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§ 1. Introduction

Extensions of the classical duality theorem in linear programming have
been investigated by many authors. We shall be particularly concerned with
the results of K. S. Kretschmer [117], K. Isii [9] and M. Ohtsuka [137]. In
[11] the program was discussed in paired spaces and the dimension of the
classical program was generalized from finite to infinite. A convex program
in paired spaces was studied in [9]. The program in [137] is a potential-
theoretic generalization of the classical one and is closely related to the
theory of capacities.

In this paper, we shall investigate duality theorems and their applica-
tions. We reformulate the program in [13] in a form as in [9] and [11]
and discuss Ohtsuka’s duality theorem and sufficient conditions in it. Then
we see that many results in [ 13] may be interpreted as special cases of those
in [117]. We also obtain a new duality theorem in §5 which is a converse of
Kretschmer’s Theorem 3 and Dieter’s strong duality theorem in [47].
Ohtsuka’s sufficient conditions are given in a more general form in §6. Those
conditions are free from potential theory. We also give some criteria which
are different from Kretschmer’s. In §§7-11, we indicate how the theory is
applied to the potential-theoretic problems treated in [6], [87], [137], [14] and

[167].
§ 2. Preliminaries

It is assumed that the reader is familiar with the theory of linear topo-
logical spaces as developed in [17] and [2]. The set of real numbers are de-
noted by R and the set of non-negative real numbers by R,. Let X and Y be
linear spaces (over R) and ((,)) be a bilinear functional on Xx Y. We say
that X and Y are paired under ((,)) or that X and Y are in duality (relative
to ((,))) if the following two conditions are fulfilled:

(i) For any x =0, there exists ye Y such that ((x, y))=0.

(ii) For any y=0, there exists x € X such that ((x, y))0.

If the linear spaces X and Y are in duality, the weak topology on X is denoted
by w(X, Y) and the Mackey topology on X is denoted by s(X, Y). For a cone
Cin X, we set



332 Maretsugu Y AMASAKI

C" ={y; yeYand ((», y))=0forall x€C },
C**={x; x€ X and ((x, ))=0 for all yc C*}.
The following two lemmas were proved in [27] and [117].

Lemma 1. Let X and Y be linear spaces paired under ((,)) and C be a con-
vex cone tn X. If €, (% resp.)is any topology on Y (X resp.) which is compatible
with the duality between X and Y, then C* is €i-closed and C** coincides with
the %.-closure of C.

Lemma 2. Let X and Y be linear spaces paired under ((, )1, let Z and W
be linear spaces paired under ((, ))., and suppose that T is a linear transforma-
tion from X into Z. In order that T be w(X, Y)—w(Z, W) continuous, it is
necessary and sufficient that there exists a transformation T* from W into Y
such that

((Tx, w))e = (%, T*w))

SJorall xe X and we W. If T* exists, then it is unique and w(W, Z)—w(Y, X)
CONLTNUOUS.
We call T* the dual transformation of 7.

§ 3. Convex program

Let X be a linear space and Z and W be linear spaces paired under (( , )),.
A convex program is a quartet (¢, ¢, C, Q); in this quartet, C is a convex set
in X, Q is a convex cone in Z, ¢ is a transformation from C into Z which is
convex with respect to Q, i.e.,

th(x)+ A=) P(x2)— P21+ (1 —1)x2) €Q

for any x1, x; € C and any real number ¢ € (0, 1), and ¢ is a real-valued convex
function defined on C. The convex program is said to be consistent if there
exists x € C such that ¢(x)€(Q. The value N of the convex program is defined
by

N=inf{p(x); x€C and ¢(x)<Q}
in case the convex program is consistent, and by
N: [ee]

in case the convex program is not consistent.
As a dual quantity, we consider

N =sup[inf {p(x)—((¢(x), w))2; ¥ € C}; weE Q" ].
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We have easily
Tuaeorem 1. It is always valid that N' < N.

Proor. We may assume that the convex program is consistent. For
any w€ Q*, we observe that

N=inf {p(x) —(¢(x), w))2; x € € and ¢(x) € Q}

= inf {p(x) —(¢(x), w)); x € C}.

By taking the supremum of the last quantity with respect to we& Q*, we obtain
N>=N'.

