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1. Introduction and Summary

The concept of majority decoding and, more generally, threshold decod-
ing was introduced by Massey (ΊQ. In order to obtain majority decodable
codes such as (i) a d-th order Projective Geometry code (whose parity check
matrix is the incidence matrix of points and d-flats in PG(ί, pn)) and (ii) a
d-th order Affine Geometry code (whose parity check matrix is the incidence
matrix of points other than the origin and J-flats not passing through the
origin in EG(ί, pn)\ it is necessary to investigate the rank of the incidence
matrix of points and d-flats in PG(ί, pn) and in EG(ί, pn) over GF(pw). An
exact formula for the rank of the incidence matrix of points and hyperplanes
((ί — l)-flats) has been obtained by Graham and Mac Williams [_2~] for the case
t = 2 and has been independently obtained by Smith [5~] and by Goethals and
Delsarte [ΛΓ\ for general t. An exact formula for the rank of the incidence
matrix of points and d-flats in a special case n = 1 has been obtained by Smith
[5]. For general n, although an upper bound for the rank has been obtained
by Smith, an explicit formula for the rank has not yet been obtained.*)

The purpose of this paper is to derive an explicit formula for the rank
of the incidence matrix of points and d-flats in PG(ί, pn) and in EG(ί, pn) for
the general case, by extending the methods used by Smith.

The main results are as follows.

(i) In the case of PG(ί, pn\ we have the

THEOREM 1. Over GF(pn), the rank of the incidence matrix of points and
d-flats in PG(ί, pn) is equal to

R&,pn)=Σ---Σ"/I ^ I Γ ' (-i)'('Γ)('+«"*,- >-») (l.l)
so Sn-i j = 0 i =0

where sn=s0 and summations are taken over all integers sj (y = 0, 1, •-, n — 1)

such that

and O^sj+1p-Sj^(t + l)(p-l) (1.2)

*) This problem was suggested by Professor R. C. Bose during his visit to Hiroshima, May 1968.
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and L(SJ+I, sf) is the greatest integer not exceeding (sj+ιp — Sj)/p, i.e.,

(1.3)

(ii) In the case of EG(ί, pn\ we have the

THEOREM 2. Over GF(pn\ the rank of the incidence matrix of {pn)f — 1
points other than the origin and d-flats not passing through the origin in
EG(t,pn) is equal to Rd(t, pn)-Rd(t-l, pn)-l.

The process of deriving our explicit formulas and our results given in
[_6J may be useful to obtain majority decodable codes such as d-th order
Protective Geometry codes and d-th order Affine Geometry codes. In section
2 and section 3, we shall prove Theorem 1 and Theorem 2, respectively.

2. Rank of the incidence matrix of points and r/-flats in PG(ί, pn).

In this section, we investigate the rank of the incidence matrix of points
and d-flats in PG(z, pn) and prove Theorem 1.

With the help of the Galois field GF{q\ where q is an integer of the form
pn (p being a prime), we can define a finite protective geometry PG(ί, q) of t
dimensions as a set of points satisfying the following conditions (a), (b) and
(c):

(a) A point in PG(ί, q) is represented by (v) where v is a non-zero ele-
ment of

(b) Two points 0 ) and (μ) represent the same point when and only when
there exists a non-zero element σ of GF(q) such that ju = <τv.

(c) A d-flat, 0 < ^ d < ^ , in PG(ί, q) is defined as a set of points

{(αovo + αi^i H h advd)} (2.1)

where as run independently over the elements of GF(q) and are not all simul-
taneously zero and (v0), (vi), •••, (vrf) are linearly independent over the co-
efficient field GF(qr), in other words, they do not lie on a (d — l)-flat.

It is well known that the number, v, of points in PG(ί, q) is equal to

V = (quι-ΐ)/(q-ΐ) (2.2)

and the number, δ, of d-flats in PG(ί, q) is equal to

# ^

After numbering v points and b d-flats in PG(ί, q) in some way, we define
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the incidence matrix of υ points and b d-flats in PG(ί, q) to be the matrix

7V=|k yll; i = l,2, ..., δ and ; = 1,2, ...,t; (2.4)

where

ί 1, if the y-th point is incident with the z-th d-flat,
Πij = I

[ 0, otherwise.

In order to obtain an explicit formula for the rank of the incidence matrix
TV over GF(gr), we start with the following proposition summarizing the es-
sential results due to Smith [ΊΓ].

