such that there exists a positive continuous full-superharmonic
function u, on 2, which satisfies 0<d uo <M< + oo near 08, i.e., on V' "\£2,
for some neighborhood 7 of 82,. The existence of such a function u, is as-
sured if 2, is contained in a regular domain. We take such a domain 2, and
fix it throughout the rest of this paper. A compact set K of £ will be called
admissible (for 2,) if KD 0.2,.

Definition. A non-negative full-superharmonic function on £, is called
of potential type (on £,) if its greatest full-harmonic minorant on £, is zero.
We denote by 9 the family of all full-superharmonic functions of potential
type.

Any non-negative full-superharmonic function z has a unique decomposi-
tion u=h+v with A full-harmonic on £, and v € P; h is the greatest full-
harmonic minorant of u.

If ve P and if u is a non-negative full-superharmonic function such that
u<v, then u € 9. Hence, if vy, v, € P, then min (vy, v,) € P.

LemMA 7. Let u be a non-negative full-superharmonic function on £, and
let K be an admissible compact set. If there exists v € P such that u<v on
K'N\&o, then u € P.
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Proor: Let h be a full-harmonic minorant of u. Then »>u>>h on
K'"\2, and v—h is full-superharmonic on 2,. Hence, by Theorem 1, v —4 >0
on £2,. Since v € P, h<0. Hence u € P.

4.2. Reduced functions. Let u be a non-negative full-superharmonic
function on 2, and let F be a subset of 2. Then the function

Rpu=inf{v; full-superharmonic >0 on 2y, v >u on F/N\2,}

is nearly full-superharmonic on £, and 0 <Rpu <u. Hence u sz/p\u is full-
superharmonic on £, and 0 <<up<<u. We call ur the reduced function of u
on F (with respect to 2,).

The following properties are easy to prove.

1) UP=UFng,; Up=1U ON Fi/\.QO; ugy=0.

2) up is harmonic on 2,— F; up is full-harmonic on 2,—F if F is rela-
tively compact in £ (by Theorem 3).

3) u1<{u, implies (u1)r <(u2)r.

4) F1 CF, 1mp11es uFlgqu.

5) (wi)r+(uz)r>>(ur+uz)p.”

Remark: 1If 9= {0}, then all non-negative full-superharmonic functions
are full-harmonic and proportional to each other. Therefore, in this case,
Fin®,5~ & implies u=up.

Lemma 8. Let u be a non-negative full-superharmonic function on £, and
let K be an admissible compact set such that 2,—K € S,. Then ux(x)= Su duf K

for x € 20— K. (Thus the notation after Theorem 2 does not conflict with the
present one.)

Proor: By Theorem 2,
f u(x) if x e KN,
ul(x)z .
1 Su dus K if x € Qo—K
is full-superharmonic on 2,. Obviously, u;>>0. Hence ux <u;. On the
other hand, if » is a non-negative full-superharmonic function on £, such
that v >u on KN\2,, then v(x)zgv d/sz"2gu du? X for x € ,—K. There-

fore, v>>u, and hence ux>u;.

4.3. Lemmas on full-superharmonic functions of potential type.
Lemma 9. Let {K.,} be a directed family of admissible compact sets such
that K, DK, if ¢<d and K. NL)=&. If u is a non-negative full-super-

2) It is possible to prove that the equality holds in 5). Cf. [2] and [8].
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harmonic function on 2o, then limug, is equal to the greatest full-harmonic

minorant of u.

Proor: Each ug, is full-harmonic on 2,—K,. For any ¢, {ux,; ¢>¢o}
is a lower directed family of full-harmonic functions on 2,—K,. Hence
h=inf u, is full-harmonic on 2y—K, by Lemma 5. Hence 4 is full-harmonic

on 2,. Obviously, 0<<hA<u. Now, let 4, be any full-harmonic minorant of
uon £, Since ug,=u on KiN,, ug,>h, on KiNg, Applying Theorem 1
to the full-superharmonic function wg,—hi, we see that ux,>h;. Hence
h>h;. Therefore, & is the greatest full-harmonic minorant of .

