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Many attempts have been made to define a multiplication for distribu-
tions. H. Kénig [9, 107 was the first to develop a systematic treatment of
the subject in an abstract way, and showed that there are actually many pos-
sible multiplication theories if one gives up some of the requirements that
L. Schwartz [147] has shown impossible to be satisfied. His theory is, how-
ever, rather complicated and mainly concerns with the one dimensional case.
Some writers [17], [7] also worked out the theories designed for certain
physical applications, where multiplication need not be commutative and the
product may contain arbitrary constants.

Y. Hirata and H. Ogata [4] introduced the definition of the multiplica-
tive product of two distributions in order to generalize the exchange formula
concerning Fourier transformation. An equivalent definition of the product
was given by J. Mikusinski [137]. Among the results of [18] and [67], it has
been shown that given S, 7' € @'(2), where 2 is a non-empty open subset of
an N-dimensional Euclidean space RY, the product ST exists if and only if to
every a € D(R) there is a 0-neighbourhood of RY so that aSxT is equivalent
to a bounded measurable function continuous at 0. Here ST is defined to be
a unique distribution W e @'(2) such that < W, a> =(aS*T)0). The same
result has been announced by J. Jelinek [ 8] incidentally.

The main purpose of this paper is to generalize the multiplication just
considered above so as to maintain as many reasonable properties as possible.
With this in mind, we reach the requirements I through IV (see Section 1 be-
low) for multiplication between distributions. Especially the requirement IV
states that multiplicative product of distributions is invariant under diffeo-
morphisms. The results of [6] constitute a basis and background for the
present paper. With the same notations as above, if aSxT has the value
(aS*T)0) at 0 in the sense of S. Lojasiewicz [127], the distribution W € @'(2)
defined as before will be called the multiplicative product of S and T and de-
noted by SOT. The multiplication thus defined will satisfy the requirements
indicated above. In the case N=1, we can make further generalizations of
the notion of the multiplication. Another purpose of this paper is to investi-
gate these multiplications.

The presentation of the material is arranged as follows: In Section 1 we
write down our requirements I-IV for multiplication. Any multiplication
satisfying these requirements is called normal. Section 2 contains two lem-
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mas concerning the value of a distribution at a point for our later purpose.
In Section 3 some equivalent definitions of the product SO T are given. We
show that the multiplication thus defined is normal. It is noticed that we
can introduce a multiplication between distributions for any differentiable
maniford, which is invariant under diffeomorphisms. Section 4 is devoted to
the investigations of further properties of the multiplication. It contains
also the results concerning simultaneous product of more than two distribu-
tions and partial multiplication. In the rest of this paper we shall consider
only the case N=1. Section 5 deals with a generalization of SO T which
will be denoted by Sx,7. We show that if Sx,7 makes sense, then so does
SOT (the product in the strict sense of H. G. Tillmann) and they coincide.
In the final section a further generalization is made so as to make the product
of 0 by ¢ significant. The section is closed with the comparison between the
product and that in the general sense of Tillmann.

§ 1. Requirements for multiplicative product

Let RY be an N-dimensional Euclidean space. If x=(x1, ---, xn),
y=(y1, -, yv) € RY and 2 is a real number, we write x+ y=(x1+ 3, -,

N 1

v+ yw), Ax=Ax1, -, dxy) and | x| =3 | x;1%®. If p is an N-tuple (p1, ---, pw)

. 1

N

of non-negative integers, the sum >p; will be denoted by |p|, the product
N N/p. ' .
I1p;! by p! and the product H(Pf> by <P>, where ¢=(qi1, ---, qn) is such that
1 1\g; q

¢=p, that is, ¢;<p; for j=1,2, .., N. With D=(Dy, ..., Dy), Di=2-, we

0x;
put D?=D? ... D%, Similarly we write x’=x1 ... x5

Denoting by 2 a non-empty open subset of R”, we shall consider the fol-
lowing spaces:

C(£2): the space of the complex valued continuous functions in £;

D(2): the space of the complex valued C~-functions in £ with compact
support, equipped with the usual topology ;

D'(R): the space of Schwartz distributions in £, the strong dual of D(2);

&(9): the space of the complex valued C~-functions in £, with the usual
topology;

&'(2): the subspace of distributions € O'(2) with compact support, the
strong dual of &(2).

Without explaining explicitly, < S, ¢> will denote the scalar product of
SeD(2) and ¢ € D), or S€ &(Q) and ¢ € E Q). We often use the symbol
S(x) instead of S. This does not mean that S is a function of x. For ex-
ample, < S(x), ¢(x)> means < S, ¢>. The restriction of Se D'(2) to a non-
empty open subset 2; C2, will be denoted by Se,. Let x=0(x") be a diffeo-
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morphism of £ onto £, that is, @ carries £ homeomorphically onto £ and
both @ and &' are smooth. Given Se D'(2), we denote by S(x")=S(®(x"))
the distribution in 2’ such that

<8, fx)> =< S(x), [J(x)[$(01(2))>, ¢e DKL),

where J(x) is the Jacobian of the mapping x'=0"(x).
Now let a € E(2) and S€ D'(2). According to Schwartz [15] the multi-
plicative product aS is a distribution in 2 defined by

<as, p>=<S, ag>, ¢cDQ).

This multiplication has the usual properties, in particular bilinearity, as-
sociativity with multiplication in &(2), and Leibniz’ formula for the deriva-
tive of the product and so on. However, multiplication of arbitrary two
distributions cannot be defined so that it may possess these reasonable pro-
perties. If we can associate a subset M, C D'(2) x D'(2) with each non-empty
open subset £ C RY in such a way that SO T € D'(®), called the multiplicative
product of S and 7, is defined for any (S, T)e€ M, with the following condi-
tions I through IV, then the multiplication will be called normal:

L. if (f, g € C(2)x C(2), then (f, g) € M,y and fO g coincides with the
ordinary product fg;

I,. if (S, T)e My, then (T, S)e My and SOT=TOS;

I. if (Sy, T),(Ss, T) € My, then (S, + Sz, T) € M and (S;1+ S,)OT=5,0T

+S,07T;
L. if a€&Q), (S, T)e My, then (aS, T) e My and (aS)OT=a(SOT);

I if (gxﬁ T)Eimg for j=1, 2, ..., N, then (S, T), (s, g—f)emg for
7 7

. 0 0S oT
j=1,2,..., Nand 0_x]-<SO T)—%;O T+ SOa—x]_ ;

III,. if (S, T) € My, then (So, To)€ My, and So, O To,=(SOT)e, for
any £, C%;

IIL;. if (S, Te,) € Mg, for each ¢, where S, T'¢ D'(2) and =\ ,2,, then
(S) T) € S[RJZ;

IV. if (S, T)e Mgand W=SOT, then (5, T') € My and W= SOT for any
diffeomorphism x=0(x") of 2" onto L.

One of our main objectives is to generalize the multiplication in the sense
of Hirata-Ogata [4] or Mikusinski [13] so that it may be made normal.
Before proceeding further we shall stay here to make a few remarks on
normal multiplication between distributions.

Remarx 1. Suppose a normal multiplication O is defined. Let S,
T e D'(2) and let p be a multi-index with p=0. If (D’S, T) € M, for any ¢
such that 0="|¢|=|p|, we see by II that Leibniz’ formula for the derivative
of the product
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SOD”T=2q(—~1)""({;)0”“‘1(0150 T)

remains true. Especially, in the case S=a € &) and T=f € C(2), I, implies
that DaOf exists for any multi-index ¢=0 and D'aOf=(D')f. Thus
aOD’f=a(D?) in 2. Furthermore, if a€&(®) and TeD(Q), then
(a, T)E Mg and aO T=«aT. In fact, T is locally represented as a derivative
of a continuous function ((157, I, p. 82). For each point x, € 2, there exist a
multi-index p,, an open neighbourhood 2,(C®) of x, and a continuous func-
tion £, in 2,, for which Tp,=D?f,. Thus (ag, Te,) € Mo, and ae, O To,=ctg, T,
and then (@O T)e, =(aTl)e, by IIl; and III,. Consequently we see that
(a, T) € Mg and a« O T=a T, completing the proof.

