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1. Introduction.

In [1] Gilmer introduced the notion of almost-Dedekind domain. Every
Dedekind domain is almost-Dedekind (AD) and AD-domains in general have
many of the properties of Dedekind domains. Every Dedekind domain is a
Krull domain in which proper nonzero prime ideals are maximal. Hence it
seems natural to look for the proper generalization of almost-Dedekind do-
mains to almost-Krull domains.

2. Definition and general properties.

In what follows, R denotes a commutative integral domain with identity
and K denotes the quotient field of R. Proper prime ideals of R are nonzero
prime ideals which are not equal to R. The notation is that found in [3] and

M.
We state the following definition from

DEFINITION 2.1. R is AD iff RM is a Dedekind domain for each maximal
ideal M of R.

It follows that proper prime ideals in an AD-domain are maximal. Now
if R is AD and X is an indeterminate, then R[_X^] is not AD. However, we
do have the following proposition which motivates the definition of almost-
Krull domain.

PROPOSITION 2.2. Let R be an AD-domain and let X be an indeterminate.
Then for every proper prime ideal P of R^XJ, the ring R[_X^]P is a Krull
domain.

PROOF. Put Q=PΓ\R and let M=R[_X^-P. Let Mι = R-Q,M2 = M-Mι.
Now Q is a prime ideal of R so that Mi is a multiplicative system in R and
hence in R\iXJ. M2 is the set of nonconstant polynomials in M and hence M2

is also a multiplicative system in R[_X~]. It follows that (R[_XJ)P =
(RMJLXDMZ Since R is AD, RMι is either a field or a Dedekind domain (If
PΓ\R = (0) then RMl = K.). Thus RMlLXJ is a Krull domain. Since M2 is a
multiplicative system in RM^_X^ (RM1LXJ)M2 is a Krull domain.

The above proposition suggests the following definition.
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DEFINITION 2.3. R is called an almost-Krull (AK) domain iff RP is a
Krull domain for each proper prime ideal P of R.

PROPOSITION 2.4. R is AK iff RM is a Krull domain for each maximal
ideal M of R.

PROOF. The proof is a straight forward application of the general pro-
perties of quotient ring formation found in [ΊΓ].

PROPOSITION 2.5. Let R be an AK-domain. Then R is integrally closed,
and hence a Noetherian AK-domain is a Krull domain.

PROOF. By [jΓ], page 94, we have that R = Γ\RM, where M runs over all
maximal ideals of R. Each RM is integrally closed since each RM is a Krull
domain. It follows that R is integrally closed. It is well known that a Noe-
therian integrally closed domain is a Krull domain.

In the remainder of this paper we shall assume that R is an
unless otherwise stated. Thus let A denote the set of nonzero minimal primes
of R. Aφ0, for if M is a maximal ideal of R then the Krull domain RM con-
tains a minimal prime P. It follows that Q = Pί\R is a minimal prime of R.

PROPOSITION 2.6. R = Γ\RP

PROOF. Let M be any maximal ideal of R and let BM denote the collec-
tion of nonzero minimal primes of R that are contained in M. Since RM is a
Krull domain, RM= f\ (RM)PR = A RP. Then R = rλRM=r\( ίλ RP)= r\ Rp,

PtB P£B M PB PΔ
(

M P€BM

where M runs over all maximal ideals of R.

COROLLARY 2.7. R is completely integrally closed.

PROOF. Each RP is a discrete rank one valuation ring and hence is com-
pletely integrally closed.

COROLLARY 2.8. Let F denote the family of valuations on K induced by
the family of nonzero minimal primes of R. Then F satisfies the following:

(i) Each v e F has rank one and is discrete.

(ϋ) R=r\Rv
v€F

(iii) For each v e 1% RV = RP(V), where P(v) denotes the center of v on R.
(iv) For each maximal ideal M of R and for each nonzero x e K, v(x)φθ

for only a finite number of v e F such that P(v) C M.