CorOLLARY. If uy, uz € P, then u,+uz € P. Hence P is a cone.

Proor. Let {K.} be as in the above lemma. Then lim(u,)x,=0 and
lim (u2)x,=0. Hence 0 <lim (u;+ uz)g, <lim (u1)x,+ lim (u3)g,=0.  There-
fore, u,+uq € P.

Lemma 10. Suppose P+ {0}. If FNoLo= &, then ur € P for any non-
negative full-superharmonic function u on £,.

Proor: By assumption, there exists v, € 9 such that v,>0 on £,. Let
K be an admissible compact set such that FN\2,\K= & and let a=inf 5k, vo0.
Then a>0. Let u=h+v with A full-harmonic and v € . If h=0, then ur=
vp € 4. Suppose k0 and let S=supsxne,h. Then 0<B<+oo. (B/a)vo—h
is full-superharmonic on 2,—K and lim, ¢ reo,-x [(B/@)vo(x)—h(x)]>0 for
all £€ 9K82,. Hence, by Theorem 1, (8/a)vo>h on £2,—K, and hence on
FN&,. Therefore, (83/a)vo>hr. Since (B/a)v,€ P, hr € P. Obviously, vy € .
Hence hr+ovr€ 4% by the above corollary. Since ur<hr-+wvr, it follows
that ur € @.

Lemma 11.  Let u be a non-negative full-superharmonic function on 2.

Q) Ifue?D and if u is harmonic on KiNR, for some admissible compact
set K,, then, for any admissible compact set K such that KCK{, usg=u on
K'N\%,. '

(ii) Suppose P={0}. If there exists an admissible compact set K such
that usx=u on K'NQy, then u € P.

Proor: (i) Let v be any non-negative full-superharmonic function on
2, such that v >u on 0KN&, and let

0 on 2,—K'
V1= . .
llnf(v—u, 0) on K'N%,.

Then it is easy to see that v, is a non-positive full-superharmonic function on
2. Since —v; <<u everywhere, u € 9 implies —v, <0, so that v;=0. Hence
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v>u on K'NQy. Then it follows that u=u,x on K'N\L,.
(ii) By Lemma 10, uyx € 9. Hence, Lemma 7 implies that u € 9.

LemMma 12. Let K be an admissible compact set. Then there exists a posi-
tive constant My such that
sup |ui(w)—uz(x)| << Mg

sup
x€EKNQ, x€EOKNQ

[u1(x)—us(x)]

for any uy, u, € P which are harmonic on an open subset of 2, containing KNL,.

Proor: Let u, be a positive continuous full-superharmonic function on
£, such that u, is bounded near 02,. Let 8= sup xne, uo and a=infyxne, uo.
Then 0<a <A< +eoo. For any u,, u,c 9P satisfying the condition of the
lemma, let 2= Subrcoxne,|ui(x)—us(x)|. Then A< +oco and |u;—uq| <A<
(A/a)up on OKNL2y.  uy <(A/@)uo+u; on 0KNL, implies that (u1)sx <(A/@)u,
+u,.  Since u; € P, Lemma 11, (i) implies u; <(2/a)uo+uz on K‘N2,. Hence
ur—us <(A/a)uo<(B/a)k on KNR,. Similarly, we have us;—u; <(8/a)l on
KN£,. Hence it is enough to take Mx=p3/c.

Remark: (i) If we take u;=u and u,=0 in the above lemma, we have

uMg sup u(x)

XEOKNQ,

on Kf\.Qo.
(ii) if u=11is a full-superharmonic function, then we can take Mx=1.

§ 5 Decomposition of full-superharmonic functions
of potential type

5.1. Space P;. Let P, be the set of all harmonic full-superharmonic
functions of potential type, i.e., Py =PN\Hq,. Obviously, P, is a cone. Here-
after, we assume that 9, = {0}.