PROPOSITION 1 (Smith). Over GF(^), the rank of the incidence matrix N
of v points and b d-flats in PG(ί5 q) is equal to the number of integers m such
that (i) l<,m<;V and (ii) there exists a set of d-rl positive integers mk (k = 0,
1, •••, d) which satisfies

Σ and Dp£m(q - 1)H = Σ Dp[_mk{q -1)] (2.5)
k0k=0

where DP[_M^ is defined for a non-negative integer M having the p-adic repre-
sentation

^ c K p , for all ί = 0,l,. ,u) (2.6)

by

+ cu. (2.7)

The following two theorems play an important role in proving Theo-
rem 1.

THEOREM 2.1. Let m be a positive integer such that l^m^v and let the
p-adic representation of m(q — 1) be

m(q-l)=ΣΣcijp
i«" (2.8)

i=0 j = 0

where a/s are non-negative integers less than p.
If there exists a set of d-rl positive integers mk (k — 0, 1, ••-, d) which

satisfies

m=Σmk and DPim(q - 1 ) ] = Σ Dp[mk(q -1)], (2.9)
k=0 k=0

then there exists a unique set of n + 1 positive integers si (1 = 0, 1, •••, n) such

that

t

and Σ c y = sj+ip — sj (2.10)
ί = 0
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for each j=0, 1, • ••, n — 1.

Note t h a t 0<,Sj+ιp — sj^(t + l)(p — ϊ) must hold for each / = 0 , 1 , • ••, n — 1,
since 0^c*y<^p—-1 for all ί and j .

THEOREM 2.2. Let st (1 = 0, 1, • •-, n) be a set of n + 1 positive integers such
that

and O^sJ+ιp-sj^(t + l)(p-l) (2.11)

for e a c h / = 0 , 1, , n — 1. L e t c # (ι' = 0, 1, ••-, ί, / " = 0 , 1, ••-, n — 1) be a set of
non-negative integers less than p satisfying

Σcij = sJ+1p-sj (2.12)
t = 0

/or βαc/ϊ, j= 0, 1, ..., Λ — 1.

(ί) Σ Σ CijPιn+J is a multiple of pn — 1, £feα£ is, ί/^ere exists an integer m,
ί o y o

Σ
i=0

Σ Σ'c/yy*^ = »»(/»"-1). (2-13)
i = 0 j = 0

(ii) There exists a set of d + 1 positive integers mk (A; = 0, 1, ..., d) which
satisfies (2.9) for the integer m.

At first, we prove the following two lemmas.

LEMMA 2.1. Let m be a positive integer such that l<.m<;V and let thep-
adic representation of m(q — 1) be

m(q-l)=ΣΣ1cijp
i"+J, (2.13')

i = 0 ; = 0

then there exists a unique set of n + 1 positive integers si (1 = 0, 1, ••-, ή) such
that

t

sn = s0, l^sj<^t + l and Σdj = sj+ip — Sj (2.14)
i=0

for each ; = 0, 1, ••, n — 1.

PROOF. Since

Σ nΣcisp
J=Σ nΣcijP

in+j-t Σci ip**-!)^ (2.15)
i = o y=o i = o y=o ί = o .7=0

and (p ι n — 1) is a multiple of pw — 1, Σ Σ c^ /?-7 is a multiple of //* — 1 by assump-

tion (2.130, that is, there exists a positive integer r, l ^ r ^ ί + 1, such that
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Σ Σ W = K/>B-1). (216)
* =o y=o

The equation (2.16) can be expressed as

ΣJΣcijP

j = rpn-Σ "ΣcijpJ (2.17)
i = o y=o ί=o y=y 0

for any integer j 0 (1 <[/o <S rc — 1). Since the right hand side of equation (2.17)
is a multiple of pj\ its left hand side must be a multiple of pj\ that is, there
exist n — 1 positive integers s, 0, l^sy o <Jί + l, (/o = l, 2, ..., n — ϊ) such that

r+Σ "Σ cap* = sj-p' (2.18)
ί=o y=o

for each 70 = 1, 2, ..., n — 1. Solving n — 1 equations (2.18), we obtain

Σc/y = 5y + iD-Sy (2.19)
i =0

for each / = 0 , 1, , rc —1 where s w =s 0 and so=r.
The uniqueness of the set of integers 5/ (1 = 0, 1, ••., n) can be proved as

follows.
Let sf (Z = 0, 1, ••-, n) be another set of n + 1 positive integers such that