PROOF, (i), (ii), (iii) are clear, (iv) follows from the fact that for each
maximal ideal M9 RM is a Krull domain with quotient field K.

Using the above corollary, we can in fact characterize ^4i£-domains in
terms of families of valuations.
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THEOREM 2.9. R is an AK-domain iff there exists a family F of valua-
tions on K with the following properties:

(i) Each v e F has rank one and is discrete.
(ii) For each maximal ideal M of R there is a subfamily FM of F such

that RM= A RV

(iii) For each v 6 F, RV = RP(V).
(iv) For each maximal ideal M of R and for each nonzero x e K, there are

only a finite number of v e FM such that v(x)φθ.

PROOF. The "only i f part follows from corollary 2.8. The " i f part
follows from the fact that the existence of a family F satisfying (i) through
(iv) implies that RM is a Krull domain for each maximal ideal M of R. Thus
R is AK by proposition 2.4.

A family F of valuations satisfying (i) through (iv) of the above theorem
is called a family of essential valuations for R. The next proposition shows
that, as is the case for Krull domains, a family of essential valuations for R
is uniquely determined by R.

PROPOSITION 2.10. Let F beu family of essential valuations for R. Then
the quotient rings RP, where P runs over the family of all minimal primes of
R, are identical with the valuation rings Rv, v e F.

PROOF. Let υ e Fand let P(v) denote the center of v on R. Then Rv =
RP(V). Since Rv is a discrete rank one valuation ring, we must have that P(υ)
is a minimal prime in R.

Conversely, let P be any minimal prime in R. We must show that P is
the center of some valuation υ e F. Let M be any maximal ideal containing
P. By theorem 2.9 there is a family FM of valuations which is the family of
essential valuations for the Krull domain RM and FMC.F. Now PRM is a
minimal prime in RM and since RM is a Krull domain there is v c FM such that
PRM is the center of v on RM. So if x e RM then v(x)>0 iff x e PRM iff

x = —, t 6 P, m e iϋ —Miff v(t)>0 since m is a unit in RM and hence 0(771)=0.
771

Thus PCP(v) where P(v) denotes the center of v on R. Since P(v) is minimal
we must have P=P(v). Then RV = RP(V) = RP.

We note that if R is not a Krull domain, there may be a proper subfamily
G of F such that R= f\ Rv. For example if R is an AD-άom&m which is not

υCG

a Dedekind domain such a family G always exists Q2, theorem 3].
The next few theorems show some ways to obtain AK-dom&ins from a

given ^X-domain R.

THEOREM 2.11. Let R be an AK-domain and let Xu X2, •••, Xn be indeter-

minates. Then R[_Xι, X2, , XnJ is an AK-domain.
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PROOF. It is sufficient to prove the case n = l. The proof for this case
is similar to the proof of proposition 2.2 with only a few minor changes.

Now, let X be an indeterminate. For f(X)= ΣxaiX
i e R[_XJ, and v e F,

define v/(f(X))=mm{v(ai)\O<:i<in}. vf may be extended to a valuation on
K(X), and is called the canonical extension of v to K(X). Let G denote the
family of α(X)-adic valuations on K(X) where a(X) is a nonconstant irreduci-
ble polynomial in K[_X^\ and let F' denote the family of canonical extensions
of elements of F to valuations on K(X).

PROPOSITION 2.12. F'\jG is the family of essential valuations for the AK-
domain

PROOF. We shall show that Fr\jG satisfies the conditions of theorem 2.9.
It is clear the valuations in Ff\jG have rank one and are discrete so that (i)
is satisfied. To see that F'\jG satisfies (ii) of 2.9, let M be any maximal
ideal of R[_X^\. We will show that there exists a subfamily HM of F'\jG such
that R[X2M= Γ\ RLX^W TO construct HM put MΓ\R = P. Then P is a

