
J. Sci. HIROSHIMA UNIV. SER. A-I
30 (1966), 197-215

Axiomatic Treatment of Full-superharmonίc Functions

Fumi-Yuki MAEDA

(Received September 20, 1966)

Introduction.

There is an axiomatic theory of harmonic functions or an axiomatic po-
tential theory, developed by M. Brelot for the most part and investigated
further by others. (See [5] for a bibliography.) The starting point of this
theory is the introduction of a sheaf of functions on a locally compact space
satisfying certain axioms (see [3], [4] and [5] for details). These axioms
are abstracted from the characteristic properties of harmonic functions in
the classical potential theory on a Euclidean space or on a Riemann surface.
Thus the sheaf is called a harmonic structure.

On the other hand, a notion of full-superharmonic functions on a Riemann
surface was introduced by Z. Kuramochi [9] and thoroughly investigated by
C. Constantinescu and A. Cornea [6]. (Also, see [11] and [13].) The theory
of full-superharmonic functions is, for the most part, quite parallel to that
of superharmonic functions in the classical potential theory. Therefore, the
axiomatic theory by Brelot, which gives a methodology to the classical the-
ory of superharmonic functions, is readily extended to an axiomatic theory
of full-superharmonic functions, once a suitable additional structure is given.
In this paper, we shall show how this extension is carried out.

There are many variations in axioms to be assumed for the harmonic
structure. In this paper, we choose Axioms T and H, which are Axioms 2
and 3 of Brelot ([3], [4] or [5]). We introduce an additional structure in
§2 and assume two axioms (Axioms S and T) for it. The structure thus
given will be called a full-harmonic structure. Besides the one on a Riemann
surface introduced by Kuramochi, we have examples of full-harmonic struc-
ture defined for solutions of second order elliptic partial differential equa-
tions.

From this full-harmonic structure, we construct a theory of full-super-
harmonic functions. We follow the author's previous paper [11] for the
construction of the theory, while we apply Brelot's methods to the proofs.
Definitions and properties of full-superharmonic functions are discussed in
§3 and §4. In particular, §4 is devoted to the study of full-superharmonic
functions of potential type. We shall call them ^-functions. In Kuramochi's
theory on Riemann surfaces, a kernel (Green function) for the full-harmonic
structure is introduced and integral representation of ^-functions with re-
spect to this kernel is discussed. (See [6], [9] [11] and [13]; the kernel is
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denoted by ga in [6] and by N(p, z) in the others.) A ^-function is thus
decomposed into two functions, one with its associated measure on the ideal
boundary and the other with its measure inside the space. We shall show
in §5 that in our axiomatic setting we can also make the corresponding de-
composition, a decomposition into a ί^-function and a ^/-function, without
introducing a kernel. Then we proceed to consider an integral representa-
tion of ^-functions in §6. In this paper, we omit the discussion of integral
representation of ^-functions, since it would be similar to that of super-
harmonic functions, extensively studied in M. Brelot [βj and R.-M. Herve
[8].

Finally we remark that the Martin boundary as well as the Kuramochi
boundary is obtained from a full-harmonic structure (Examples in §6).

§ 1. Preliminaries.

1.1 Notation. Let Ω be a locally compact Hausdorff space. For a sub-
set A of Ω, we denote by dA, A and A1 the (relative) boundary, the closure
and the interior of A, respectively. Given a function f on A and a subset B
of A, the restriction of / on B will be denoted b y / | 5 . We consider only ex-
tended real valued functions.

1.2. BreloVs harmonic structure (cf. [3], [4] and [5]). Suppose, to every
open set G of Ωy there corresponds a linear space 9tG of (finite) continuous
functions on G such that ξ>= {9tG}G forms a sheafυ on Ω.

A relatively compact open set G is called regular (with respect to φ) if
for each continuous function / on dG there exists a unique continuous func-
tion hf on G such that hf\G e 9tG and hf\dG=f and if / > 0 implies Λ/>0. If
G is a regular open set and x e G, then there exists a positive Radon measure

βG on dG such that hf(x)=\ fdβG

x. If D is a component of a regular open set

G, then D is regular and β^ — βG for x c D.
We assume the following two axioms of Brelot.
Axiom T: Regular domains form a base of open sets.
Axiom H: For any domain Z), if {hL}LζI is an upper directed family of

functions in 9tΌ, then supΛt is either = + oo or e 9tΌ.
'6/

For a domain D, the following properties are derived from the axioms:
1) If h e 9iΌ, h>0 and h(x) = 0 for some x e D, then ^ 0 ,
2) If / is a lower semi-continuous function on dD and if D is regular,

then the function h(x)= \ fdβζ is either = + oo or e 9lΌ.

1) i.e., if G x ζ G 2 a n d he J^G2, then h\Gχa 3?Gχ a n d if G = VJG,, h is a function on G a n d h\Gι

for all i, then h e jfG.
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3) For any x e D and a compact subset K of D, there exists a positive
constant M such that h(γ)<:Mh(x) for all y£ K and h e £HΌ with Λ>0.

4) ([10]) For any ^ D , the family {h € 9ίΌ\ h>0, h(x) = l} is equi-
continuous at x.

The following lemma is a consequence of properties 3) and 4):

LEMMA 1. If D is a domain, then {h 6 0ίΌ\ Λ>0, h(x) — l} is compact with
respect to the compact convergence topology.

1.3. Superharmonic functions (cf. [3], [4] and [5]). Let G be an open
set in Ω. Any function in 9ίG is called harmonic on G.

A function s on G is called superharmonic (with respect to ξ>) on G if (i) s
is lower semi-continuous on G; (ii) s> — oo and SΞ̂ Ξ + co on any component of
G and (iii) for any regular domain D such that DCG and for any x e D,

LEMMA 2. (Local criterion) Suppose s satisfies conditions (i) and (ii) m
£/te above definition. If for each point x e G, there exists a base %S(x) of neigh-
borhoods of x such that each D e %ί(x) is a regular domain such that DCG and

for each D c %$(χ), s(x)^> \ sdβζ, then s is superharmonic on G.