5* = 5* and Σcij = sf+lP-sJ (2.20)

i =0

for 7 = 0,1, . . , rc-1. Then, from (2.19) and (2.20), we have sj+1p-sj = sf+1p-sf

(/=0, 1, ..-, n-1) and " Σ Σ CίyDy = 5 O ( p n - l ) = s o ( p n - l ) τ h i s implies that
y = o ί = o

5 * = 5 / for all Z = 0, 1, •-, n. This completes the proof.
LEMMA 2.2. Let M and Mk (& = 0, 1, ••, c?) 6β positive integers and let the

p-adic representations of M and Mk be

M=Σcιpι and Mk=±c\k)

P

l. (2.21)
1=0 1=0

d d d

Then, M= ΣMk and DP[MJ= ΣDp\Jdk} if and only if cι=Σc\k) for each
k=0 k=0 k=0

Z = 0, 1, ••, u.

PROOF. If M= Σ Mk and DPlM^= Σ Dp[_Mf\, then,
k=0 k=0

ΣcιP

ι=Σ ΣcTp1 (2.22)

/ = 0 k = 0 1=0

and

u d u

Σ r — V Y1 rik) (9 99rΛ
1 = 0 k = 0 1 = 0
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Since c,'s are non-negative integers less than p, it follows from (2.22) that
c/(/ = 0,l, ..., B) must be expressed as

Σ ^
k = 0

(2.23)

for some non-negative integers at (Z = — 1, 0, • •-, u) where a-ι — au = 0. Tak-

ing summation of (2.23) over Z, we have

±c,= ± ΣcF-ζp-ΐΐΣct,. (2.24)
1=0 1=0 k=0 1=0

The equations (2.220 and (2.24) show that ( D - I / Z > / = 0. This implies that
/ = 0

all integers at must be zero since they are non-negative integers and p Ξ> 2.
d

Thus we have c/= Σ c(/Λ) for each Z = 0, 1, • ••, a.

The converse is obvious.

(Proof of Theorem 2.1) Let thep-adic representation of mk(q — l) be

mk(q-l)=Σ nΣc{Vpin+j (* = 0, 1, -.., d\ (2.25)
i=0 j=0

then from lemma 2.2, we have

aj=Σc{fi (2.26)

for all i = 0, 1, ..., t and y = 0, 1, •••, n — 1. Since 771̂  is a positive integer such
that l<^mk<.v, it follows from lemma 2.1 t h a t for each & = 0, 1, . . , d, there
exists a unique set of rc + 1 positive integers s\k) (Z = 0, 1, ..., n) such that

and Σc^ = s{filP-sf (2.27)
/ 0
Σ

/ = 0

for each ; = 0, 1, •-., rc-1. From (2.26) and (2.27), we have

Σ ^Σ7 (Σ4^(Σn (2.28)
ί = 0 k = 0 k = 0

d

L e t sι= Σs{ιk) for e a c h Z = 0, 1, ••-, n, t h e n i t holds t h a t
k

sn = s0 and Σcij = sj+ιp — Sj (2.29)
i =0

for 7 = 0, 1, , 7i — l . Since the set of integers si (1 = 0, 1, ••, n) for m is uni-
que and all sf^s are positive, it follows tha t eZ + l<Ξs/<^ί + l for each y = 0, 1,
• , n — 1. This completes the proof.

For the proof of Theorem 2.2, we shall prove the following three lemmas.
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LEMMA 2.3. For any set of n + 1 positive integers s/ (Z = 0, 1, •••, rc) which

satisfies the conditions:

and O^sJ+1p-sj^(t + l)(p-l) (2.30)

for all 7 = 0, 1, ••, n — 1, there exists a set of non-negative integers
p — 1, (Z = 0, 1, ..., ί, 7 = 0, 1, •-., n — ΐ) satisfying

t

Σ Cij — Sj + ιp — 5y (2.31)

for 7 = 0, 1, ••, 7i — l, cmcϊ Σ Σ Cijpin+J is a multiple of pn — 1, i.e.,

ί /? — 1

Σ Σ cijPm+J = m(pn — 1) and l^m^v. (2.32)
i=0 i = 0

PROOF. The existence of non-negative integers c,7 less than p is obvious
since

F r o m (2.31), w e h a v e

Σ1 Σ cijP

j=nΣ(sj+1p-sj)pJ = snp
n-s0 = so(P

n-n (2.33)
y=o i = o y=o

Thus, we get the required result from (2.15) and (2.33).