ReEmArRk 2. Let N=1. Pf%o& cannot be defined because otherwise we

would obtain
x(Pf—i—Oé‘)z(fo%>06=IO5sd,

x(Pflm):Pfio(xa):o.
X X

Remark 3. If SO T exists, then (SO T)=(aS)OT=S0O(«T) by I, and
I, and hence the support theorem

supp (SO T)supp SNsupp T

is valid.
For our later purpose we shall show in the case N=1 the following

Lemma 1. Let T, 0 € D'(2). Assume that TOd exists, then TOO0=c0 with
a constant c. If 0@ 001 exists, then 6P 009D exists and 1s equal to 0 for
0=p+qg=potgqo (0V=0).

Proor. By Remark 8 we can write
TO0=a0+ a0’ + -+ a, 0™

with constants a;, j=0, 1, --., n. Since x6=0 and x0’=—;0¢-V for j=>1,
we have

0=TO(x0)=x(TOd)=—31ja, 00D,
1

This means that a;=a;=---=a,=0. Thus we have TO0=ad.
If 090010 exists, then we see by Remark 1 that 00 exists for
0<p+g=<po+qo and Leibniz’ formula

e 5@ = 27(_ 1)r<z>(5(ﬂ+ N0 6)(«—7)
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remains true. For our end, it suffices to show that 6 06=0 for each ¥ >0.
There exists a constant ¢ such that ¥ Od=cd. Let us now consider the dif-
feomorphism x=ax’ of £ onto £ with a positive number a, and we shall have

S 1 s
6 "—ak—+16 .

1

ak+1

50 Lo— €5 that is, 0P O6=a**'c6. This implies ¢=0, which
a a

Thus

completes the proof.

§ 2. The value of a distribution at a point

We shall first recall some basic facts and definitions concerning the value
of a distribution at a point introduced by Lojasiewicz [11, 127] which will
play an important role in studying our multiplication theory.

Let T be a distribution defined in a neighbourhood of x,€¢ RY and 1 a
positive real number. If the distributional limit

A>+0

exists in a neighbourhood of 0 and is a constant function, then the value T(x,)
of T at x=x, is defined as the value of this constant function.

It is known that T has the value ¢ at x=x, if and only if there exist a
multi-index p=>0, a neighbourhood U of %, and a continuous function F(x) in
U, for which

T=c+D’F

in U, where F(x)=o0(|x—x,|'?") a8 |x—x,|—0.

Lojasiewicz has also introduced a notion of the section of a distribution,
extending the notion of the value of a distribution at a point.

Congider a non-empty open subset 2 of RY=R™x R". A point of RY will
be denoted by (x, y), where x=(x1, ---, xm), y=(x, ---, y2). Put

2, ={x € R"; (x, y)€ £2}.

Let T € O'(2) and let y, be such that 2, is not empty. If there exists a
distribution S € 9'(2,,) such that

L“I}) T(x, yo+2y)=S(x),

or equivalently

lim, <1, e s W(77)> = <56 _ay
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for any ¢ € D(Q,,), ¢ € D(R"), then according to Lojasiewicz [12] (p. 15) we
shall say that y= y, can be fixed in T(x, y) and that S is the section of 7 for
y= v, -which will be denoted by T(x, y).

It is known that a necessary and sufficient condition for S to be the sec-
tion of T for y= y, is that for any non-empty open subset 6C C2,, (4T CB
means that A is relatively compact in B), there exist a multi-order (p, ¢), a
neighbourhood 4 of y, and a continuous function F(x, y) in G x 4, for which

T(x, y)=S(x)R1,+DIDIF(x, y)

in G x 4, where F(x, y)=o(| y— y%|'") as | y— 0| >0. We may take here p,
g so that p=po, ¢ =g, for any given p, =0, go—=0. As an immediate consequ-
ence of these considerations, we obtain the following

Lemma 2. If T(x, y,) exists, then
xliIPo <T,%(x, p)>=<S8, ¢>
for any %, € D(2,, x R") depending on 2>0 such that
1) supptCEx{y: | y— vl <a};
i) sup| DDy, )1 =0( 5ty )3

(iii) SRnxx(x, Ydy—d(x) in D2,,) as 10,

Now we shall show

Lemma 3. Let S be a distribution in a neighbourhood of 0 in RY. If the

values gxﬁ(O)zcj exist for j=1, 2, ..., N, then the same is also true of S.
j

Proor. Let S,:g—fj, j=1,2, ..., N and P.={x; |x|.=max|x;| <A} for
any positive number 2<1. We may assume that ¢;=0 and supp S;C P, j=1,
0(aS)_0S

6xj Oxj
—¢; in a neighbourhood of 0, where « is taken from D(P;) and equal to 1 in
a neighbourhood of 0. Then there exist a multi-index p with [p|=N and
continuous functions F;(x) in Py, for which

N
2, ..., N. In fact, otherwise setting S'=S—>}c;x; we shall have
1

Sj:Dij

in P;, where F(x)=o(|x|'?") as |x|—>0. Let supp S;CP,, 0<2<1, and let
B € D(Py) be chosen so that =1 in P,,. If we put G;=pFj;, then we can write
S; in the form

SjZDPGj"l' Tj,
where |G;|<e&(|x].)|x|"" and e(|x].) 0 as |x|. ) 0. Then suppG;C P, and
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supp Tj CPl\P)W.
Now, let E be a fundamental solution for Laplacian A. Then we can write
with a constant C

E_ 4
ox;  |x|N1° |gi(x)| < C
in P\ {0}.
Now
S= S0 = SxAE= %05 oE
T 0x; 0x;
N
a 1 <G* ) ZT*_-

N
Since ETj*—a—E is continuous at 0, we only have to show that D”(G,-*ﬁ> 0)

1 axi 0x,-
exists for each j=1, 2, ..., N.

Let x € Py with a=% v=1,2, ..). Put

6=, (2D 6 dy

1|x

= _¢x=9) ¢ =J! 2
(SPu 1 Spl\pov—x) Ix_le—l GJ(y)dy IJ»”+IJ’V'

We have an estimate for I},

I Ijl,v =

¢J(x _'}’) Iy

where ¢, is a constant such that ¢, | 0 as v 1 .
On the other hand,

1z, - #E=D o (pdy

pore P57

and we can write with a constant C;

[xIN 1 lx|N+lpl-1 ’

pr_Bx)  _ i(x) |4;| < Ch.

Putting
a;= SPI Tfj](w:m)_rc (9dy,

we shall estimate D’I?,—a; in Py.
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]x_y]N—le—l IyIN-HpI—l

D Gy

POV_I !le‘*"ﬂ]‘l
:]jl,v—l_-]jz,v'

Then we have with e; | 0

|J2, :;SP@v—l‘TM)“_Gj(”dyiée;.

i yIN-)-IpI—l

When x € P» and y€ P\ Pp-1 we can write with a constant €| and a posi-
tive <1

‘ 51‘(96 ) _ <I§j( =)

1
I [x— y| V12171 |y|N+|p;T]

I

Since
|tx—y|:|tx—ylw= 2 |}’|m=2\/N—l}’|,

we have with constants C,, C;
VN

1

0¥~ l=1y1=vN ! )’| N

1=l | dy< Clog

Thus we obtain
|D?IZ,—a,|<¢,

where ¢/ is a constant such that e/ | 0 as v 1 oo.