A function s on G is called nearly superharmonic on G if (i) s is locally
bounded below and s ̂  + °° on any component of G and (ii) for any regular

domain D such that DCG and for any x e D, s(

Let 33(#) be a fundamental system of neighborhoods of x consisting of

regular domains. If s is nearly superharmonic on G, then s(x)= lim \sd/iζ =

inf {lim s(γ), s(x)} for Λ; C G defines a superharmonic function s, the regulariza-

tion of 5.

Properties of superharmonic and nearly superharmonic functions:
(a) If s is superharmonic (resp. nearly superharmonic) on G and a > 0,

then <xs is superharmonic (resp. nearly superharmonic) on G.
(b) If si and s2 are superharmonic (resp. nearly superharmonic) on G,

then 5i 4 s2, min (51, s2) are superharmonic (resp. nearly superharmonic) on G.
(c) If {s,} is an upper directed family of superhamonic functions on a

domain D, then sups, is either Ξ + OOOΓ superharmonic on D.
(d) If d is a family of nearly superharmonic functions, locally uniform-

ly bounded below, then inf d is nearly superharmonic.

(e) If 5i and s2 are nearly superharmonic, then s i4s 2 = si4:s2.
(f) No superharmonic function assumes + °° over an open set.
(g) If s is superharmonic on G and D is a regular open set such that

D CG, then A(Λ;)= Ud/^ is harmonic on D.
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(h) If s is non-negative superharmonic on a domain D and if s(x)>0 for
some x 6 D, then s > 0 everywhere.

LEMMA 3. (Minimum principle) Let G be a relatively compact open set and
suppose there exists a continuous superharmonic function s0 such that so^>δ>O
on G. If s is a superharmonic function on G and if liτnx^ξ)XζGs(x)^0 for all
ξ edG, then s>;0 onG.

1.4. Perron's family (Saturated family; see [4]). Let G be an open set
and let d be a family of superharmonic functions on G. d is called a Per-
ron's family if (i) d Φ 0 and d is lower directed (ii) for any regular domain
D such that D C G, the superharmonic function

s(x) if xdG-D

luζ if x c D

belongs to d whenever s e ό and (iii) d is locally uniformly bounded below.

Perron's theorem. If d is a Perron's family on G, then inf d is harmo-
nic on G.

§ 2. Full-harmonic structure

2.1. Axioms. Let ® be the family of domains D in Ω such that D is not
relatively compact and dD is compact. In order to assure that 3) is not
empty, we hereafter assume that Ω is not compact. Let © be the family of
open sets G in Ω such that dG is compact.

Suppose, to each D e ®, there corresponds a linear subspace dtD of 9ίΌ.
Let § = {dCD}DeΦ. For Ge@, let

dtG = {u e <^G; u \DL 6 <̂ z>t for each component DL of G such that Dt e 2).}

Then 91 G is a linear subspace of dtG- If G is relatively compact, then dtG^=dtG^
In the previous section, a regular domain was assumed to be relatively

compact. We extend the notion of regular domains for not relatively compact
domains.

A domain D e 5) is called regular (with respect to ξ>) if, for any continu-
ous function / on dD, there exists a unique continuous function uf on D such
that Uf\Όe 9tΌ) and uf\dD=f and if / > 0 implies w/>0. In this case, there
exists a positive Radon measure juζ on dD for each Λ e D such that uf(x) =

fdβ%. An open set G e © is called regular if its components are all regular

either in the above sense or in the sense defined in §1. For x e G, we define
β^ — β^ where D is the component of G containing x. We denote by ® r

(resp. ©r) the set of all regular domains in ® (resp. regular open sets in ©).
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We assume the following two axioms for | ) :
Axiom S(Sheaf): Let D e S . (i) If ue3tD, D'CD and D' e ®, then

u ID, e dtΌf. (ii) If u e 9tΌ and if there exists a compact set K such that
K^dD and u\Ό-K£ 9tΌ-K, then a e 9tΌ.

Axiom T: For any compact set K in Ω, there exists another compact set
Kx such that i Γ D ^ and Ω-Kλ e ®r.

We call |) a full-harmonic structure subordinate to φ. In this paper, we
fix ξ> and |) once for all.

Remark: Here, we first considered a harmonic structure {9tG} and then
defined a full-harmonic structure {<^L>} in terms of {dCG}. Instead, we may
define a full-harmonic structure directly by giving a sheaf of linear spaces
9tΌ, considered for all domains D with compact boundary. In this case, 9tG

is defined as the family of all functions u on G such that u\De 9tΌ for all D in
a family of relatively compact domains which covers G. If we assume Axioms
T, H, S and T for these spaces, then we have a full-harmonic structure.

2.2. Consequences of axioms.

LEMMA 4. Let G e @, D e S)r and DQG. Then, for any u 6 9ίG and x 6 D,

\M dju%=u(χ). Conversely, if u c £HG and \u djuζ=u(x) for all D e S)r swcΛ

ίfeaί 5 CG tt^d /or aίϊ x e D, then u e ^ G .

PROOF : w | ^ is continuous and u \ D 6 ^ ^ by Axiom 5, (i). Since D is re-

gular, the first part of the lemma follows from the uniqueness of uf. Sup-

pose u e 9ίG and \u dβ% = u(x) for all D 6 ® , with ZJCG. By Axiom f, there

exists a compact set K such that K:^)dG and i2 — i£ e ®r. If D is a component
of G—K, then it is a component of Ω — K, so that Z> is regular and DCG. If

D is relatively compact, then \u djuζ = u(x), since u is harmonic on G; other-

u dμ% = u(x) by assumption. Hence \u dju%~κ = u(x)

j ^

for all x e G — K, so that u e dtG~κ> It follows from Axiom 5, (ii) that u 6 dtG.

LEMMA 5. Let D e ® and let {u,} ι€ibe an upper directed family of func-
tions in 91D' Then sup ut is either = + oo or 6 9tΌ.

( 6 /

PROOF: Let wo^supi^ and suppose u^ + oo. Then, by Axiom H,

uo e 9ίΌ. Let Dr e ® r and Df CD. By Lemma 1, we see that ut^u0 uniformly

on di/. Since \ut dμξf = ut{x) for # e Ώ' by the above lemma, we have \uvdμ%'

= ẑ o(̂ ) for Λ; e Z)'. Hence, again by the above lemma, we have u0 6 9tΏ.