Let vy, v, € 9. If there exists w € P such that v, +w=v;, then we write
v1<vs. The relation < is an order relation in 9. If vy, v € Py, then v,<v,
if and only if v,—v; € 9,. Hence the relation < restricted on 9, is the order
induced by 9, itself.

Lemma 13, 9D, 1s a lattice with respect to the order <.

Proor: Let w), w, €4,. Consider the family U={u € P; u>w, and
u>wy}. Since wi+w, €U, £ F. Let wo=infU. It follows from (y) in 3.3
that w, is non-negative nearly full-superharmonic on £,. Since w;, w, are
harmonic on £, we see that 7 is a Perron’s family on £,. Hence, w, is
harmonic and full-superharmonic. Since 0 <<w,<w;+w; € D, wo € P,. Simi-
larly, we see that wy—w, € P, and wo—w, € Py, i.e., wo>w; and we>ws.

If w € P, satisfies w'>w, and w >w,, then w' € ¥. Hence w' >w, We
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shall show that w' —w, is full-superharmonic. Then, w' —w, € P, or w >w,
and we conclude that w, is the least upper bound of w;, and ws,.
To show that w'—w, is full-superharmonic, it is enough to prove that

u/(x)—wo(x)zg(w’—wo)d,af“‘K for any admissibile compact set K such that
£20—Ke@®, and for all x € 20— K. Let

j inf{w’(x)—S(w’—wo)d,uf”‘K, wolx)} if x€ Q—K
glx)=
wo(x) if xe KN2Q,.

Then, we see that g is non-negative full-superharmonic on 2,. Since 0 < g<C
wo € P, ge P. Similarly, replacing v by w' —w; (i=1,2) and w, by wo—w;
(t=1, 2), we see that g—w; € P (i=1, 2). Hence gc U, so that w,<g. Hence

/() =) = ! — o) dpfeE.

We have shown that %, is an upper semi-lattice with respect to the order
induced by itself. Since 9, is a cone in the linear space &, it follows that
P, is a lattice with respect to this order.

We shall write wo=w:\ ws.

5.2. Decomposition theorem. We denote by 49; the set of v € £ such that
there is no non-zero w € 9, satisfying »>w. The purpose of this section is
to show that any v € 9 has a unique decomposition v=v;,+v; with v, € 9, and
v; € @i-

For any v € D, let B(v)={w € DPy; v>w}. Since 0 € B(v), K(v) is not empty.
v € P; if and only if B(v)={0}. For each we &(v), w<v. Hence Bv=sup&B(v)
exists and Bv <w.

Lemma 14. Bv € B(v) and Bv 1s the least upper bound of B(v) with respect
to <.

Proor: If wy, ws € B(v), then w;\VVw, € P, and an argument similar to the
proof of Lemma 13 shows that w,Vw,<v. Hence, w;\Vw; € B(v). It follows
that &(v) is an upper directed family of harmoic full-superharmonic func-
tions dominated by v € 9. Hence Bv € 9P,. Since v—w € P for any w € &(v),
v—Bv is nearly full-superharmonic. It then follows that v—Bve 9D, ie.,
v>Bv. Hence Bv € B(v). For any w e B(v), Bv\Vw € B(v) by the above argu-
ment. Hence Bv\/w<Bv, so that Bv\/w=Bv, or Bv>>w. Therefore, Bv is
the least upper bound of A(v).

TueoreMm 5. If ve P, then BveP, and v—Bve P, Conversely, if
v=v,+v; with v, € P, and v; ¢ P;, then v,= Bv, i.e., the decomposition of v into
a sum of a Py-function and a P;-function is unique.

Proor: By the above lemma, Bve P,. If ' € 9P, satisfies w'<v— Bo,
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then w'+ Bv<v, i.e., w4+ Bv € B(v). Hence w'+ Bv<Bv or w'=0. Hence
v—Bv e P;. Now suppose v=uv,+v; with v, € P, and v; € P;. Since v, € B(v),
v,<Bv by the above lemma. Since v;=(Bv—wv;)+(v— Bv), v;>>Bv—uv; € D,.
Hence, by the definition of 9;, Bv—v,;=0 or Bv=uv,.