Consequently there exist continuous functions H; ,(x) in P, such that we
can write

DI’I]'Z,,,_aj:Dij’y(x), x € ng,

where |H; ,|<e/0'""” and e | 0 as v} oo.
Combining these results we can find continuous functions K ,(x) in P
such that

D'G(x)=a;+ D’K; (x),  x € Py,

where |K;,|<7,0'""" and 7, | 0 as vy 1 co.
If we put

qf.V'__KJ'.v—KJ',V+1> ]:1’ 2; Tty N) ”21’ 2> Tty

then the functions g;,, are continuous in Pyp+: and D?q;,=0 in Pp+1. By vir-
tue of Lemma 2 in [127] (p. 12), there exist continuous functions §;, in P, such
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that
(1) qj",,[ngH:qjlp;
(ii) D*g;,,=0;
i) 135, | S Kn0¥@ 0" 4 x|,

where K is a constant independent of v and j.
Consider the continuous functions K;,, in P, defined by

Kia=K;1, K\,=Kj1—Gn——Gn1 (=2),
then owing to (i) through (iii) we obtain
(iv) K;,|Pp=K;,;
(v) D’K;,=DK;;;
VD) Ko = K | =1t 4 Givo 1

<Ky ﬂ_(gv(lﬂ\—N)+ || 2N
= 10 )

This shows that K;, converges uniformly for each j as vt co. Hence if we
put for each j

Ii}:Kf,l—ii:':ﬂj,i,
then K; is a continuous function in P, satisfying
K| =R, = 30054 = 70", w€ Po,
where 7/ is a constant such that . | 0 as v 1 co. This means that K;=o(|x|'?").
Consequently we can write
D?G{(x)=a;+ D’Kj(x), x € Py,

where |K;|=o(|x|'?") as |x| | 0. This shows that D?G; has the value a; at 0
for each j. Thus the proof is completed.

Remark 4. Let P(D) be any hypoelliptic differential operator of degree
m=0 and E(x) a fundamental solution for P(D). There exist then constants
a (0<a=<1) and C such that P(c+ir)=0, |t|=2NC|c|* when |¢]| is large.
V.V. Gru$in [ 3] obtained the following estimate:

o) for m—N“;“' >0,
DBl = OCllogl x| ) for m—YEIrl g,
0" for m—NEITl g

a

\
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as |x|—0. If P(D)S(0) exists, then D’S(0) exists for r such that [r|<a(m—1)
—N(1—a). In fact, as in the proof of Lemma 3, we may assume that
P(D)S(0)=0 and supp SC P,, C P, with a contant 4,. Then there exist a multi-
index p with |p|=N and a continuous function F(x) in Py, for which P(D)S=
D?F in P;, where F(x)=o0(|x|'?") as |x|—0. Let Be D(P;) be equal to 1 in
P,, and put G=RF. Then P(D)S=D’G+ T, where G=o(|x|'"") as |x]|—0.
We can write D’S in the form

D'S =D’S x0=D’S x P(D)E
=P(D)S*D'E
=D!GxD'E)+ TxD'E,

where T+ D’E is continuous at 0 and |D’E| =0<|—x—’17v-_T> as |x|—0. Apply-

ing the method in the proof of Lemma 3, we can show that (D’S)(0) exists. Since
we can choose o =1 if P(D) is elliptic, D"S(0) exists for r such that [r|<m—1.

For example, if AS(0) exists for Laplacian A, then S, gxi have the values at 0.
i

§ 3. The multiplicative product SO T

Let S, T e @'(2). When SxT exists in a neighbourhood of 0 and has the
value at 0, we shall define the scalar product < S, T> of S and T by the for-
mula ((117, p. 84)

<S8, T>=(SxT)(0),

which is a generalization of the notion of the scalar product between @D'(Q)
and D(Q).
We shall now define normal multiplication between distributions basing

on this generalized scalar product.
Assuming that the scalar product <aS, 7> exists for any « € D(2), the
linear form a—<asS, T> will be continuous on D(Q). In fact, if we put

1 x . .
¢*(x)_/l_”¢<7>’ A being a positive real number,

for any ¢ € D(R"™) such that ¢ >0 and S(ﬁ(x)dx:l, then <aSxT, ¢,> is well

defined for small 2>0. The mapping a— <aS*T, ¢,> being continuous, the
linear form D(R) » a—<aS, T> will be continuous by the Banach-Steinhaus
theorem, and so there exists a unique distribution W € D'(2) such that

<W,a>=<aS, T>, a € D(2).

We shall now introduce
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Derinirion I Let S, T € D'(Q).  If there exists <aS, T> for any a € D(R),
then W e D'(2) defined by the formula

<W,a>=<as, T>=((aS)*T)0), acDQ),
will be called the multiplicative product of S and T and denoted by SO T.
The identity

<(aS»T, > =<S(Txp), a>,  aeD(Q),
makes it possible to restate this definition in the following
Dermvition II.  Let S, T € D'(R2). If the distributional limit
lim S(Tx¢,)

A>+0

exists i D'(Q) and does not depend on the choice of ¢, then the limit will be called
the multiplicative product of S and T and denoted by SO T.

For the sake of convenience we shall use the symbol S(x)QT(x— y) to
denote the distribution obtained from the tensor product S(x")®Q T(y') by the
change of variables, x=x', y=x'— y/, and use similar notations in later con-
sideration. Owing to the discussion in Section 2, this definition will prove
to be equivalent to the following

Derinrrion III. Let S, T € D'(2).  If S(x)QT(x— y) admits a section W
for y=0, then W will be called the multiplicative product of S and T and de-
noted by SO T.

In what follows we shall show that the multiplication just defined is nor-
mal; that is, if we take 9, as the set of (S, T) € D'(2)x D'(L) such that SO T
exists, the requirements I through IV in Section 1 are fulfilled.

I, and I; are obvious from the definition of our multiplicative product.

As for I,, assume that SO T exists. We have for any a € D(Q2)

<(aT)xS, ¢>=<(Sx¢)T, >
= < S(x— N T(x), al(x)p(y)>
= < S(DRQT(x— p), alx— y)b (9>

Here Sa(x— y)dx( y)d y tends to a(x) in D(2) as 1—0 and
sup|DID%o(x — y)gZx( M| :O<7N1*—'4’>' By Lemma 2 we obtain
lim <(@T)*S, $>=<SOT, a>.

Consequently 7O S exists and is equal to SO T.
I, means that, if y=0 can be fixed in S(x)&Q T(x— y), the same is true of
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S(x— y)QT{x) and they have the same section for y=0. This will also be
proved by a change of variable. The method will be applied to a similar
question in Section 5.

As for I, assume that SO T exists. Let a € &(2). Since ga € D(L) for
any ¢ € D(2), the value ((paS)*T)(0) exists, which implies the existence of
(@S)OT. In addition, we have

<(@S)OT, ¢>=((¢aS)xT)(0)
=<SOT,ap>=<a(SOT), ¢>.

Thus (@ S)O T=a(SO T), which completes the proof.
As for II, assume that 03
0x;

have for any ¢ € D(Q)

~=OT exists for each j=1,2, ..., N. Then we

0S8 g .
<a—ij T, ¢>=<g—5j*(¢T) )(0):%(5*@]1)0(0), i=1,2, .., N.