COROLLARY. Let D e ® r and let f be a function on dD.

(i) / / / is lower semi-continuous and >—oo5 ίfe^n the function u(x)= \fdju%
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is either = + °o or u e 9tΌ.

(ii) / / / is arbitrary, then the function u{x)— \ / d/i% is either = + oo?

= — oo or u e 9tΌ.

2.3. Examples of full-harmonic structure.
Example 1. (Kuramochi, Constantinescu and Cornea). Let Ω be an open

Riemann surface and let ^={dCG} be the classical harmonic structure on Ω.
If K is a compact set with sufficiently smooth boundary dK and if / is a C°°-
function near dK, then, by [9], [13] or [6], there exists a unique harmonic
function/^ on Ω—K which has the smallest Dirichlet norm among functions
on Ω—Kι assuming the value/ on dK. Kuramochi's full-harmonic structure
is given by

(*) dίD={uedtD\ u = udKΓλD on D-K for some compact set K)

I such that K^dD. \'

We can carry out similar definitions if Ω is a space of type & in the sense of
Brelot-Choquet (see [11]).

Example 2. Full-harmonic structure for solutions of Au = qu.
If we replace harmonic functions by solutions of a second order self-

adjoint elliptic differential equation, then we have a full-harmonic structure
by applying the method of Example 1, under certain condititions imposed on
the coefficients of the equation (cf. [12]). To avoid inessential complications,
we here restrict ourselves to the equation Lu=Au — qu = 0 on a domain Ω in
the ^-dimensional Euclidean space (in>2), where Δ is the Laplacian and q is
a non-negative C°°-function on Ω. Let 9ίG-={u\ Lu = 0 on G}. Then, it is
known by Herve [8] that ξ)= {9iG} is a harmonic structure. A full-harmonic
structure subordinate to ξ) is defined as follows.

Let G be an open subset of Ω and let &(G) be the set of all BLD-functions
/ (see [11]; they are called "fonctions (BL) precisees" in [7]) in G such that

qfdx<oo. Let EG(f, g) = DG(f, g)+\ qfgdx for f9geS(G\ where
G J G

DG(f, g) is the mutual Dirichlet integral of / and g on G. Identifying func-
tions which are equal almost everywhere, &(G) becomes a Hubert space with
the inner product EG(f, g) (cf. [7]). Next, let K be a compact set in Ω such
that its boundary dK consists of a finite number of closed C°°-surfaces. Let
&κ= {u e S(Ω); u = 0 q.p. on K}. We can show that Sκ is a closed subspace
of S(Ω). If / is a C°°-ΐunction defined in a neighborhood of dK, then there
exists at least one C°°-ίunction uf on Ω such that uf € &(Ω) and uf—f on dK.
Let Vf be the projection of uf onto Sκ- We can show that vf can be chosen to
be continuous (cf. [12]) and that the value of uf — vf on Ω — K is independent
of the choice of uf. Thus, we write fκ = uf — vf on Ω-K The following
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proposition can be proved by the same methods as Satz 15.1 of [6] (also see
[7]).

Proposition, (i) LfK = 0 on Ω-K, i.e.,/* e dtΩ-K.
(ii) f-^fκ is a linear mapping of S(Ω) into S(Ω—K).
(iii) I f />0, then/*>0.
(iv) If KCKU then (fκ)κ^fκ on Ω-Kx.
(v) If D is a component of Ω-K, then fκ=fdD on Zλ
For D e ®, we define ^ by (*) in Example 1. Then the above proposi-

tion implies that {dt^sΌ^ satisfies Axioms 5 and T.
Similar discussions hold in case Ω is an open Riemann surface.

Example 3. Let Ω be an open Riemann surface (or a non-compact space
of type <§) and let φ = {dίG} be the classical harmonic structure. For an open
set G 6 @ and a continuous function / on dG, let ϋΓ̂  be the Dirichlet solution
on G with boundary values / on dG and 0 on the ideal boundary (cf. [6] and
[14]). If we take

Stj) — [ u e 9tΌ there exists a compact set K such that ι

and u = H%~κ on D-K. {,

then ξ> — {9tΌ}Όe% is a full-harmonic structure subordinate to ξ>.

Example 4. Full-hαrmonic structure associated with an Lγ-operator.
Let Ω be an open Riemann surface or a non-compact locally Euclidean

space. If D e ® has a sufficiently smooth boundary, then the Zα-operator
(with respect to the canonical partition of the ideal boundary) in the sense of
L. Sario is defined for D (see [1] and [15]). We denote it by Lλ>Ό. We take
the classical harmonic structure φ = {dCG} and we define

ίz)= f u c 9ίΌ\ there exists a compact set K such that dK is smooth,

K'^dD and u = Lι>D,u on Dr for any component Z)'

oίD-K.

Then we can see that {9ίΌ}Όe% is a full-harmonic structure subordinate to £>.

§ 3. Full-superharmonic functions

3.1. Full-superharmonic functions.
Definition. Let G e ®. A superharmonic function u on G is called full-

superharmonic (with respect to |)) if, for any D e ® r such that DCG, u(x)^>

u dμξ for all i 6 D .

By Lemma 4, we see that a function u on G belongs to dtG if and only
if u and — α are both full-superharmonic on G. A function of 9tG will be
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called full-harmonic on G.
The following properties are immediate consequences of the definition

and the corresponding properties of superharmonic functions.
(a) If u is full-superharmonic on G and if α > 0 , then au is full-super-

harmonic on G.
(β) If u\ and u2 are full-superharmonic on G, then uι-\-u2, min(^i, u2)

are full-superharmonic on G.
(γ) If {uι}ι is an upper directed family of full-superharmonic functions

on D e ®, then sup uL is either = + oo or full-superharmonic on D.