5.3. Additivity of the B-operation. Let v e 9 and let K be an admis-
sible compact set. Let &x(v) be the family of functions u € 9 such that
there exists a full-superharmonic function s (may be negative) on £,—K such
that u=v+s. Since v € Bx(v), Bxg(v)== &. Let Brv=inf £x(v).

Lemma 15. (i) Bgv ¢ D and it is harmonic on K'N\Q,.
(1) Bgv<v, in fact, v=Bgv+wg with wg € P which is full-harmonic on
2,—K.

Proor: (i) Let % be the family of full-superharmonic functions s on
20— K such that u=v+s on 2,—K for some u € Bx(v). Then, it is easy to see
that 7 satisfies the conditions of Theorem 8 for £2y—K, so that s,=inf7 is
full-harmonic on £,— K. On the other hand, Bxv is nearly full-superharmonic

S
on 2y and 0<Bxv<v. Since Bgxv=v-+s, on 2y—K, Bxv=v+s, on 2y—K.

N N\ N
It follows that Bxv ¢ Bx(v) and hence Bxv>>Bgv. Therefore, Bgv=Bgv,
so that Bxv ¢ P. Since Bx(v) is a Perron’s family on KN\, Bxv is har-
monic on K'N\&,.

(ii) Let
{U—BKU if BKU<00

w; =
] [ee) if BK'U—_—OO.

Then, w, >>0. For any relatively compact regular domain D (resp. D€ D,)
such that D C 2, f(x)=gv duP and g(x)ZSBKv duP are harmonic (resp. full-

harmonic) on D. It follows that Swl dul=f(x)— g(x) for x € D. Next, let ¢

be any continuous function such that ¢ <<v on 9D, let fi(x)= ggodﬂ? for x ¢ D
and let

(inf(v—f1+ g, Bxv) on D
V1=

| Bxo on 2—D.
Then, we see that v, is a non-negative full-superharmonic function on £, and
vi<Bgve%P. Hence v, €. Similarly,

[inf(—fl-l—g, $0) on D—K
s= |

L S0 on (2,—K)—D
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is full-superharmonic on 2,—K and s+v=v; on £y—K. Hence, v; € Bx(v), so
that v,>>Bgv. Therefore v—fi+ g>Bgv on D, or w;>>f1—g on D. Since

f=sv.<1pf1, we have w(x) > f(x)— g(x)=gw1 du? for xeD. Thus, we have
(7))
shown that w, is nearly full-superharmonic on £2,. It follows that @, + Bgv=v.
We take wg=i@;. Then wx € P and wg=—s, on 2y—K, so that wg is full-
harmonic on 2,—K.

Lemma 16. Bv= inf Bgv.

K : admissible

Proor: Letvo=infg Bgv. This is nearly full-superharmonic. If K; CKo,
then Bx v>>Bg,v. Hence {Bgv; K admissible} is a lower directed family.
It follows from Lemma 15, (i) that v, is harmonic on £,, and hence full-super-
harmonic on £2y. Since vy v € D, vy € P;. By Lemma 15, (ii), v =v,+ supx wx.
We see that supg wx € 9, so that v>>v,. Hence vo<Bv. On the other hand,
u= Bxv— Bv is superharmonic on £2, and, since u=—wg+ (v— Bv) on £,—K,
it is full-superharmonic on £2,. Since —u<Bv and Bve?P, u>0, ie.,
Byxv>Bv. Hence vo> Buv.

TaeoreM 6. B(v;+v2)= Bv;+ Bus.

Proor: Since Bv;+ Bva<vi+vs and Bvi+ Bvs € Py, Bvi+ Bz € B(vy+vs).
Hence Buvi+ Bv:<<B(vi+wv,). On the other hand, it is easy to see that Bgv,+
Bgrvs € %K(’Ul‘i"l}z), so that BK01‘|‘BKU22BK(U1+'U2). Hence, by the above
lemma, we have Bvi+ Bvs—> B(vi+v2).