Owing to Lemma 3 the value (S#(¢7)")(0) exists, and so does SO 7. From the
equations

¢S*<0TJ> aixj(qu)*T

— 08 g 7405,

0x; 0x;
we can conclude that S Og—f exists since SO T and 6’S O T exist. Further-
i
more, we have
<50 45— <501, 25— <IS 0T, 4>
0x; 0x; 0x;
- <—(so T)— ﬁo T, ¢>,
that is,
oT .
(SOT) —OT+SO— j=1,2, .., N,
0x;’

completing the proof.

III, is obvious from the definition of our multiplicative product.

As for III,, we can choose a partition of unity subordinate to the cover-
ing {£.}, that is, we can choose functions p; and ¢«(j), j=1, 2, ... so that

D 0 €DL.;);
(ii) all but a finite number of functions p; vanish identically on any
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compact subset of £;
(iii) >3;0;=1on L.
We can now write for any ¢ € D(2)
(3S)xT=(2,00; % T="3,(($0; )+ T),

where each summand has the value at 0 equal to < S, »O Te,,, do;> respec-
tively. Then the distribution W e &@’(2) defined by

< W, ¢> ZZ/'<SQL(;‘)O T.Qt(jp ¢pj>7

will yield the multiplicative product SO T. This completes the proof.

Finally, we shall show that O has the property IV. By Definition III, if
we put W= SO T the distribution S(x)& T'(x — y) admits W as the section for
y=0: Namely, for any open subset 4 C &2 there exist a multi-order (p, ¢),
a neighbourhood U of 0 in RY and a continuous function F(x, y)in 4x U, for
which the relation

S(0)Q T(x — y)= W(x)Q1,+ D;DiF(x, )

remains true in 4x U, where F(x, y)=o(| y|'?") as | y| >0. Let x=0(x") be a
diffeomorphism of £ onto £. The distributions corresponding to S, 7 and
W will be denoted by S, 7' and W ¢ @'(2") respectively. Since the distribution
SN T(x" — y")= S(@(x")RT(O(x'— y")) is obtained from S(x)Q T(x— y) by
the change of variables

€ x=0(x"), y=0(x")—0(x"—y")
and
SR T(x"— y")= W(@(x")R1,, 4+ (DIDIF)(@(x"), &(x")—0(x"— ")),

we only have to show that W is the section of S(x")® T(x'— y'), in other words,
(DIDIF)(0(x"), O(x")—@(x’'— y")) has 0 as the section for y'=0. Let

x'=g), y¥=hWx, y)

be the inverse of the transformation (x). Differentiating with respect to x;,
y; we obtain

(D F) (@), O(x") = B2 = y))=23u(D, F) gh(x")+ 35D, FIRK", ¥
Dy F)O(x"), B(x")— (" — y)=233(D, FIRK', y),
(j=1,2, ..., N)
where we have written

Fx', y)=F(0(x), 0(x)—0(x" —y"),
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gha)= gk(axx’)) R, ) ahk(axx'), O(x")— 0(x'— 3")),

RiC', 47) a"k(axx'), O(x")—0(x'— y").

Since y’=0 corresponds to y=0, these expressions yield

Let o/, @, 8’ and 8’ be multi-orders of the distributional derivatives relative
to the variables x, y, " and y’ respectively. Put a=(a/, &"), B=(F', £").
Now by induction over the order of differentiation we can show that

(DF)@(x"), O(x")—0(x'— ’))— 3 as(x's Y)DF)('s y),

where az are indefinitely differentiable and |8"|=>|«”| implies
gl =0(| y'| 1=,

If || =1 the result is already shown above. Next, assume that the re-
sult is valid for any « with |@|<I. From our hypothesis we have

((ijD“)F)(@(x’), O(x')—O(x"— ’))
=2%8!D, (D"‘F )+ 30h4(Dy (DF ))

—Zk 2—" Jk(Dx'aﬂ>(DBF‘)+2k 2}(1[ g]ka,@(Dx;cDﬁF)

187=
+33 WZ, kYD ,aﬂ)(DBF)—FEkmgalhfaﬂ(D%Dﬁﬁ').

With regard to the first two sums of the last expression the desired estimates
are valid by the hypothesis. Consider the third sum. |5”|=]|«”| implies that
|h¥|=0(] y'|) and |Dy;‘a,3| =0(| y'|'#"'~1"'71), and therefore |h%(Dy.ag)|=
O(] y'|'#"'=1«"1), In the last sum, if |8"| +1=>|a”|, then |htay| =0(] y'|'F"' 1=t
since |k =0(| ¥'|) and |ag| =0(| y'|'#"'='*"') hold for |5"|=|a"|. Combining
these together we obtain the desired result.

Consider also the equations:

(D, DF) (0(x), B(x)—B(x'— y")
ZkthY ( M aB(DB[’ ))

Bl=lal

:Ek;5§a| Ef(Dy;“ﬁ)(D'gF)—FEk'ﬁEm hjag(Dy, D°F).
In the first sum of the last expression, |5"|=|a"| +1 implies that |2%| =0(1)
and |Dy.ags|=0(] 5’| \#rimieni=1), and therefore |A}(D,.ag)| =0(] y'|"*" 71" 1),
In the second sum, [B"|+1=|a”|+1 implies that |2%|=0(1) and |ag|=
O(| y| Iﬁ”hla"l)’ and S0 ‘Tlfaﬁl :O(l y/tle”lvla’|).
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Combining these together, we obtain also the desired result. This completes
the induction step.
Thus we can write

(DIDIFY(0(x"), B(x")—B(x'— y"))= M ay,DYDLF,
1p71+1g71=1pl+1q1
where F=o(|y'|'"), and lay o | =0(| y'|'*"'~'?") for |¢'| =|q|. By Leibniz’
formula, we have

ay DEDYF= 31 (= 1)*“+'5'(1; )(g )Dg:—fpg:—s((pg,pg,a,,,,4/>F).

r=p’s=q’
For the conclusion of the proof of IV, it is sufficient to show that
(Dgsz,/ap/,q,)F'= 0( I y/ | tari=lsi ).

It is trivially true of the case |¢'| <|q|, otherwise it follows from the estimates
F=o(] y'|'") and |ay, | =0(] ¥'|'""~'?") already proved.
Thus we have shown

Tureorem 1.  The multiplication given by Definition 1 (11, III) is normal.

Remark 5. In Definition I, if (@S)*T is a bounded function in a neigh-
bourhood of 0 and continuous at 0, then according to [187] W will be written
ST instead of SOT. By definition, if ST exists, SO T also exists and co-

incides with S7. But the converse is not always true; sin %oa:o but

<sin %)6 does not exist.

Remark 6. Let M be a differenciable manifold of dimension N and {#}
its coordinate systems ((5], p. 25). « is a homeomorphi_sm of an open set
£2,C M onto an open set 2, C R", and the mapping

k't K(R.N82.)—>k(2.N2.)

is a diffeomorphism for any two coordinate systems «, £’. If to every coord-
inate system £ in M we are given a distribution S, € D'(£,) such that S,(x")=
Sk’ (x") in £'(2,NL2,,), then the system {S,} is called a distribution S in M
and the set of all distributions in M will be denoted by @D'(M). Let S,
TeD'(M). Assume that W,=S,0 T, exists for every coordinate system «.
It follows from IV that W, (x")= W .(tc'~"'(x")) for any £ and £’, so there ex-
ists a unique distribution W e @'(M) determined by the system {W,}. We
shall define W as the multiplicative product SO T of S and T. The require-
ments I through IV for manifold will have an obvious meaning and are ful-
filled by the multiplication just considered.
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§ 4. Further properties of the multiplicative product SOT

This section is devoted to a discussion about multiplication considered in
the preceding section. Otherwise explicitely stated, we shall assume that S,
T are distributions in a non-empty open subset £ C R”.