(d) If u is full-superharmonic on G and if G' e © r, G'CG, then &(*) =

\ α d/^' is full-harmonic on G\

THEOREM 1. (Minimum principle) Let G e ® and suppose there exists a
non-negative continuous full-superharmonic function sQ onG such that so^>δ>O
near dG, i.e. on VΓ\G for a neighborhood V of dG. If u is a full-superharmonic
function on G such that \imx^ξ>x€G U ( Λ ; ) > 0 for all ξ e dG, then u

PROOF : It is enough to consider on each component of G. By virtue of
Lemma 3, we may assume that G e S . Let K be a compact set in Ω such that
K^dG and G—Ke&r (Axiom T). Let a = mfx€dK^G(u(x)/so(x)). Since u/sQ

is lower semi-continuous, <x> — oo. Put ^ = mix6G(u(x)/so(x)).
Suppose that /?<0. If α > 0 , then u>0 on dKr\G. Hence,

for all yβG-K, Hence u/so^:O>β on G - ^ z ' . If α < 0 , then

u —α50 is full-superharmonic on G and non-negative on dKr\G. Hence

u(γ) — aso(γ)'>\(u — aso)dβ^~κ'>O for all yeG—K. Therefore, u>as0 on

G—K* or u/so*^>a>β on G—K\ Thus, we have seen that either inf G _^(^/
s o )>β or a — β. By assumption, l im^|^ e G (^(^)A 0 (^))>0 for all ξ e dG. Hence,
it follows that /?> — oo and u/s0 attains β inside G, say at x0 e G. Then the
superharmnic function u — βs0 is non-negative on the domain G and vanishes
at x0. Hence u — βso=O onG or u/so=β<O, which is impossible. Therefore,

and the theorem is proved.

LEMMA 6. Let G e ®. If u is superharmonic on G and if for each com-
pact set K in Ω, there exists another compact set Kλ such that K[^)K\JdG,

G — Kι 6 ®r and u(γ)>\u dβ^~Klfor all ye G — Ku then u is full-superharmonic

on G.

PROOF : Let D e ® r and D C G. Let g be any continuous function on dD

such that g < u on dD and let ug(x) = u(x) — \ gdjuζ for x e D. Then

D ug(x)^>0. By assumption, there exists a compact set Kι such
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that KOdGKJdD, G-Kx e ®r and u{y)>γ dμG

y~
κ^ for all yeG-K^ Then

D-tdeQbr and u^~Kl=M?~Kl for ye D-Kλ. Hence u(y)^{udβ^κ^ for

all yeD-Id. Then it follows that ug(y)>[ug dμD

y~
κ^ for all yeD-Kλ.

Since Z) is regular, there exists a positive full-harmonic function h0 on D

such that Λo>£>O near dD(e.g., ho(χ)=\dju%). Then, by arguments similar

to the proof of the above theorem, we conclude that ug*^>0 on D. Hence

u(χ)^>\g dju% for all x e D. Since u = &vφg<ug, it follows that u(x)^\u djuζ

for all x e D. Hence u is full-superharmonic.

COROLLARY. Let G e ® and let u be a superharmonic function on G. If
there exists a compact set K such that u is full-superharmonic on G—K, then
u is full-superharmonic on G.

3.2. Theorems on full-superharmonic functions.

THEOREM 2. Let Ge®, Gf e ®r and G' C G. For a full-superharmonic
function u on C, let

u(x) if xeG-Gr

udju? if xeGf.

Then uι is full-superharmonic on G.

PROOF: It is easy to see that uι is superharmonic on G (cf. Lemma 2).
Let K be a compact set such that KιD dG\JdGf and G-K e ®r. If x e G-G'-K,

then uι(x) = u(x)^\udβG κ^>\u1 dβ% κ. If xeG'—K, then Lemma 4 im-

plies \uι dβG

x~
κ = \uι dβG

x

f~κ — u1(κx), since uλ is full-harmonic on G'. Hence

uι is full-superharmonic by the above lemma.

If K is a compact set such that K*^)dG and G—Ke®r, then the full-
superharmonic function uι defined in the above theorem for Gr=G—K will be
denoted by uκ.

THEOREM 3. (Perron) Let % be a family of full-superharmonic functions
on G e ©. Suppose that ί/ is a Perron's family on G and that, for each compact
set K with K^dG and G-Ke®r, ueU implies UK^U. Then infί/ is full-
harmonic on G.

The proof is similar to that of Perron's theorem.

THEOREM 4. Let G 6 @ and u be a full-superharmonic function on G. If
there exists a full-superharmonic function vι on G such that u^>—vu then
there exists the smallest function v0 among full-superharmonic functions v such
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that w>— v. Furthermore, v0 is full-harmonic on G, i.e., — v0 is the greatest
full-harmonic minor ant of u.

PROOF: Let %={v\ full-superharmonic on G, u~>—v}. Since ^eί/,
UΦ 0. It is easy to see that U satisfies the conditions of Theorem 3. Hence
i;0 = inf 11 is full-harmonic and zz>— v0.

3.3. Nearly full-superharmonic functions. A function g on G e @ is cal-
led nearly full-superharmonic if it is nearly superharmonic on G and for any

D 6 ©r such that D CG, #(*)>\ # ^A? for all xe D.

Obviously, a full-superharmonic function is nearly full-superharmonic.
If g is nearly full-superharmonic, then its regularization g is full-super-
harmonic.

The following properties are easy to see:
(α) If g is nearly full-superharmonic and if α>0, then ag is nearly full-

superharmonic.
(/?) If gι and g 2 are nearly full-superharmonic, then gi+ g2, min(#i5 g2)

are nearly full-superharmonic.
(r) If % is a family of nearly full-superharmonic functions locally .uni-

formly bounded below, then inf U is nearly full-superharmonic.

§ 4. Full-superharmonic functions of potential type

4.1. Full-superharmonic functions of potential type. We consider a do-
main Ωo e 35 such that there exists a positive continuous full-superharmonic
function u0 on Ωo which satisfies 0 < 5 < ^ 0 < ^ < + °° near dΩ0, i.e., on Vr\Ω0

for some neighborhood F of ΘΩ0. The existence of such a function u0 is as-
sured if Ωo is contained in a regular domain. T7e take such a domain Ωo and
fix it throughout the rest of this paper. A compact set K of Ω will be called
admissible (for Ωo) if

Definition. A non-negative full-superharmonic function on Ωo is called
of potential type (on Ωo) if its greatest full-harmonic minorant on Ωo is zero.
We denote by φ the family of all full-superharmonic functions of potential
type.