CoroLLARY. 9D; 18 a cone.
Proor: It is enough to recall that v € 9; if and only if Bv=0.

If we write Jv=v— Bv, then B and J are additive mappings of % into 9P,
and 9;, respectively. It is easy to see that P,=B(D), P;=J(P) and P,ND;
={0}. It follows that B and J are mutually orthogonal projections, i.e.,
B:=B, J:=] and BJ=JB=0.

§ 6 Integral representation of 9,-functions.

In this section, we assume that 9, {0}. Furthermore, we assume that
£ 1s countable at infinity. i.e. there exists a sequence {K,} of compact sets
such that K, K}, for each n and \/K,=2. We can choose K, admissible.

Such a sequence {K,} will be called an admissible compact exhaustion of L.
6.1. Metric on PD,.
LemMma 17.  The set D, with the compact convergence topology s metrizable.

Proor: Let {K,} be an admissible compact exhaustion of 2. For u,,
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u, € Py, we define

_ 1 SUDrer e, | ui(x) —ua(%)|
o(u, uz)——”%l1 on 1+Supx6K7,:90|ul(x)—le(x)| )

Obviously, o is a metric on 9,. We shall show that this metric is compa-
tible with the compact convergence topology on 9.

Fix uo€%,. For any ¢>0, choose n so large that 1/2"'<e Let
0=¢/2(2nM ), where My is the constant given in Lemma 12. If uc 9,
satisfies |u(x)—uo(x)| <0 on 9K, N2, then |u(x)—uo(x)| <e/2n on K,N\L.
Hence o(u, uo)<e/2+n(e/2n)=c. Hence the compact convergence topology is
stronger than the p-topology. Conversely, let a compact set F in £, and
e>0(e<1) be given. There exists m such that K,DF. If o(u, ug)<e/2™+,
then

L SUDxex,na, | u(x)—uo(x)|
2" 1+ 8UDrex, ne, | u(x)—uo(x)]

e
<o(u, 1)< g -

Hence, sup,er | u(x)— uwo(x)| <SUPzex, ne, | u(x)—uo(x)| <e. Thus, we have the
lemma.

LemMma 18. 9D, is complete with respect to p.

Proor: Let u, € 9P, and {u,} converge locally uniformly on 2,. Let u
be the limit function. It is easy to see that u is harmonic, full-superharmonic
on £2,. Hence it is enough to show that u € 9. Let K be an admissible com-
pact set and let v be a non-negative full-superharmonic function such that
v>u on KN, Since u,— u uniformly on dKNQ,, there exists n,=n(e)
for any ¢>0 such that n>n, implies v >u,—¢ on 0KN\L,. Let s, be a posi-
tive full-superharmonic function such that ss <M< +oco0 on K'Ng2,. We may
assume that infyxne so=>1. Then v+es)=>u, on 0K N Ly, so that v+ eso=>(un)ok.
By Lemma 11, v+eso>u, on K' D82y (n>>n,). Hence, v+eso>>u on K'N\LQ,.
Since ¢ is arbitrary and s,<<M on K‘N\Q,, it follows that v>>u on K'N\Q,.
Hence usx=u on K'N\2,. Then, Lemma 11 implies u € 9.

6.2. Representation theorem. We fix x, € 2o and let P, o={u € P;; ulxo)
=1}. Obviously, 9;, is closed in 9,. Hence, Lemma 1, Lemma 17 and
Lemma 18 imply that 9, , is compact metrizable with respect to the com-
pact convergence topology. Also, 9, is a convex set and is a base of the
cone 9,, which is a lattice with respect to the order induced by itself (Lemma
13). Therefore, we can apply Choquet’s theorem (see [37],[4]and [117]) to
the cone 9, and a base 9P;,, and we obtain:

TueoreM 7. For any u € 9, there exists a unique Radon measure u on
the compact space Py,o such that p(Pyo—e(Ps,0))=0 and u:S” du(v), where

e(Dy.0) 18 the set of all extreme points of the conmvex set P, .. The total mass
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of u 1s equal to u(x,).