LEMMA 2.4. Let si (1 = 0, 1, •••, ή) be n + 1 positive integers which satisfies
the conditions:

l and O^sj+1p-sj^(t + l)(p-l) (2.34)

for all 7 = 0, 1, ..., n — 1, then there exist d + 1 sets of n + 1 positive integers
s\k) (k = 0, 1, ..., d, 1 = 0, 1, ..., n) such that

Σs\k)=st (Z = 0 , l , . . . , * ) (2.35)
k = 0

s{

n

k) = s{

o

k\ l^sγ^t + 1 and O^sf^p-sf ^(t + l)(p-l) (2.36)

for all 7 = 0, 1, ..., τι — 1 α ^ d A = 0, 1, •••, ίZ.

PROOF. The case <i = 0 is trivial. We, therefore, assume that l<Jd<l£
and give a step by step method of constructing a series of positive integers
sh+ι> su> •••> sok) = sn\ sn-u •-> s?^2 (* = 0, 1, •••, rf) having required properties
by starting with the decomposition of sj(j+ι into d + 1 positive integers ŝ +i>
where 5 ;o+1 is one of the least integers among su s2, •••, 5W.

(i) Construction of s{

j

k

o

)

+1 (A = 0, 1, •••, d)

Since 5 io+1 ^ d + 1 , we can define s{ji

o

)

+1 (k = 0,1, ..., d) satisfying the follow-
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ing conditions:

and Σ

(ii) Construction of sfo

] by using s{

J

k

o

)

+1 (£ = 0, 1, • ••, d)

Since sJ0^>sJQ+u there exist a positive integer QJQ and a non-negative in-
teger RjQ less than sy0+i such t h a t

(2.38)

Thus if we define sfj by the sum of s(jk

o

)

+1QJo and a non-negative integer
aks

(jk

0

)

+1 not greater than s}*+i, i.e.,

(2.39)

d

such that Σ MkSj^+i — Rj0, then we have

d

Σ sfo

] = SjQ and 1 <Js^ί+i iS5/^ 2S* + l (2.40)

Since sjQ+1p — sJQ^>0, we have QjQ<>p. Whenever s, 0 is not a multiple of
5y0+i, the equality does not hold, i.e., QJo<p When sjo is a multiple of SJQ+U

the equality may holds but we have ao=ai= =ad = 0. Anyway, we have

(2.41)

Combining the results with sJQ+1p — sj <^(t + ϊ)(p — 1), Σs{/0

)

+1 = sj +1 and (2.40),
k = 0

we have

sf:+ιP-s^<{t + l)(p-l\ (2.4Γ)

(iii) Construction of s\k) by using s^x (general case)

In general, two cases can occur, i.e., (a) s/O/+i and (b) s/|>s/+i.

(a) The case 5/<s/+i

In this case, we can easily decompose 5/ into d + 1 positive integers s\k)

(& = 0, 1, ••-, d) such that

Σs\k) = sh l^s^^sγ^sfl^t + 1 (2.42)

and we can easily show that

(2.43)

(b) The case sι7>sι+ι
In this case, we can apply the same method described in (ii), for the con-

struction of s\k) having required properties by using s\klλ.
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Using these methods described in (i), (ii) and (iii), we can construct integers
s\k) step by step until s^+2 (i = 0,l, •••, d) have been constructed. Now, we
have to verify that the inequalities

0<s?:+2psγ:+1^(t + l)(p-l) (2.44)

hold for all k. Since the construction process shows that s\k) ^s}ί+i holds for
each Z = 0, 1, ..., n and k = 0, 1, ..., d, we can see that the inequalities (2.44)
hold. This completes the proof.

The following lemma seems to be not so trivial. But we can construct
a set of non-negative integers satisfying the required conditions by an ele-
mentary method.

LEMMA 2.5. Let ua (α = 0, 1, • ••, t) and wβ (/9 = 0, 1, •••, d) be non-negative
t d

integers such that Σ ua= Σ wβ>
β

<,ua<,p-l and 0<Lwβ<L(t + ΐ)(p-ϊ), (2.45)

then there exists a set {χa/3 <% = 0, 1, .., ί, β = 0, 1, ..., d} of non-negative in-
tegers less than p which satisfies the conditions:

= 0,l, ..., t) (2.46)
β = 0

and

Σ*«β = Wβ (for /2 = 0, 1, ..., d). (2.460
α = 0

Using the above three lemmas, we now prove Theorem 2.2.