Any non-negative full-superharmonic function u has a unique decomposi-
tion u = h-\-v with h full-harmonic on Ωo and v€§>; h is the greatest full-
harmonic minorant of u.

If v e φ and if u is a non-negative full-superharmonic function such that
u <t>, then u e $>. Hence, if vu v2 £ Φ, then min(i;i, v2) 6 °p.

LEMMA 7. Let u be a non-negative full-superharmonic function on Ωo and
let K be an admissible compact set. If there exists v e §> such that u<^v on

then ueφ.
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PROOF: Let h be a full-harmonic minorant of u. Then v^>u^>h on
K'ΓΛΩQ and v — h is full-superharmonic on Ωo. Hence, by Theorem 1, v — / ι>0
on ώo. Since v e φ, h<0. Hence ueφ.

4.2. Reduced functions. Let ^ be a non-negative full-superharmonic
function on Ωo and let F be a subset of Ω. Then the function

RFu = mί{v; full-superharmonic > 0 on Ωo, υ^>u on
/\

is nearly full-superharmonic on Ωo and 0<^RFu<Cu. Hence uF = RFu is full-
superharmonic on Ωo and 0 < ^ F < ^ We call uF the reduced function of u
on F (with respect to Ωo).

The following properties are easy to prove.
1) uF—uFίλΩo; uF = u on FtΓΛΩ0; uφ = 0.
2) uF is harmonic on Ωo — F; uF is full-harmonic on Ωo — F if F is rela-

tively compact in Ω (by Theorem 3).
3) u\<iu2 implies {uι)F<^{u2)F.
4) FXCF2 implies uFί<uF2.
5)

Remark: lί Φ= {0}, then all non-negative full-superharmonic functions
are full-harmonic and proportional to each other. Therefore, in this case,

tf implies u = uF.

LEMMA 8. Let u be a non-negative full-superharmonic function on Ωo and

let Kbe an admissible compact set such that Ω0 — Ke®r. Then uκ(χ)=z\u dβξ»~κ

for x 6 Ωo—K. (Thus the notation after Theorem 2 does not conflict with the
present one.)

PROOF: By Theorem 2,

u(x) if x e KΓ\Ω0

udβΩ

x^
κ ifxcΩo-K

is full-superharmonic on Ωo. Obviously, αi^>0. Hence uκ<luι. On the
other hand, if v is a non-negative full-superharmonic function on Ωo such

that v> u on Kr\Ω0, then v(x)>{v dμΩ

x^
κ>{u dμ°°~κ for x a Ωo-K. There-

fore, v~^>uι and hence

4.3. Lemmas on full-superharmonic functions of potential type.
LEMMA 9. Let {Kt} be a directed family of admissible compact sets such

that Kt^)K^ if c<cf and f\(KιΓ\Ω0)= 0. If u is a non-negative full-super-

2) It is possible to prove that the equality holds in 5). Cf. [2] and [8].
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harmonic function on Ωo, then lim uKι is equal to the greatest full-harmonic

minor ant of u.

PROOF: Each uKι is full-harmonic on Ω0 — Kb, For any c0, {uKι\
is a lower directed family of full-harmonic functions on Ω0—KtQ. Hence
h = mί uKί is full-harmonic on Ω0 — KiQ by Lemma 5. Hence h is full-harmonic

on Ωo. Obviously, 0<h<u. Now, let hi be any full-harmonic minorant of
u on Ωo. Since uKι = u on Kir\Ω0, uKt>h1 on K\Γ\Ω0. Applying Theorem 1
to the full-superharmonic function uKι — hu we see that w# t>Ai. Hence

Therefore, h is the greatest full-harmonic minorant of u.

COROLLARY. // uu u2 e φ, then uι + u2e φ. Hence Φ is a cone.

PROOF. Let {KL} be as in the above lemma. Then lim(αi)^ t = 0 and

)κί

τ=®> Hence 0<lim(ι^i+ u2)Kί<L\im(uι)Kι + lim(M2)* t = 0. There-
I I I ί

fore, uι+u2 6 φ.

LEMMA 10. Suppose Φφ {0}. // FίΛdΩ0= 0, then uF e °P for any non-
negative full-superharmonic function u on Ωo.

PROOF: By assumption, there exists v0 e φ such that vo>O on Ωo. Let
i£be an admissible compact set such that FΓ\ΩOΓ\K= 0 and let α = inf 3KMOVO>

Then α > 0 . Let u=h + v with h full-harmonic and v € @>. If h = 0, then uF =
υF e §>. Suppose hφO and let /? = supa^n^0A. Then 0</?< + oo. (β/a)vo — h
is full-superharmonic on Ωo—K and limx^ξ>xeΩQ_κt(β/a)vo(x) — A ( Λ ; ) ] > 0 for

all ζ e dKΓ\Ω0. Hence, by Theorem 1, (β/a)vo>:h on Ωo—K, and hence on
Fr\Ω0. Therefore, (β/a)vo>hF. Since (β/ά)v0 a Φ, hF € φ. Obviously, υF e φ.
Hence hF-\-vFeφ by the above corollary. Since uF<hF + vF, it follows
that uF 6 φ.

LEMMA 11. Let u be a non-negative full-superharmonic function on Ωo.
(i) If u e φ and if u is harmonic on Kι

0Γ\Ω0 for some admissible compact
set Ko, then, for any admissible compact set K such that KCK*0, udκ = u on

(ii) Suppose Φφ{ϋ\. If there exists an admissible compact set K such
that udK = u on K{r\Ωo, then u e φ.

PROOF : (i) Let υ be any non-negative full-superharmonic function on
Ωo such that v>u on dKΓ\Ω0 and let

[ 0 on Ω0-Kι

{ inί(v-u9 0) on K'ΓΛΩQ.

Then it is easy to see that vι is a non-positive full-superharmonic function on
Ωo. Since — vi<u everywhere, u e φ implies — ^ i < 0 , so that vι — 0. Hence
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ί/>ίίon K{r\S20. Then it follows that u = udK on
(ii) By Lemma 10, udK e §>. Hence, Lemma 7 implies that u e φ.