W€HM

prime ideal of R. Let FM = {V e F\P(v)CP}> and let F'M denote canonical ex-
tensions of elements of FM to K(X). Let GM={va £ G\Q(va)CM}, where va

denotes the valuation induced by the nonconstant irreducible polynomial a(X\
and Q(va) denotes the center of va on R[X~]. It can be shown that R[_X~}M =

f\ ΛDXΊU Thus we take HM = F'M\jGM. The proof that Ff\jG satisfies

(iii) of 2.9 is the same as the proof of theorem 29(b), page 85 of [4]. It fol-
lows from the construction of HM that if j e ί ( I ) , γφO, there are only a
finite number of w e HM such that w(γ)Φ0. Thus Fr\jG satisfies the condi-
tions of 2.9.

THEOREM 2.13. Let R be an AK-domain with quotient field K and let L be
a finite algebraic extension of K. Let Rf denote the integral closure of R in L.
Then R' is an AK-domain.

PROOF. Let M be any maximal ideal of R'. Since Rr is integral over R
we have that M'Γ\R = M is a maximal ideal of R. Put S=R — M, so that
RS = RM is a Krull domain. Since Rr is the integral closure of R in Z,, Rr

s is
the integral closure of Rs in L. Since Rs is a Krull domain, R's is a Krull
domain. Now, SCR'~M\ so (Rf

s)R^M' = R''R,^M, = R'M,. Thus R'M, is a Krull
domain since Rf

s is a Krull domain and Rr — M is a multiplicative system in

R's.

PROPOSITION 2.14. Let R, K, L, R\ F be as in 2.13 above. Let Fr denote
the family of valuations on L which are extensions of members of F. F' is the
family of essential valuations of the AK-domain R\

PROOF. We will show that {R'υ'\v' e F} = {Rp\P is a minimal prime of
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R'}. It is clear that the left hand side is contained in the right hand side.
To see that the right hand side is contained in the left hand side, let P be any
minimal prime of R\ Then Rr

P = Rr

u and P=P(u) for some essential valuation
u of the ^4X-domain R'. Let Q=PίλR. Then Q is a minimal prime in R
since Rr is integral over R. Thus Q=Q(v) for some v e F. Let u0 denote the
restriction of u to K. Then u0 is nonnegative on R with center Q(uo)=Q(υ).
Thus u is an extension of v, i.e., u e F''. Since R'P = R'U we have {RP\P is a
minimal prime of R'} C {R^ I v' e F}.

THEOREM 2.15. Let R be an ΛK-domain with quotient field K and family
F of essential valuations. Let S be a multiplicative system in R. Then Rs is
an AK-domain with G—{v e F\P(v)Γ\S=0} the family of essential valuations
ofRs.

PROOF. Let M b e a maximal ideal of Rs. Then MίλR = P is a prime
ideal of R and M=PRS. Let T=R — P so that T is a multiplicative system
in R with TCRs~M. Now Pr\S=0 so that SCR-P=T. Also (Rs)τ =
(Rτ)s. Since TCRs-PRs we have (RS)RS-PR8 = [XRS)T1R8-PR8. SO (RS)M =

(RS)RS-PRS^L(RS)TJRS-PRS = [_(RT)S'2RS-PRS The result follows from the fact
that Rτ = Rp is a Krull domain. Now let G denote the family of essential
valuations of Rs. If v e £, then Q(y\ the center of v on i?s, is a minimal
prime of Rs. Then Q(v)Γ\R = P is a minimal prime of R and hence P=P(υ)
is the center of t> on R. Since Q(v)=P(v)RsφRs, we must have P(v)Λ5=0,
since otherwise P(v)Rs = Rs- On the other hand, let veF be such that
P(υ)r\S=0. Then P(v)RsφRs and so P(v)Rs is a minimal prime of i?5.
Thus K G .

We now determine all ^j£-domains between R and its quotient field K.
Let A be a domain such that RCACK. For any maximal ideal M of J , let
P=RΓλM, and let S=R — P. We note that P is a prime ideal of R and P^i?
since 1 f M. For v e F, P(v) denotes the center of z; on i?. This notation is
used in the following theorem.