Lemma 4. S(0) exists ©f and only if SOO exists. Then we can write
SOd=S(0)0.

This is clear from the identity
Sx(ad)Y =a(0)S, a € D(R).
Consequently we have

CoroLLARY. The multiplicative product SOT exists 1f and only if
(aSxTYOO exists for every ae€ D). If this is the case, we can write
(@SxT)00=<SO T, a>d.

Prorosition 1. SO T exists for every T € D'(Q) if and only if S € &(Q).

Proor. The “if” part is evident. We only have to show the “only if”
part. Let ¢ € D(@) be such that ¢=0 and S¢(x)dx=l. Then by definition

SO T'=lim S(Txy).
—+0
Owing to the Banach-Steinhaus theorem, the mapping 7—SO T is continu-
ous from D’'(2) into itself, so there exists for any ¢ € D(L) a unique x € D(R)
such that

<SOT, ¢o>=<T,x>.

Replacing T by a € D(R), we can conclude that ¢ S=x and therefore S ¢ &(Q).
This completes the proof.

The method of proof just given is also applied in proving that S is a local-
ly bounded function if and only if SO T exists for every locally summable
function 7T in 2.

If we put RY=R?”x R, N=m+ n, then we have

Lemma 5. Let W, € D'(@), 0<i<1. If
lim <W,, a®B>

A>+0

exists for any o € D(R?), B € D(R?) with supp a x supp 2, then there exists
a unique W e D'(2) such that

lim < Wy, ¢>=<W, $>, ¢ € D(Q).

A 40
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Proor. Let K, L be compact cubes in R7? andR” respectively such that
KXLCR Dgur=Dr®,D;. Since Dg and D, are spaces of type (F)
}im < W,, a@B> is separately continuous, and so continuous in Dy x D;.
~+0

Hence there exists a unique W ¢ D, such that

lim <W,, aQB>=<W, aRBE>, a €Dk, BeDy.

Ao +0
We can therefore assume that W' =0. We only have to show that

1im<W>~, ¢>:O, ¢6@K><L'

A— 40

Using the Banach-Steinhaus theorem and the fact that Dx and D; are
nuclear, we see that the convergence gim < W,, a®QB> is uniform on some
—+0

0-neighbourhoods of Dx and D;. Namely, if ¢>>0 is given, there are norms
a—||a||, and 8—||8]|; so that for small 2

| < W, aRB> | = elle[e|B]]:-
On the other hand, ¢ may be written in the form
P=23,a;K8;, a;j€ Dy, Bie Dy,
where >3 ||a;]#||8]]i <eoo. It follows therefore that
| <W, ¢> | =125, < Wi, ;@B > | =35l Bl

which completes the proof.
Applying Lemma 5, it is clear that we can reformulate Definition I with
« replaced by a®p indicated above. Another application of the lemma gives

Lemma 6. If Si(0) and S»(0) exist, so does (S1RS:)(0). Then (S:1S,)(0)=
51(0)S2(0).

From Lemmas 5, 6 we have immediately

Prorosirion 2. Let Sy, Ty ¢ D(2Y) and S, Ty ¢ D'(2?), 2, 2° being any
non-empty open subsets of R7, R: respectively. If S:O T, and S:O T, ewist,
then (SR S)O(T1RT.) exists and is equal to (S;0 T1)R(S,O Ts).

Proor. Let a ¢ D(2Y) and 8 ¢ D(L?). Then
((a®[3’) (Si® Sz))*( & T2>\/ =(aSy* T1)®(BSZ* Tz)-

Since (aS;+T1)(0) and (85 T2)(0) exist, ($1RS,)O(T:RT,) exists and is equal
to (8510 T)X(S, O T;), which was to be proved.

Lemva 7, ((@®B)SxT)0) ewists for every a®p e D(L) if and only if
(aS«(BT)")(0) exists for every a®B € D(Q).
Then («@8)5+T)(0) =(aS+BT)")(0).
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Proor. Recall that if ((@®RB)S*T)(0) and (aSx(8T)")(0) make sense, they
are respectively the sections of a(x)B(y»)S(x, YR T(x —x', y— y") and
a(x)S(x, NRB(y— yHT(x—=x', y—y") for x'=y'=0. Take y € D(R") with
value 1 in a small neighbourhood of supp 8. We can write for small | y'|

a(x)B(P)S(x, PR T(x— x5, y— y)—a(x)S(x, NRB(y— yHT(x—x", y— y")
=B —By— y M9 S(x, PRT(x—x", y— y),

which has the section 0 for x'=y'=0 when (@®RB)SxT)(0) exists, because
B(y»)—B(y—2y") converges to 0 in D(R*x R") as 2| 0. This shows the “only
if” part. The “if” part will follow with 7(y) replaced by 7(y— y"). This
completes the proof.

As a result we obtain immediately

CoroLLary. SO T ewists if and only if (wSx(BT)')(O0) exists for every
a®B e D(D). In this case

<SOT, a®@B>=(aS*(BT)")0).
Basing on this corollary we shall show

0S

Prorosition 8. If the multiplicative products Wo T, j=1,2, ..., n, and
SOaT, i=1,2, ..., m, exist, then SO T, OTand Soﬂ i=1,2, ..., m,
j=1 2, ., n, also exist and

OT 0 8T
0x; 0yj°

Proor. We can write
D (@@=~ (a5 (s20)"),
and
2 @S D) =al) IEE)T)"

Owing to the hypotheses it follows from Lemma 8 that (a(x)Sx(B(y)T)")(0)
exists, and so does SO T from the preceding corollary. We have for any ¢€D(2)

g—i*@ T)Y=— S*( gft T)V - S*(¢g£>v, i=1,2 .., m

0S5
0x;
In addition, it follows from the above equations that

Each term of the right side has the value at 0, so == O T exists for each i.
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<g—5OT,¢> —<soT1, 25 <500L,

> B, ox 2>

$>— <Sog—T 6>,

Consequently we obtain

oT .
P i=1,2 ....m

oT

P j=1, 2, ..., n, and the

Similarly we can show the existence of SO=—
relations

_(so )= ﬁ or+s02T
0 0y’

completing the proof.

Remark 7. By making use of Remark 4 we can show that if ASO T ex-

ists, then SO T, g—SoT Soﬂ and SOAT exist for j=1, 2, ..., N and
0x;
(so T)__o:r+so gT
X

0S8

520 T)+SOAT

A(SOT)=—ASOT+23,- (
.7
_ ) oTy
—ASO T+2}J,.a7j<soa—w) SOAT.

Remark 8. Let S=D?S, ¢ D'(2) and T=D'T, € D'(2) be such that
DY S;0D” T, exists for every ¢'<q, p’<p. Then SO T exists and

SOT=33 (=1 (L)) " S0D" Ty

PSP q'=q

In fact, we can write for any « € D(2)

aSxT=aD?Sx(D*T;)"
= 31— (B ) DY (P @) $,(D T,)")
p'=p P

=3~ (B )0 (@ S0 1))

p'=p

=33 33D (B ) )@ DT MDY T)Y).

p’=p ¢’'=q
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Consequently our assertion will be clear. We can also show that if D*S,0O

D”' T, exists for every ¢'<q+(1,0, ...,0), p'<p, then SOT, SO(,;,iz and

X1
98 57 exist and 2 (SO T)=25 07450 2T . The results also hold true of
0x1 axl axl a-7‘71

the multiplication discussed in [187]. This gives an extended version of Miku-
sinski’s theorems ([137], pp. 257-258).
We shall introduce the notion of partial multiplication as follows:

Derintrion IV.  Let S(x) € D(R?) and T(x, y) € D'(RY). If (S(x)®1,)0O
T(x, y) exists in D'(R"), then it is called the multiplicative product of S and
T and denoted by SO T.