LEMMA 12. Let K be an admissible compact set. Then there exists a posi-
tive constant Mκ such that

sup \uι(x)—u2(x)\<Mκ sup \uι(x)—u2(x)\
x€KΓ\ΩQ x€dKΓΛΩ0

for any uu u2 e φ which are harmonic on an open subset of Ωo containing KΓ\ΩQ.

PROOF: Let u0 be a positive continuous full-superharmonic function on
Ωo such that u0 is bounded near dΩ0. Let β— supKΓ\Ω0 U0 and a= mΐdKΓ\ΩQ u0.
Then 0 < α < / 9 < + co. For any uu u2eφ satisfying the condition of the
lemma, let λ = swpx€dKnΩo\uι(x)—u2(x)\. Then K + °° and \uι — w 2 | < Λ <
(λ/a)u0 on dKr\Ω0. u1<^(λ/a)u0+u2 on dKr\Ω0 implies that (uι)3K <C(λ/ά)u0

+ u2. Since uι c °P, Lemma 11, (i) implies uλ <(A/α)^ 0+ u2 on KιΓ\ΩO. Hence
uι —u2<(λ/a)u0<(β/a)λ on KΓΛΩQ. Similarly, we have u2 — uι<(β/a)λ on
Kr\Ω0. Hence it is enough to take Mκ = β/a.

Remark: (i) If we take uι = u and u2 = 0 in the above lemma, we have

sup u(x)

on Kr\ΩQ.
(ii) if u = l is a full-superharmonic function, then we can take Mκ — 1.

§ 5 Decomposition of full-superharmonic functions

of potential type

5.1. Space Φb. Let §>b be the set of all harmonic full-superharmonic
functions of potential type, i.e., §)b = jPr\dCΩQ. Obviously, §>b is a cone. Here-
after, we assume that °Ph φ {0}.

Let vu v2 e Φ. If there exists w e $> such that vι + w = v2, then we write
vι<^v2. The relation < is an order relation in §>. If vu v2 e °Ph, then vγKy2

if and only if υ2 — vλ e °Ph. Hence the relation < restricted on φb is the order
induced by 9b itself.

LEMMA 13. °Pb is a lattice with respect to the order < .̂

PROOF: Let wu w2eφb. Consider the family %={ue^\ u^wλ and
u^w2}. Since wχ-\-w2 e U, Uφfi. Let wo = inίί/. It follows from (γ) in 3.3
that wo is non-negative nearly full-superharmonic on Ωo. Since wι, w2 are
harmonic on Ωo, we see that % is a Perron's family on Ωo. Hence, w0 is
harmonic and full-superharmonic. Since 0 < w 0 < w ι + w2 e §), w0 e §>b. Simi-
larly, we see that w0 — wx e §)b and w0 — w2 e Φb, i.e., wo>wi and wQ^>w2.

If w' e §>b satisfies wf^>wλ and wf^w2, then tί;' e U. Hence U/^WQ. We
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shall show that wf — w0 is full-superharmonic. Then, wr — wQeφb or
and we conclude that w0 is the least upper bound of wx and w2.

To show that w' — w0 is full-superharmonic, it is enough to prove that

w/(x) — w0(x)^\(w/ — wo)dβξo~κ for any admissibile compact set K such that

Ω0-Ke ®r and for all x e Ωo-K. Let

{ - κ , w o ( χ ) } if xeΩ0-K

wo(x) if x 6 KΓ\ΩQ.

Then, we see that g is non-negative full-superharmonic on Ωo. Since
wof^, g€jP. Similarly, replacing wf by w' — Wi (i = l, 2) and w0 by wo — Wi
(ί = l, 2), we see that g —w, 6 ίP (Ϊ = 1, 2). Hence g c ί/, so that wo<g . Hence

We have shown that 5>6 is an upper semi-lattice with respect to the order
induced by itself. Since §)b is a cone in the linear space 9ίQ^ it follows that
§>b is a lattice with respect to this order.

We shall write wo = wιVw2.

5.2. Decomposition theorem. We denote by Φi the set of v e 5P such that
there is no non-zero w e °Ph satisfying v^>w. The purpose of this section is
to show that any v e 9 has a unique decomposition v = vb + v{ with vb e Φb and

For any v e @>, let ^δ(v)= {w e °Pb v^>w}. Since 0 e δ̂(t ), β(v) is not empty,
i; e ^ if and only if β(v)= {0}. For each w 6 δ̂(t ), u;-<ι;. Hence Bv = suv£(v)
exists and Bv<iv.

LEMMA 14. Bv e £(v) and Bv is the least upper bound of &(υ) with respect
to<.

PROOF: If wu w2 e &(υ\ then wι\fw2e °Pb and an argument similar to the
proof of Lemma 13 shows that wιVw2<^v. Hence, wι\/w2€ £(v). It follows
that £(υ) is an upper directed family of harmoic full-superharmonic func-
tions dominated by v e §>. Hence Bv e °Pb. Since v — weφ for any w e dί(v),
v — Bv is nearly full-superharmonic. It then follows that v — Bve§), i.e.,
v^>Bv. Hence Bv e £(v). For any w e &(v\ Bv\/w e £(v) by the above argu-
ment. Hence Bv\/w<iBv, so that BvVw=Bv, or Bv^>w. Therefore, Bv is
the least upper bound of £(v).

THEOREM 5. // v e °P, then Bv e Φb and v — BveΦi. Conversely, if

v = Vb-\-Vi with vb e °Pb and v{ e §>i9 then vb = Bv, i.e., the decomposition of v into
a sum of a $>b-function and a Φrfunction is unique.

PROOF: By the above lemma, Bv e §>b. If w' e °Pb satisfies w'<v — Bv,
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then w' + Bv<^v, i.e., w' + Bv € £(v). Hence w' + Bv<Bv or w' = 0. Hence
v — Bυe @>i. Now suppose v = vb + v{ with vb c §>h and v{ e Φ{. Since vb e &(v\
vb^Bv by the above lemma. Since Vi = (Bv — vb) + (v — Bv), vi^Bv — vhe

6Pb.
Hence, by the definition of °P^ Bv — vb = 0 or Bv = vb.