Let Zx R and W x R be paired under the bilinear functional ((, )) defined
by (((z, r), (w, $)))=((2z, w)):+7s. Let U be the set in Zx R defined by

U= {(¢p(x)—z, p(x)+1); x€C, z€Q and r € R,}.
We shall prove

TueoreM 2. Let the convex program be consistent and have a finite value
N. If Uis w(Zx R, W x R)-closed, then the equality N=N" holds.

Proor. By our assumption that the convex program is consistent and
that N is finite, it is clear that (0, N+¢)€ U and (0, N—e)& U for any number
e>0. Let ¢>0 be arbitrarily fixed. Since U is a w(Zx R, W x R)-closed con-
vex set, by a well-known separation theorem, there exist (w, s)e W x R and
a € R which satisfy the relation

(((0> N—e¢), (w, S)))<a§(((za T), (w) S)))

for all (z, r)e U ([ 1], p. 73, Proposition 4; [2], p. 50, Proposition 1). Since
(0, N+e)e U, 2es>0 and hence s >0. Therefore we may assume s=1. Thus
we have

N—e<a<({(z, w))+r

for all (z,r)€ U. Let us prove —weQ*. If we suppose the contrary, then
there exists z; € Q such that ((z;, w)).>0. For any number r such that r>N
and any positive number ¢, (—tz;, r) belongs to U. In fact, there is x;€C
such that ¢(x,)€Q and ¢(x,)<r. Then ri=r—g¢(x;)>0 and

(—tzy, r) = (P(x1)—((x1)+t21), p(x1)+r)E U.
Thus we have
—ocola= —t((z1, w)z+r.

Letting ¢t — oo, we arrive at a contradiction. Thus —weQ*. From the fact
that U contains the set {(¢(x), ¢(x)); x € C}, it follows that
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N—e<a<((¢(x), w)2+ ()

for all x€ C. Therefore we have
N—e<a=inf {¢(x)+({(¢(x), w)); x€ C} < N'.

By the arbitrariness of ¢, we conclude N<<N’. The converse inequality was
given in Theorem 1.

Tueorem 3. Let the convex program have a finite value N. If U has a
non-empty s(Zx R, W x R)-interior U° and ©1f 0 belongs to the s(Z, W )-interior
@W(C)—0Q)°, then the equality N=N’ holds. In this case there exists we Q" such
that

N’ = inf {g(x)—($(x), w)); v € C}.

Proor. Since (0, N) is a boundary point of the convex set U which has a
non-empty s(Z x R, W x R)-interior, it follows from another separation theorem
([17, p. 71, Proposition 1) that there exists a non-zero (w, s) € W x R such that

Ns =<((z, w))2+rs

for all (z, 7)€ U. Since (0, N+¢)e U for ¢>0, we have s—=0. We show that
s>0. If s=0, then ((z, w)):=0 for all z€ ¢(C)—Q. By the assumption
0€(¢(C)—0)°, we have w=0, which is a contradiction. Therefore we may
assume s=1. The rest of the proof is carried out by the same argument as
in the proof of Theorem 2.

Isii [9] proved

Proposition 1. Any one of the following conditions assures that U has a
non-empty s(Zx R, W x R)-interior and 0 (¢(C)—Q)°:

(A) Q°+¢ and 0€(P(C)—Q)°, where ¢ is the empty set,

(B) There exist an s(Z, W )-neighborhood V of 0 in Z and a constant k such
that h(z)>k in V, where h(z) is defined by

h(z) =1inf {p(x); x € C and ¢(x)—z € Q}.

Note that condition (B) is closely related to Rockafellar’s stability condi-
tion in [157]. We remark here that Rockafellar’s method is also useful in our
case and that a duality theorem of his type is valid.

In the rest of this section, we assume that C is a convex cone P, that ¢
is a convex function which is positively homogeneous (of order 1) and that
¢(x)=Ax— z,, where A is a linear transformation from X into Z and z, is an
element of Z.

Lemma 8. If N'> — oo, then we have
N’ = sup {((zo, w))z; we€ Q* and ¢(x)=((4x, w)), for all x € P}.