6.3. The special case where a kernel is defined. Let x, € 2, be fixed. An
extended real valued function £.(y)=Fk(x, y) on £,x &, is called a kernel on
£, (with respect to the full-harmonic structure §, normalized at x,) if it satis-
fies the following three conditions:

(i) For each x € 2y, k, € D, k. is full-harmonic on £2y— {x} and k.(x,)=1
for x € 2y— K,, where K, is an admissible compact set such that x, ¢ K;.

(ii) For each ye€ 2,, the mapping x—k(x, y) is continuous on 20— { y, x,}.

(iii) For any admissible compact set K such that K’ DK, if v € P is full-
harmonic on 2,—K and harmonic on K'N\%2,, then there exists a Radon me-
asure x on 8K\, such that

wp={  k(pdu

for all ye .

We assume the existence of a kernal £.(y) and consider a realization of
e(Ps,0) as a part of an ideal boundary of £2,. For each ye 2,, there exists a
continuous function f, on £, such that f,(x)=k.(y) for x € 2,—K for some
admissible compact set K. The property 38) in 1.2 allows us to take f, to be
bounded. Let C, be the space of all continuous functions on £ with compact
support and let Q=1{f,l¢,; y€ 2} U{f|e,; f € Co}. Let 2F be the Q-compacti-
fication (see [6]) of 2,. Then 2F—2, consists of two compact parts A and
02,, where A is characterized as follows: If x € £, tends to a point €€ A,
then x tends to the ideal boundary of £ and %, converges everywhere.

TaEOREM 8. e(Dy,0) is homeomorphically embedded in A.

Proor: First, we shall show that to each &€ A there corresponds a
k€ Dyo. Let x € 2, tend to £ ¢ A. By the property of A and by Lemma 1,
k. converges locally uniformly on £2,. Let k; be the limit function. It fol-
lows, like Lemma 18, that k: € ;. Obviously kg(x,)=1, so that k: € P, , By
the definition of the compactification, k; is uniquely determined by ¢ and if
&8, (61, & € A), then ke #k,,. Hence the mapping £é—k; is one-to-one from
A into Py, . Also, we see that this mapping is a homeomorphism.

Now, it is enough to show that, for each u € e(9;,), there exists £ € A
such that u=#k, Let {K,} be an admissible compact exhaustion such that
KiD>K, Since ug, € 9P and is full-harmonic on £,—K,, harmonic on K;N&,,
condition (iii) for k, implies that there exists a Radon measure x, on 0K, N2,

such that ug ( y)=gkx( y) dun(x). We regard x4, as a measure on 2% Since

the total mass of 4, is less than one, {x,} has a subsequence {x,} vaguely
converging to a measure x, on 2F. It is obvious that x, is supported on A.

We have u(y)=Ilim,..ux (y) = lim,-wgk,,( y) ditn ()= Sk;( y)dpo(€), since the
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mapping x—k.(y) is continuous on 2,\VA—{x,, y}. It is easy to see that,
if v is a unit measure on A, then Skfdv(é) ¢ Pyo. Since u € e(Py,), it fol-

lows that x, is a point mass, so that u =#%; for some & ¢ A. (See [6 ] for similar
discussions.)

Examples. In the case of Example 1 (§2), it is known that there exists
a kernel in the above sense. The boundary A in this case is a part of the
Kuramochi boundary of 2. (See [11]; also [6],[9] and [137].)

For Example 3, a kernel is defined by £.(y)=G.(y)/G.(x0), where G.(y) is
the Green function of 2,, and the corresponding boundary A is a part of the
Martin boundary of 2 (cf. [147]; also [6)).

In the above two examples, if 2— 2, is compact, then we obtain the whole
of the Kuramochi boundary and the Martin boundary of £. Thus, we can
say that these two boundaries arise from different full-harmonic structures
subordinate to the same (classical) harmonic structure.
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