5.3. Additivίty of the B-operation. Let v c °P and let K be an admis-
sible compact set. Let (&κ{v) be the family of functions u e §> such that
there exists a full-superharmonic function s (may be negative) on Ωo — K such
that u = v + s. Since v c £K(v), £κ(v) φ 0. Let Bκv = inf &κ(v).

LEMMA 15. (i) Bκv c §> and it is harmonic on KιΓ\Ω0.
(ii) Bκv<^v, in fact, v = Bκv-\-wκ with wκ ^°P which is full-harmonic on

Ωo-K.

PROOF: (i) Let U be the family of full-superharmonic functions s on
ΩQ — K such that u = v + s on Ωo — K for some u e (Mκ(v). Then, it is easy to see
that U satisfies the conditions of Theorem 3 for Ωo—K, so that so = infU is
full-harmonic on Ωo — K. On the other hand, Bκv is nearly full-superharmonic

on Ωo and 0<BKv<v. Since Bκv = υ + s0 on Ωo — K, Bκv = v + so on Ωo — K.

It follows that BκveMκ{v) and hence Bκv^>Bκv. Therefore,
so that Bκv c °P. Since &κ(v) is a Perron's family on KιΓ\Ω0, Bκυ is har-
monic on Kι Γ\ΩQ.

(ii) Let

if
Wι= )

{ oo if

Then, w;i>0. For any relatively compact regular domain D (resp. D e ® r)

such that 5 C O o , / W = U <iA? and ^ ) = \ ^ ί ; d^J are harmonic (resp. full-

harmonic) on D. It follows that \wι d/uζ=f(χ)—g(x) for ^ e D . Next, let φ

be any continuous function such t h a t φ<> on dZ), l e t / i ( ^ ) = \φdβ® for x c D

and let

[ i n f ( t ; - / i + # , Bκv) on i)

ί Bκv on i?o-i).

Then, we see that vι is a non-negative full-superharmonic function on Ωo and
v c 5λ Hence #i e 5̂ . Similarly,

ί i n f ( - / i + ^ s 0 ) on J 9 - K

{ so on (ΩQ-K)-D
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is full-superharmonic on Ωo — K and s + v = vι on Ωo—K. Hence, v\ e &κ(v), so
that vι>Bκv. Therefore v—f\+g^>Bκv on D, or w i > / i —g on D. Since

/ = s u p / i , we have w i ( » > / O ) — g(χ)=\wι dμ% for x e D. Thus, we have
φ<v J

shown that w\ is nearly full-superharmonic on Ωo. It follows that w\ + Bκv = v.
We take wκ = wι- Then wκ £ 5> and w^= — s0 on Ωo — K, so that w^ is full-
harmonic on Ωo—K.

LEMMA 16. Bv= inf i?*^.
K' admissible

PROOF : Let v0 = infκ Bκv. This is nearly full-superharmonic. If Kλ C K2,
then BKίv^Bκ2v. Hence {Bκv;K admissible} is a lower directed family.
It follows from Lemma 15, (i) that v0 is harmonic on Ωo, and hence full-super-
harmonic on ΩQ. Since vo<v e Φ, v0 e §>h. By Lemma 15, (ii), V = VQ + &XLVKWK

We see that sup^ w# e @>, so that v^v0. Hence vo<Bv. On the other hand,
u = Bκv — Bv is superharmonic on Ωo and, since u=—wκ-\-(v — Bv) on Ωo—K,
it is full-superharmonic on Ωo. Since —u<Bυ and BυeΦ, w>0, i.e.,
£ / ^ > B v . Hence vo>Bv.

THEOREM 6. B(υχ + v2) = Bvγ + Bv2.

PROOF: Since Bvi + Bv2K,vi + v2 and i ^ i + i ? ^ € Φb9 Bυι + Bv2 e
Hence Bvι^Bυ2 <B(vi + v2). On the other hand, it is easy to see that BKvx +
Bκv2e £κ(vι + v2), so that Bκvϊ + Bκv2'>Bκ(vι + v2). Hence, by the above
lemma, we have Bv± + Bv2^>B(vi-\-v2).

COROLLARY. °Pi is a cone.

PROOF : It is enough to recall that v e °Pi if and only if Bv = 0.

If we write Jv — v — Bv^ then B and / are additive mappings of §> into Φb

and φi9 respectively. It is easy to see that φb = B(Φ), φ{ = J(φ) and ΦbΓ\Φi
= {0}. It follows that B and / are mutually orthogonal projections, i.e.,
B2 = B, J2 = J and BJ=JB = 0.

§ 6 Integral representation of ^-functions.

In this section, we assume that Φbφ {0}. Furthermore, we assume that
Ω is countable at infinity, i.e. there exists a sequence {Kn} of compact sets
such that KnCKi

n+ι for each n and \jKn = Ω. We can choose Kn admissible.
n

Such a sequence {Kn} will be called an admissible compact exhaustion of Ω.

6.1. Metric on Φb.

LEMMA 17. The set Φb with the compact convergence topology is metrizable.

PROOF: Let {Kn} be an admissible compact exhaustion of Ω. For uu



Axiomatic Treatment of Full-Superharmonic Functions 213

u2 e Φb, we define

Obviously, p is a metric on φb. We shall show that this metric is compa-
tible with the compact convergence topology on φb.

Fix uoe3)b. For any ε > 0, choose n so large that l/2n~1<ε. Let
d = ε/2(2nMκn), where MKjι is the constant given in Lemma 12. If ue§>b

satisfies | u(x) — uo(x)\ <δ on dKnΓλΩ0, then \u(x)—uo(x)\ <ε/2n on KnΓ\Ω0.
Hence p(u, uo)<ε/2-\- n(ε/2n) = ε. Hence the compact convergence topology is
stronger than the p-topology. Conversely, let a compact set F in Ωo and
ε>0(ε<l) be given. There exists m such that Km^F. If p(u, uo)<ε/2m+ι,
then

Kmr\Ω01 u(x)—uo(x) 1

Hence, sup*6F \u(x)— uQ(x) \ < supx€Kmr\n01 ^(^) — uo(x) \ < ε. Thus, we have the
lemma.

LEMMA 18. §)b is complete with respect to p.