(Proof of Theorem 2.2) Lemma 2.3 shows that (i) holds.

Lemma 2.4 shows that each st (0<,l<>n) can be decomposed into d + 1
d

positive integers s\k) (& = 0, 1, •-, d) such t h a t Σχs\k) = sι and t h a t

and O^s^ip — s{jk)<^(t + l)(p — 1) (2.47)

for all y = 0, 1, •••, n — 1 and £ = 0, 1, •••, d.

Since for each / (0<,j<:n-l\ caj (a=0, 1, ..., t) and ( ^ ^ p - ^ f } ) (/9 = 0,
1, ..., rf) satisfy the conditions of Lemma 2.5, there exists a set {c^}: α = 0 , 1 ,
• , ί, /9 = 0, 1, , J} of non-negative integers less than /? which satisfy the
conditions:

Σcaβ} = sf+\p-sf) (for 0 = 0, 1, ..., d) (2.48)

and
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Σ
β

= caj {for α = 0 , 1, ••-, t). (2.480

For each k (0<,k<,d\ since c ^ } (f = 0, 1, • •-, £, / = 0 , 1, • ••, Λ —1) satisfy
the conditions of lemma 2.3, there exists a positive integer mh9 ί^rnk^v,
such t h a t

Σ nΣc^pin+J = mk(p"-l). (2.49)
* = o y = o

From (2.49), (2.480 and the equation

ΣΣ ΣciJp
in+i = m(p"-ϊ), (2.50)

we have

m= Σπik and Dp\ja{pn-Vβ = Σ DPZmk(p»-l)J (2.51)
k=0 k=0

This completes the proof.

Theorem 2.1 shows that for each m satisfying the requirement (2.9), there
exists a unique set of 5/ (Z = 0, 1, •••, n) satisfying (2.10). On the other hand,
Theorem 2.2 shows that for each set of si satisfying (2.10), there exist a
number of integers m satisfying the requirement (2.9).

In order to enumerate the number of m for each set of sh we introduce
the following notation. For a set of non-negative integers UJ (y = 0, 1, •••,
n — 1), we denote by Nt (u0, uu ••-, un-i) the number of ordered sets or vectors
c ( ί , n — l ) = ( c O o , c i o , •••3 cto; •••; c o » - i , c i w _ i , •••, ctn-i) o f n o n - n e g a t i v e i n t e g e r s

less than p which satisfy

Σcij=uj (2.52)
i =0

for all /—O, 1, ••, n — 1. It can easily be seen that, for 0^uj<L
there exists at least one set c(t9n — 1) and, otherwise, there does not exist
such an ordered set.

Using the notation, we have the following theorem.

THEOREM 2.3. The number of integers m such that (i) 1 <J m <^ v and (ii) m
can be decomposed into d-\-l positive integers mk (& = 0, 1, •••, d) satisfying the
following conditions:

is equal to

and Dp\jn(q -1) ] = Σ Dp\jnk(q -1) ] (2.53)
k=0

t+1 t+1

Σ ••' Σ Nt(sιp — so, ..., snp — sn-ι) (2.54)
so=d+l Sn-i=d+l
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where sn = s0.

The following well known lemma is useful in the determination of Nt

(u0, ..., un-i).

LEMMA 2.6. Let ubea non-negative integer such that 0 < ^ <Ξ (ί + l ) ( p — 1).

Then the number, Bu(t, p), of ordered sets (x0, xu • ••, xt) of t + 1 non-negative
t

integers %i (ί = 0, 1, • ••, t) such that 0<,Xi<^p — 1 and Σ %i — u, is equal to

B«(t, p) = ΣΪ-mψX'Ύ1") (2-55)
i =0

where L(u) is the greatest integer not exceeding u/p, i.e. L(u)=\ — .

(Proof of Theorem 1) We can easily see that

Nt(U(h uu ..., un-1) = //Bu.(t,p). (2.56)

Applying (2.56) and lemma 2.6 to Theorem 2.3, we get Theorem 1.