Prorosrrion 4. Let S(x) € D'(R?) and T(x, y) € D'(RY). A necessary and
sufficient condition for the existence of SOT s that S(x)O < T(x, y), P(y)>,
exists in D'(R™) for every ¢(y)e D(R?). In this case <SOT,¢p>,=
S(2)O < T(x, 3), P(9)> .

Proor. Let ¢ e D(RY) be such that ¢(x, y)=0 and Sggb(x, Ydxdy=1. It

we put gb(x)=g¢(x, ydy, then ¢ € D(R™), =0 and g</:(x) dx=1. Clearly
gbx(x):gqﬁx(x, y)dy, A being positive. Conversely, given ¢(x) € D(R™) such
that ¢(x)=0 and Sgb(x)dle, we can also choose ¢(x, y) € D(R") satisfying

the above conditions. Then we can assert the proposition from the relation
T((S(%)R1y)xp,) = T(S*¢y).
Thus the proof is completed.

- From these consideration it is clear that Proposition 4 is also true of the
partial multiplication ST which is defined as (S(x)®1,) T(x, 7).
Now we shall turn to the consideration of simultaneous multiplication of
more than two distributions. First we show

Proposition 5. Let S, T € D'(2). In order that the multiplicative product

SO T ewxists, it is necessary and sufficient that for any ¢, ¢ € D(RY) such that
$=0, $=0, g(ﬁ(x)dx —1 and Sgb(x) dx=1, the distributional limit _lim
Ao 0

(Sx)(Ty) exists and does not depend on the choice of ¢, ¢. If this is the case,
SOT=, fim (520070

Proor. The sufficiency is obvious in view of Definition II. To prove the
necessity, it suffices to prove that xlkim (aSx¢,) (B Tx¢,,) exists for every
R

a, B € D), that is, <(aSx$,)(BTx¢,.), x> converges for any x € D(R") as 1,
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2’—>+0. In order prove this, we may assume x to be extended to a periodic
function with period 2! relative to each coordinate. Consider the Fourier
expansion of x:

< i%<m,x> —
x:meme :meme(m)a

where >}, | ¢, | (14 |m|)*< oo for every positive integer k&. Now, we can write
for small 2, >0

(@S ) (BT*¢r), x> =>0,cn<(S%$) (BT*P5), e(m)>
=2 en< (3(m)“ S)*(B T)V: e(— m)&x*ﬁbv >.

For the sake of simplicity, we assume that supp @, supp¢ CP.. We may also
assume that 2=1". Since supp (e(—m)@,*¢»,) C Pz, and XN '?' D2(e(—m)gx¢y.)
is bounded because of the equality

Dﬁ(e(-— m)q;)»*(/)xx): Se~i7<m’y>qu<y) l/Nl‘le ¢(P)<x ; y>dy)

it follows from Lemma 2 that <(e(m)aS)x(8T)", e(—m)d*¢py,> converges
to ((e(m)aS)=x(BT)")(0) as A~ +0.
On the other hand, if we consider the mapping

Dappa X Dy 3 (f, ©—><(FOBRT)Y, g>,

then we can find a multi-index p and a constant M independent of 2 such
that

| <(f =BT)Y, g>|=Msup|D’f|2**'" sup| D* g|
remains true. Then we obtain with a new constant M and a multi-index p’
| <(e(m)aS)BT), e(—m)bsdr, > | =M A+ |m|)*".
Consequently

lim <(aSx¢.)(BT*Pr), x> =>],cn lim <(e(m)aS)*(B T)v’ 6(—m)¢;x*¢v>
A=+ 0 A, A+ 0

=>}cm((e(m)aS)+(BT)")(0)
=((ea S)*(BT)" )(0)
=<(aS)O(RT), x>,

where we are justified to interchange the order of >, and lim since

AN > 40
St len| (14 [m )" < oo as already remarked.
Thus the proof is completed.

DeriNitioNn V. Let S, T, We D'(2). If, for any ¢, ¢ and x € D(RY) such
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that $=>0, $=0, 2=0 and S¢(x)dx — §¢(x)dx — Sx(x)dx —1, the distributional
Limit
lim +0(S*¢,L) (Txdy ) (Wkxyr)

AN N

exists and does not depend on the choice of ¢, ¢ and x, then the limit will be
called as the multiplicative product of S, T and W, and denoted by SO TO W.

Now we can show

Prorosition 6. If TOW and SO TO W exist, then SO(TO W) exists and
18 equal to SOTOW.

Proor. By Definition II, Proposition 5 and Definition V we have
SOTOW=_lim (Sxg)(Trn)(Wrto)
SA N> 40
= lim (Sx¢\)(TO W)
A>+0
=SO(TOW),

which completes the proof.

A locally convex space £ CD'(RY) with topology finer than @D'(RY) is
called a space of distributions. In addition, if D(R") is contained in & with
a finer topology and dense in &, & is called to be normal. Let &, £ be spaces
of distributions. We assume that & is normal. S € @'(R") is called a multi-
plicator of & into £ if there exists a continuous linear mapping <S> of &
into £ such that <S>a=asS for every a ¢ D(RY). When =L, we shall
say that S is a multiplicator of &.

Prorposition 7. Let X be a normal barrelled space of distribution. Given
S, if SO T exists for every T € K then S is a multiplicator of K into D'(RY)
and <S>T=SOT for every T € X and aS € X for every a € D(RY).

In addition, if SOHX C L and D(RN) is strictly dense in L., where £ is a
space of distributions, then S is a multiplicator of H into L.

Proor. Let ¢ € D(R") be such that 4=>0 and Sqﬁ(x)dx —1. Then by
Definition II
SO T'= lim S(Txg¢,).
Ao +0
Since the mapping & 3 T— S(Tx$,) € D'(RY) is continuous and & is barrelled,
it follows from the Banach-Steinhaus theorem that <S>: &> T—
SO T e D'(RY) is continuous. Then < S>a=asS for every a € D(RY). This

shows that S is a multiplicator of & into @'(RY). Therefore there exists for
any a € D(R") a unique W, € X' such that <SOT, a>=<T, Wo> 4. 4 Let
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T be taken arbitrarily from D(RY). Then we can conclude that aS=W, € &'.

Now assume that £ has the properties stated in the last part of the pro-
position. If u is a continuous linear mapping from a barrelled space E into
D'(RY) with range in £, then u must be continuous from E into £ ([17], p.
176). Accordingly S will be a multiplicator of & into £. Thus the proof is
completed.

Remark 9. Let & be a normal space of distributions. Assume that &
has the approximation properties by regularization and truncation ((167], p.
7). It was shown ([187, p. 232) that if S is a multiplicator of & into @'(RY),
then ST exists for every T€ &, and <S>T=ST. Furthermore we assume
that & is barrelled. Let SO T exists for every T € . Then by Proposition
7 T—SO T is a multiplicator of & into @'(RY) so that ST exists for every T
and SOT=ST. The result is not true if the approximation properties are
not satisfied. Consider the example given in Remark 3 in [187], where &, X
were defined by

a={f5 171 = L  ax <o}

&={g llgla={1 g |5l dx<oaf;  VZ2).