PROOF: Let un e °Ph and {un} converge locally uniformly on Ωo. Let u
be the limit function. It is easy to see that u is harmonic, full-superharmonic
on ΩQ. Hence it is enough to show that u e °P. Let K be an admissible com-
pact set and let v be a non-negative full-superharmonic function such that
v>u on dKr\Ω0. Since un^»u uniformly on dKr\Ω0, there exists no = n(ε)
for any ε>0 such that n^>nQ implies v^>un — ε on dKί\Ω0. Let s0 be a posi-
tive full-superharmonic function such that s0 <M< + oo on ^ΓΛΩQ. We may
assume that ΊnίdKΓ\ΩQso>_l. Then v + εso>un on dKr\Ω0, so that ^ + εs o >(z^W.
By Lemma 11, v + εsQ*>un on K*Z)Ωo (n>n0). Hence, v-\-εso~>u on ^ 'Πi2 0 .
Since ε is arbitrary and so<M on KιίλΩ^ it follows that v>u on K{Γ\ΩQ.
Hence udK = u on K*Γ\ΩO. Then, Lemma 11 implies u € §>.

6.2. Representation theorem. We fix x0 c Ωo and let Φb,o={u e ^^ U(ΛJ0)

= 1}. Obviously, ^ 6 ) 0 is closed in °Pb. Hence, Lemma 1, Lemma 17 and
Lemma 18 imply that Φb>0 is compact metrizable with respect to the com-
pact convergence topology. Also, φb>0 is a convex set and is a base of the
cone §)b, which is a lattice with respect to the order induced by itself (Lemma
13). Therefore, we can apply Choquet's theorem (see []3], Q4] and {ΛΐJ) to
the cone Φb and a base §>b>0 and we obtain:

THEOREM 7. For any u e φb, there exists a unique Radon measure μ on

the compact space §>b>0 such that β(φb)O — e(φb>o)) = O and u = \v dμ(υ\ where

e(jPb,o) is the set of all extreme points of the convex set Φb.o- The total mass
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of β is equal to u(x0).

6.3. The special case where a kernel is defined. Let x0 e Ωo be fixed. An
extended real valued function kx( y) = k(x, y) on ΩoxΩo is called a kernel on
Ωo (with respect to the full-harmonic structure $, normalized at x0) if it satis-
fies the following three conditions:

(i) For each x e Ωo, kx e ίP, kx is full-harmonic on Ω0—{χ} and kx(χ0) = l
for x e Ωo—Ko, where Ko is an admissible compact set such that x0 e Kι

0.
(ii) For each ye Ωo, the mapping x-^»k(x, y) is continuous on Ωo— {y, xQ}.
(iii) For any admissible compact set K such that K{^KOy if v e °P is full-

harmonic on Ωo—K and harmonic on K'ΓΛΩO, then there exists a Radon me-
asure β on ΘKΓΛΩQ such that

v(y)=\ Uy)dβ(x)

for all y e Ωo.
We assume the existence of a kernal kx{ y) and consider a realization of

e(5\o) a s a Pa i >t °f a n ideal boundary of i20. For each ye Ωo, there exists a
continuous function/^ on Ώo such that fy(χ):=kx(y) for x e Ωo — K for some
admissible compact set iC The property 3) in 1.2 allows us to take fy to be
bounded. Let Co be the space of all continuous functions on Ω with compact
support and let Q = {/̂  | ΏQ j e i20} W {/ \ΩQ / ^ Co}. Let i3f be the (^-compacti-
fication (see [6]) of Ωo. Then i2j — i30 consists of two compact parts Δ and
dώo, where Δ is characterized as follows: If x e Ωo tends to a point ζ e Δ,
then Λ; tends to the ideal boundary of Ω and kx converges everywhere.

THEOREM 8. e(Φbfo) is homeomorphically embedded in Δ.

PROOF : First, we shall show that to each ξ e Δ there corresponds a
kξ e jPb,o> Let x e Ωo tend to ξ e Δ. By the property of Δ and by Lemma 1,
kx converges locally uniformly on Ωo. Let kξ be the limit function. It fol-
lows, like Lemma 18, that kξ e §)b. Obviously kξ(xo) — l, so that kξ e Φbf0. By
the definition of the compactification, kξ is uniquely determined by ζ and if
Sιφξ2 (ίi, 2̂ 6 Δ), then kξlφkξ2. Hence the mapping ξ^»kξ is one-to-one from
Δ into Φb,o Also, we see that this mapping is a homeomorphism.

Now, it is enough to show that, for each u e e ( ^ M ) , there exists ξ e Δ
such that u = kξ. Let {Kn} be an admissible compact exhaustion such that
K[^)K0. Since uKn e §> and is full-harmonic on Ω0—Kn, harmonic on K^ίΛΩ^
condition (iii) for kx implies that there exists a Radon measure βn on dKnr\Ω0

such that uKn(y)=\kx(y) dβn(x). We regard βn as a measure on Ω$. Since

the total mass of μn is less than one, {βn} has a subsequence {βnj} vaguely
converging to a measure ju0 on ώf. It is obvious that β0 is supported on Δ.

Γ Γ
We have u(y) = \imn^0OuKn(y) = lim^Λkx(y) dβn.(x)=\kξ(y)dβ0(ξ), since the
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mapping x-+kx(γ) is continuous on Ω0\JA — {x0, γ}. It is easy to see that,

if v is a unit measure on Δ, then \kξdv(ξ) c jPb,o- Since u e e(§)b>o), it fol-

lows that β0 is a point mass, so that u = kξ for some ξ e Δ. (See [β~] for similar

discussions.)

Examples. In the case of Example 1 (§2), it is known that there exists
a kernel in the above sense. The boundary Δ in this case is a part of the
Kuramochi boundary of Ω. (See [11]; also [6], [9] and [13].)

For Example 3, a kernel is defined by kx( y)=Gx( y)/Gx(x0), where Gx(γ) is
the Green function of Ωo, and the corresponding boundary Δ is a part of the
Martin boundary of Ω (cf. [14] also [6]).

In the above two examples, if Ω — Ωo is compact, then we obtain the whole
of the Kuramochi boundary and the Martin boundary of Ω. Thus, we can
say that these two boundaries arise from different full-harmonic structures
subordinate to the same (classical) harmonic structure.
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