When d<;\ - |-1 the following identity may be useful, i.e.,
L & J

pn) (2.57)

where

R*At,Pn)= Σ ••• Σ 77 ^ ' " ' ( - l y C T X ^ ' H - ' ' * - ' * ) , (2.58)
s* s * _ ! j = 0 ί = 0

s*=s$ and summations are taken over all integers sf (/=(), 1, , Λ —1) such
that

<d and 0 ^ ^ + l / ? - ^ ^ ( ί + l)(^-l). (2.59)

COROLLARY 2.1. /% ίfcβ special case q—p^ i.e., n = l, the rank of the in-
cidence matrix N of v points and b d-flats in PG(ί, p) is equal to

R*{t,P)= Σ1 L"Σ\-V>KΨ)(t+ »Ί"-ip) (2.60)
s=d+l i=0

= υ-Σ L{Sf} (-lyCJ-OC""'*?1'"'*) (2-60')
s = 1 / = 0

where L(s, s) = Γ ^ ^ Π
P

This result has been obtained by Smith

COROLLARY 2.2. /w ίΛ-e special case d=t — l, the rank of the incidence
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matrix N of v points and v hyperplanes ((t — l)-flats) in PG(ί, q) is equal to

In the case t = 2, this result has been obtained by Graham and Mac Williams
and, for general £, was conjectured by Rudolph Q4Γ] to be true and has been

independently obtained by Smith [β~] and by Goethals and Delsarte

3. Rank of the incidence matrix of points and d-flats in EG(ί, pn)

We consider the affine case.
The affine geometry of ^-dimensions, denoted by EG(ί, q\ is a set of

points which satisfy the following two conditions:
(a) A point is represented by (v) where v is an element of GFOjr*) and

each element represents a unique point.
(b) A d-flat is defined as a set of points

{(αoVo + «i^iH Vadvd)} (3.1)

where (v0), (vi), •••, (vd) are linearly independent over the coefficient field
GF(q) and α's run over the elements of GF(q) subject to the restriction

d

i=0

Because of difficulties arising in constructing an analytical expression for
the incidence relation between the origin and d-flats in EG(ί, q\ we shall
analyze separately the incidence matrix of points and d-flats passing through
the origin and the incidence matrix of points and d-flats not passing through
the origin.

(I) The case of the incidence matrix of points and d-flats passing through
the origin

We define the incidence matrix of q* points and bo = φ(t — l, d — l,q) d-
flats passing through the origin to be the matrix

jVo = ||7&f; || ΐ = l, 2, ..., ό0 and ; = 0, 1, 2, ..., ^ - 1 . (3.2)

where

[ 1, if the y-th point is incident with the i-th ί/-flat,

[ 0, otherwise

and define the incidence matrix of v* = qf — 1 points other than the origin and
bo d-flats passing through the origin to be the matrix

N* = \\nfj\\ i = l, 2, ..., bo and y = l, 2, ..., g ' - l . (3.3)

Since ni0 = l and Σ nij — qd — l for all i = l, 2, ..., ό0, the rank of No is
3=1
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equal to the rank of N$. It is known [6] that the structure of the matrix
N$ is the same as the incidence matrix TV of points and (d — l)-flats in
PG(ί — 1, q) except for (q — 1 times) duplications of each column of N%. The
rank of the matrix N$, therefore, is equal to the rank of the incidence matrix
N.

The following theorem is an immediate consequence of Theorem 1.

THEOREM 3.1. Over GF(q\ the rank of the incidence matrices No and iVJ
of points and d-flats passing through the origin in EG(ί, q) is equal to
Rd-i(t — l, pn) where Rd(t, pn) is given by equation (1.1).

(II) The case of the incidence matrix of points and d-flats not passing
through the origin

We define the incidence matrix of v* = q* — 1 points other than the origin
and bι d-flats not passing through the origin in EG(ί, q) to be the matrix JVi
where bλ is the number of d-flats not passing through the origin, i.e.,

b1 = φ(t, d, q)-φ(t-l, d, q)-φ(t-l, d-1, q). (3.4)

By the similar methods used in PG(ί, q\ Smith [5] showed the following
proposition.

PROPOSITION 2 (Smith). Over GF(gr), the rank, rd(t, pn\ of the incidence
matrix N\ is equal to the number of integers m such that (i) l<^m<;V* — l and
(ii) there exists a set of one non-negative integer m0 and d positive integers
mk(q — ϊ) (k = l, 2, .., d) which satisfies the following conditions:

Σ mk(q -1) and Dp\jnΓ\ = Dp\jn0~} + Σ Dp\lmk(q -1)] (3.5)
l k l

where 0<^m0<^m and 0<.mk(q — l)<m for any & = l , 2, •.., d.