THEOREM 2.16. A is an AK-domain iff there is a subfamily G of F such
that A= Γ\RV and for every maximal ideal M of A we have f\ RV = AM

v€G υeG
Piv)CM

PROOF. The "only if" part is immediate. To see the "if" part, let G be
a subfamily of F having the stated properties. Using the notation just given,
for any maximal ideal M of A we have RsCAsC A RV = AM- Since Rs is a

υeG
P(v)CM

Krull domain, AM is also a Krull domain.
The following proposition gives a sufficient condition for an ^£-domain

to be a Krull domain. It generalizes a theorem of Gilmer in [Y\.
PROPOSITION 2.17. Let R be an AK-domain. If every nonzero proper

ideal of R is contained in only a finite number of maximal ideals then R is a
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Krull domain. Thus an AK-domain with only a finite number of maximal
ideals is a Krull domain.

PROOF. Let x e R, xφO, and let F denote the family of essential valua-
tions of R. It is sufficient to show that v(x)φθ for only a finite number of
v e F. If x e R is a unit then v(x)=0 for all υ e F. If x e R is not a unit then
Rx is a nonzero proper ideal of R and hence Rx is contained in only a finite
number of maximal ideals, say Mu •-, Mn. For any maximal ideal M of R
let FM denote the family of essential valuations of the Krull domain RM.

n

Then v(x)Φ0 for only a finite number of v e \jFMί since v(x)Φ0 for only a
ί = 1

finite number of v e FMί, ί = 1, 2, ..., n. If M is any maximal ideal of R which
does not contain Rx, then x ( M. Thus x is a unit in RM, and hence v(#)=0
for all veFM. Thus V(Λ;)=0 for all υ e F-\J{FM.\ ί = l, ..., TZ}, and vOO^O
for only a finite number of v e F.

The following shows that if R is an ̂ X-domain which is not a Krull do-
main, then the same must be true of ΛCXU, where X is an indeterminate.

PROPOSITION 2.18. Let R be an AK-domain with family F of essential
valuations, and let X be an indeterminate. If R[X~2 is a Krull domain then
R is a Krull domain.

PROOF. Let Fr\jG denote the family of essential valuations of the AK-
domain R[_X^\, where F' is the family of canonical extensions of members of
F to valuations on K(X). It is sufficient to show that if r e i?, r φ 0, then
υ(f) φ 0 for only a finite number of v e F. Now RCRL%^ so if v' e F' and
r e R, then v'(r)=υ(r\ and since Λ[JQ is a Krull domain, v{r) — v\r) is nonzero
for only a finite number of υ e F.

COROLLARY 2.19. // R is almost-Dedekind and if R[_Xι, , Xk] is a Krull
domain for some k, then R is a Dedekind domain.

The above corollary generalizes a result of Gilmer in \ΛΓ\. Corollary 2.19
also shows that there exists a large class of JX-domains which are not Krull
domains.

Author's note: This paper constitutes part of a Ph.D. dissertation writ-
ten under the direction of Professor Paul J. McCarthy at the University of
Kansas. The author wishes to express his appreciation to Professor McCarthy
for his counsel and advice during the course of this work.



Integral Domains which are Almost Krull 447

References

1. Gilmer, R.W., Jr., Integral domains which are almost Dedekind, Proc. Am. Math. Soc. 15 (1964) 813-818.
2. Gilmer, R.W., Jr., Overrings of Prufer domains, Journal of Algebra 4 (1966) 331-340.
3. Zariski, O. and Samuel, P., "Commutative Algebra", Vol. I, Van Nostrand, Princeton, New Jersey,

1958.
4. Zariski, O. and Samuel, P., "Commutative Algebra", Vol. II, Van Nostrand, Princeton, New Jersey,

1960.

University of Missouri
at Kansas City