It was shown there that the ordinary product f g, f € &, g€ X, is always sum-
mable while for some f, g their multiplicative product in the sense of [4]
does not exist. & and X are normal barrelled spaces with the approximation
property by truncation, not by reguralization. Now we show that fO g al-
ways exists and is equal to fg. Let V; be the volume of the ball with center

0 and radius ¢>0. Put Mg(g):%gt g(x—t)dt for any ge XK. Noting
e JIt=¢€
that Mg dt s bounded, we obtain with a constant C>0
Ve |t1§6|x—t|
2 _1_g g _ _p|2 g 1
(1ot el ds= g (ixtan(( | _lo—illg—ora(| I
= C?llgll%

Consequently we have for any f e & and ge X

1

+ 0@l a1/ ML )@=l fllal gl

This implies that

%Slfléel(f* g)(t)_ Sf(x)g(x)dx I dt—0

as ¢—0, that is, f* g has the value S f(x)g(x)dx at 0 in the sense of Lojasiewicz
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[127. Sinceevery @ € D(R") is a multiplicator of &, it follows therefore that
SO g exists for every f € &, ge X and is equal to fg.

§ 5. An extension of the multiplicative product SOT
in the case N=1

Hereafter we shall assume that N=1. The foregoing discussions about
the multiplication between distributions can be extended preserving normali-
ty through an extension of the notion of the value of a distribution at a point.
For this end, recall the notion of the right and left hand limits of a distri-
bution at a point.

Let S be a distribution defined in a 0-neighbourhood. S has a right hand

limit ¢, at 0 if the distributional limit lim S(Ax) exists in the positive axis
—+0

x>0 and is a constant function ¢, (117, p. 8). We write lim S=c,. The

x=>+0

condition may be written ((117], p. 5):
S=c, Y+ D?F*,

where Y is the Heaviside function and F* is a continuous function in an
open interval (0, a) such that F*=o(|x|?) as x—0.
Similarly we can define the left hand limit.
We shall say that S has no mass at 0 if lim AS(Ax) =0 ([12], p. 23).
—+0
If lim S=c,, lim S=c_ and moreover S has no mass at x=0, then we

x—=+0 x—=0

write
A

which will be referred to as the extended value of S at 0.

A necessary and sufficient condition for the existence of S[ 0] is that there
exists a non-negative integer p, a 0-neighbourhood U and a continuous func-
tion F(x) in U, for which

S=c,Y+c_ Y+D'F
in U, where F(x)=o0(|x|?) as |x|—0.
Let 2 be a non-empty open subset of R and S, T € D'(2). When S«T is

defined in a neighbourhood of 0 and has the extended value (Sx7)[07], we
shall define the extended scalar product [ S, 7] of S and T by the formula

[S, T=($«P)[0]

If the extended scalar product [@S, T exists for any a € D(2), then for
any ¢*, ¢~ € D(R) such that ¢* =0, 3~ =0, supp ¢* C(0, o), supp ¢~ C(— o, 0)
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1

and S¢+(x>dng¢_(x)dx =1, <aSxT, A ¢+<%>> and <aSxT, %¢‘(%>>

are defined for small 2>0 and

(aS=kT)[O]=%<1£r?O<aS*T, %¢+<%>>+ lim <a ST, %¢‘<%>>>.

Ao +0

By virtue of the Banach-Steinhaus theorem we see that there exists a unique
distribution W e D'(2) such that

<W,a>=[aS, T], a € D(D).

Derinition VI, Let S, T € D'(Q). If [aS, T} exists for every a € D(2),
then W e D'(Q) defined by the formula

<W,a>=[aS, T]=@S«T) 0], «aeDQ),
will be called the multiplicative product of S and T and denoted by Sx,T.

From the definition we see that if SO T exists then Sx 7T exists and
coincides with SO T. The converse is not true: Y><°6=%é‘ but YO¢ does
not exist.

In what follows we shall show that the multiplication just defined is
normal.

I, and I; are obvious. IQ, 111, and III; may be verified by the same way as
in Section 3. ' ‘ )

As for I, assume that Sx, 7= W exists. By the definition of multiplica-
tion, given a non-empty open subset 4C C 2, there exists a 0-neighbourhood
UCR,, for which we can write in 4x U

SR T(x— = W.(DRQV(N+ W ()R V(3)+ Wz, y),

where V' is a distribution in 4x U with 0 as the section for y=0 and

/4 =M. After the change of variables, x=x"—y" and y=—y', we
can write

S(a' = YR T(x)= W (' = y )R V(y)+ W-(x'— y )R Y(y)+ V&'~ y'y — ¥

It is easy to verify that V' (x’— y’, — y’) has the section 0 for y'=0.
Consequently we only have to show that both

W (x' — yYQV(y)— W (xR V(y'),
and
W_(x'— y)QY(y)— W_-(xYQY(y")

have the section 0 for y'=0.
Let ¢ € D(dx U). Then we have with small 2>0
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W (x—2)QYAN— W ()R YA, (%, 1>

:Sg W (x—2PY(Yd(x, Ydxd y-—SS W () Y( )bz, Ydxdy

= SS W (%) Y )(@(x+ 2y, P—d(x, p)dxdy,
which yields
lim <W.(x~2)® YA — W ()Y, d(x, y)>=0.

Thus W.(x— PR ¥(9)— W.(x)Q ¥(») has the section 0 for y=0. Similarly
the same is true of W_(x— YR Y(y)— W_(x)QY(y). Thus the proof is com-
pleted.

As for II, from the proof of the corresponding case of Section 3 it is

sufficient to note that if 3—2[0] exists, so does S[0]. If we put T'=S—

co—c ith . lim 45 ~ lim 45 T _dS _
5 (x.+2x_) with c,.= lxl—?:o I and C_—li—l}lo Ix’ then dx = dx

C+;C—( Y—Y) and therefore %(0) exists. It follows from Lemma 3 that

the value T(0) exists and a fortiori S(0).

Finally we shall show that IV is fulfilled. We shall continue to use the
same notation as in the proof of I,. Assume that Sx,7=W exists. Then
we can write as before

S(HQT(x— y)= W ()QY())+ W_(x)Q ¥Y(3)+ V(x, y).

The distribution S(x")QT(x'— y)=S(@(x))Q T(@(x’'— y")) is obtained from
S(x)Q T(x— y) after the change of variables:

x=0(x"), y=0(x")—0(z"— y").

Consequently we have
S(x"NYQT(x' — y)= W (0(x")QSY(F(x") — B(x'— ¥))
+ W_(0(x))QV(O(x")— O(x'— y )+ V(#', ¥,

where 7(x’, 0)=0 as seen from the proof of IV given in Section 3.
On the other hand, we can write

W (0(x)QY(@(x")—0(x' — y"))+ W_(0(x"))Q V(0(x")— 0(x'— y"))
| WOGEN)RY () + W0 V(y) for >0,
| WORT)+ W (@G)RY(y) for @' <0,
This shows that Sx,7T exists and Sx,7=W, completing the proof.
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Thus we have shown

Tueorem 2. The multiplication given by Definition VI is normal.

We shall consider the multiplicative product in the sense of Tillmann
[19]. Let S, Te @'(R). We have shown in [6] (p. 71) that if (aSxT)Od=c.0
exists for each a € D(R), where ¢, is a constant depending on «, then SOT
exists and <SOT, a>=ca.

Lemma 8. If Sx,0 exists, so does S[0]. Conversely, if S[ 0] exists, then
both Sx .0 and SO0 exist and are equal to S[070.

Proor. From the identity Sx(ad)'=a(0)S, o € D(R), we see that the
first part of the lemma is clear, and that if S[07] exists, Sx,0 exists and is
equal to S[0]d. On the other hand, we can write in a 0-neighbourhood

S=c,Y+c_Y+D?F, F(x)=o(|%|?),

where (D*F)O0=0 since (D*F)Y0)=0 and YOs— 17@6:%6([6], p. 66, p.

69). Consequently SO0= E%fldz S[ 070, completing the proof.

By aid of this lemma we shall show

Tueorem 3. Let S, T € D'(R). If Sx,T exists, then SOT exists and is
equal to Sx,T.