Since in the special case m = v* (v* = qt — l), m satisfies the condition (3.5),
the rank of the incidence matrix Nι is equal to

Ut,pn) = rKt,pn)-l (3.6)

where r%(t, pn) is the number of integers m such that (iy l<^m<,v* and (ii)
there exists a set of one non-negative integer m0 and d positive integers
mk(q — l) (ifc = l, 2, -.., d) satisfying the condition (3.5).

From Proposition 2, lemma 2.2, Theorem 2.1 and Theorem 2.2, we have
the following theorem.

THEOREM 3.2. A necessary and sufficient condition for an integer m such
that l<,m<;V* to be decomposed into one non-negative integer m0 and d posi-
tive integers mk(q — ϊ) (& = 1, 2, •••, d) satisfying the condition (3.5) is that there
exist ra + 1 positive integers st (Z = 0,1, ..., n) satisfying the following conditions:
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and

(ϋ)
x=0

(3.7)

(3.70

for all 7=0, 1, • ••, n — 1 where afs (0<,Cij<p) are coefficients of pin+J of the
p-adic representation for m, i.e.,

ΣΣ (3.8)

We prove the following lemmas, which will be used in the proof of theo-
rem 2.

LEMMA 3.1. Let UJ (j= 0, 1, , n — 1) be a set of non-negative integers such
that 0<;Uj<;(t — l)(p — 1). Then the number of ordered sets or vectors c(t — 1,
n — l ) = (coo, c io, •••, ct-io; •••; c θ Λ _ i , cΐn-h •••, c / _ i Λ _ i ) o / ίτι non-negative i n -
tegers Cij less than p such that

(/=0, 1, -.., τι-1)

and that

for some j\ is equal to

ί =0

(3.9)

(3.90

PROOF. For any set {caj: α = 0 , 1, ..., ί — 1} of ί non-negative integers
t-ι

caj less than/) such that uj<; Σ Caj^Uj + (p — 1), there exists a non-negative
a = o

integer ctj (0<^j<^n — l) less thanp such that

tΣcaJ+ctj=uj + (p-ϊ). (3.10)
α = 0

The number of ordered sets c(ί — 1, τι —1) of tn non-negative integers aj
less than p satisfying the conditions (3.9) is, therefore, equal to the number
of ordered sets c(ί, n — 1) of (t + l)n non-negative integers less thanp satisfy-
ing the equations (3.10). Thus we have lemma 3.1.

L E M M A 3 .2 . For any set { c , 7 : ί = 0, 1, •••, t — 1, y = 0, 1, .. ., n — 1 } o /

negative integers less than p such that there exists a set of integers st (Z = 0; 1,
• •., n) satisfying the condition (3.7) and (3.70, there exists a unique set of in-
tegers sf (1 = 0, 1, ••-, n) satisfying the following condition:
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l) (3.11)

for 7 = 0 , 1, •••, n — 1 and that

i = 0

for all 7 = 0, 1, • •-, ra — 1

Σ
t = 0

(3.11')

(3.HΌ

for some j .

PROOF. From s* = s$ and inequalities (3.110 and (3.11"), we have

r-n-1 t-1

Σ Σc
7=0 1 = 0

p ' - l

and s^+1 =
Σ

i=o

and we can show that these sf (1 = 0, 1, ..., n) satisfy the condition (3.11).

(Proof of Theorem 2). From Theorem 3.2, lemma 3.1 and lemma 3.2, we

have

n\ V"1

Σ

t-1 t-1

— Σ ••• Σ Nt-i(sip — sθ9 9snp — sn-i)
d l d + l

ί+1 t+1

= Σ " Σ — so, •••, snp — sn-i)

t

Σ
t t

Σ ••' Σ Nt-.1(s1p — S0, -", Snp — Sn-x
so=d + l sn-i=d + l

= Rd(t,p")-Rd(t-l,p").

Combining (3.12) with (3.6), we have Theorem 2.

(3.12)

COROLLARY 3.1. In the special case d = t — l, the rank of the incidence
matrix JVi is equal to (t+p

t~
1)n — l.

This result has been independently obtained by Smith Q5] and by Go-
ethals and Delsarte
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