Proor. Let Sx,7T exist. Thatis, (aS*T)[0] exists for every a € D(R).
Hence it follows that (@ SxT)O0 exists and is equal to <Sx,T, >0. Con-

sequently SO T exists and is equal to Sx,T.

Note that the converse of the theorem is not true: Pf%O(S: —%6’

(C2], p. 251) but Pf%xoa does not exist.

§ 6. Further extension of the multiplicative product
in the case N=1

This section is devoted to a further extension of the preceding discussion
so that the multiplicative product of ¢ by & makes sense.

In the definition of S[ 0], we drop the condition that S has no mass at 0.
We shall denote the generalized value thus defined by S{0} instead of S[07].
For example 0”{0} =0 for j=0,1,2, .... S{0} exists if and only if we can
write S in the form

S=c,Y+c . Y+D’F+a0+ad’ + -+ and™

with constants ¢, c¢_, a, -+, a, in a 0-neighbourhood U, where F is a continu-
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ous function in U such that F=o(| x|?) as | x| —0.

Let 2 be any non-empty open subset of R and S, T € D' (2). When SxT
is defined in a 0-neighbourhood and (Sx7){0} exists, we shall define the genera-
lized scalar product {S, T} of S and T by the formula

{S, T}=(SxT){0}.

If {aS, T} exists for every a € D(2), then we can prove, as in Section 5, that
the linear form a—{aS, T} is continuous on D(L). Thus there exists a uni-
que distribution W € @'(2) such that

<W,a>={aS, T}, aecDQ).

Derintrion VII. Let. S, T e D'(2). If {aS, T} exists for every a € D(Q),
then W e D'(Q) defined by the formula

<W,a>=A{aS, T}=(aS«T){0}, a € D)
will be called the multiplicative product of S and T and denoted by Sx,T.

From the definition we see that if Sx,7 exists, then Sx,T also exists
and is equal to Sx,T. The converse is not true: 03,0 =0 for any non-
negative integers j, k but 6% 0% does not exist.

TuroreMm 4. The multiplication given by Definition VII is normal.

The proof is omitted since it may be carried out with necessary modifica-
tions along the same line as in the proof of Theorem 3.

We shall denote by S-T the multiplicative product of the general sense
of Tillmann (6], p. 56, [197], p. 108).

Tueorem 5. Let S, T€ D'(R). If Sx,T exists, then S-T exists and is
equal to Sx,T.

Proor. Let K be a compact subset of R and a € D(R) be chosen equal to
1 in a neighbourhood of K so that aSx(¢T)" may coincide with Sx(¢T)" in a
0-neighbourhood for every ¢ € Dx. We use the notations and the results of
[6]. Putting S,=asS, S;=(1—a)S, T1=aT and T,=(1—a)T, we can write
Se=(8D)e4(82)e, Te=(TD)e+(T2)e ([6], p. 61). Both S,(z) and T,(z) are analy-
tic in C\(R\ K), where C is a complex plane and each of (5)):(T)e, (52):(T1):

and (5,)«(T2). tends to 0 in Dy as e | 0. Put he= % xZL—f—Ez S-T was defined
as PfS.T.. We note that- ‘

Pf< SGTE) 6> :Pf<(as*he)(aT*h6), ¢ >, pe€ Dx

so far as either side of the equation makes sense. Here we have used the
symbol Pf to denote the finite part of the limit in the sense of Hadamard.
Let B € D(R) be chosen equal to 1 in a 0-neighbourhood. We assume that

B=BV. Then .we can write-the above equation as follows:
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PE< 8T, ¢ > =Pf<(aS+he)(aT*Bhe), ¢ >.

Since o T+Bh. is of compact support we may ‘assume that ¢ is a periodic func-
tion with period 2/ relative to each coordinate with.a sufficiently large /.
Consider the Fourier expansion of ¢:
B =D’ T = cpe(m),
where >}, | ¢, |(1+ |m|)* < oo for every positive integer k. Then we have
<(aSxhe)(aT*Bhe), > =D,cm<(aSxhe)(aT*Bhe), e(m)>
=>Vem<aSkhe, e(m)a Txe(m)Bhe >
=>em<(aSx(e(m)a T) *he)he, e(m)B>.
By the hypothesis Sx,T exists, we can therefore write for any r € &
aSxraT) =c,Y+c Y+ V+ad+ad + - +a, 0™
=H(T)+A®).

Here 7 is a distribution such that 7(0)=0 and c., c_, ao, ai, ---, a, are con-
tinuous linear forms of ye€&. H(y) and A(y) denote c¢.Y+c_ Y+ ¥V and
o0+ a0’ + -+ a,0™ respectively. Using these symbols we have

<(aSxhe)(@T*Bhe), §>=>",cm< (H(e(m))*hg)hg, e(m)B >
+ 3 em <(A(e(m))che)he, e(m)B>.

From the definition of aSx;T together with the fact that A(y)-0=0, we ob-
tain

<aSx T, ya>0=(aSx(raT)")-0=H({)-0.
Consequently we obtain for any x € &

<(aSx(raT)¥)-0, x>= lim < H(y), hexBhex>.
&40

Now, for each ¢>0 the bilinear form u.: (7, x)—> <H(), hexBhex> on B x & is
continuous. As & is of type (F), we can find an integer k,—>0 and a positive
constant M independent of ¢ such:that

| <H(y), hexBhex> | = M sup| D'y |sup|D7x]|.
j i=ko

j=ko
Hence we have with new constants &', M,
| <(H(e(m))xh)he, e(m)B> | =< My(1+ |m | ).

Because of the fact that >),|c,|(1+ |m|)** <o as already remarked, the
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series >3, | c,| sup | <(H(e(m))*he)hs, e(m)B>| converges, which we shall for
simplicity sayoifli;é Sem<(H(e(m))*he)he, e(m)B> converges normally. Since
1320< (H(e(m))*hhe, e(m)B>=< <aSx,T, e(m)a >0, e(m)B>
=<aSx,T, e(m)a>,
it follows therefore that
lai_r’riOE,,,cm<(H(e(m))*h$)h€, e(m)B>=3cn<aSx,T, e(m)a>
=<aSx:T, ¢a>
=< S8x:T, ¢>.
On the other hand, we have
PE>),cn <(A(e(m))xhe)he, e(m)B>
=Pf>},cn < (ao(em)Dhe+ -+ an(e(m)he")he, e(m)B>.
With the aid of the formulas established in [67] (p. 69):

<, ¢>=(=1? SD(" GOfax+ +‘?2 )(,O)g PR dx+ o(1)

and

<R 2P-Dp, , > =(— l)p(2p D¢’ (O)S (h(” 1))2dx+

21)1

(2p-1) oo
+ <¢2—p* 1()9)5 [ nerhartaz o)

11
as 8_*"‘0, Where h—7 xz——!—l’

we can show that

PESY, cnai(e(m)) <hePhe, e(m)B>=0.
First consider the case j=2p. 3},cmaz(e(m))<hs?Phe, e(m)B> is a linear
combination of £2© j=1,2, ..., 8p+1,k=0,1, ., 2p. Since |az(e(m)|=<

M,|m|” with an integer r >0 and a positive constant M, independent of ¢, we

B(0)
ej

can easily verify that the coefficient of converges normally. Thus we

can write
Emcmazp(e(m)) < he(zp)he, e(m)ﬂ >

_<Wy, B> | <Wy B>

- 52 < W2p+13 B> +0(1)

Fo+ 5
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with distributions Wy, W, -, Wap.1 € D'(R). Similarly for the case j=2p—1.

Thus we have shown that S-T exists and is equal to Sx,7, completing

the proof.
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