Proor. For a fixed we Q*, we have
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inf {p(x)—((¢(x), w))z; x € P}
= inf {p(x)—((4x, w))2; x € P} +((z0, w))2.
If p(x)— (A%, w)), <0 for some x € P, then

p(tx)— (A x), w))2 = tL () — (4, w))2 ]

for any positive number :. Since P is a convex cone, we have
inf {p(x)—((4x, w))s; x € P} =—oco. Such w can be neglected in the calcula-
tion of N’. Hence we can restrict we Q* to those satisfying ¢(x)—((4x, w)),
=0 for all x€ P.

Since A(P) and Q are convex cones, we see that

(A(P)—Q)°* CAP)—Q°
if the s(Z, W)-interior Q° is non-empty ([117], Lemma 1). Thus condition (A)
implies
0°=+¢ and zo€ A(P)—Q°.

Making use of Theorem 3, Proposition 1 and Lemma 3, we have

Tueorem 4. Assume that N is finite and that there exists x € P such that
Ax—2z0€Q°. Then we have

inf {¢p(x); x € Pand Ax—z,€ Q}
= max {((z¢, w))2; we Q¥ and ((Ax, w)) < ¢(x) for all x € P}.

We shall prove

TueoreM 5. If N’ is finite and z,€ Q°, then there exists x € P such that
A.’)C — 20 S Qo.

Proor. Obviously Q° and A(P)— z, are non-empty convex sets. We show
(A(P)—z9)NQ° £ ¢. If we suppose the contrary, then we see by a separation
theorem that there exist non-zero w; € W and «w€ R such that

sup {((z, w1))z; 2 € A(P)—zo} =a=inf{((z, w1))z; 2€Q°}.

Making use of the fact that the w(Z, W )-closure of Q is equal to the s(Z, W)-
closure of Q° ([17, p. 50, Corollaire 2 and [ 2], p. 67, Proposition 4), we have
((z, w1))e =« for all z€ Q. Since Q is a cone, w; € Q" and hence we may take
a=0. From the relation ((4x, w,)); < ((zo, w1)), for all x € P and the fact that
P is a cone, it follows that ((4x, w,)); <0 for all x€ P. Let w be an element
of Q" such that ¢(x)>=((4x, w)), for all x€ P. Then w+tw,€Q* and ¢(x)
=>((Ax, w+twy)); for any t€ Ry and for all x€ P. On the other hand, since
20€Q°, w €Q" and w; 70, we see that ((zo, w1)),>0 and
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N’ = (20, w tw1))2 = ((z0, w))2+ t((z0, w1))2

by Lemma 3. Letting ¢t— o, we have N’ = oo, which contradicts our as-
sumption. Thus (A(P)— zo)N\Q° £ ¢.

§ 4. Linear programs in paired spaces

Let X and Y be linear spaces paired under ((, )); and Z and W be linear
spaces paired under ((, )),. A linear program for these paired spaces is a
quintuple (4, P, Q, yo, z0). In this quintuple, 4 is a linear transformation
from X into Z which is w(X, Y)—w(Z, W) continuous, P is a convex cone in X
which is w(X, Y)-closed, Q is a convex cone in Z which is w(Z, W )-closed, y, is
an element of Y, and z, is an element of Z. In the rest of this paper, a pro-
gram will always be a linear program unless otherwise stated. The program
is said to be consistent if there exists x € P such that 4x—z,€Q. Such an x
is called feasible. The value M of the program is defined by

M= lnf {((x, y()))l, x€eP and Ax——zo S Q}
in case the program is consistent, and by
M = o0

in case the program is not consistent. The program is said to be convergent
if it is consistent, has a finite value and there is a feasible x such that
(%, yo)r=M.

The dual program is the program (4*, Q*, —P*, —z,, y,) for W and Z
paired under ,((,)) and for Y and X paired under ((, )). The bilinear func-
tionals »((, )) and ,((,)) are defined by »((w, 2))=((z, w)); for all we W and
z€ Z and 1((y, x))=((x, y) for all y€ Y and x € X. The dual transformation
A* is determined by Lemma 2. It is easily seen that the dual program is
well-defined. The value of the dual program is denoted by M. The dual
program is consistent if and only if there exists we(Q' such that
yo—A*we P*. In this case, we have

M'" = —sup{((zo, w));; we Q" and yy—A*we P*}.
We have easily

Tueorem 6.7 (a) It s always valid that —M' < M.
(b) The dual of the dual program s equal to the program itself.

Proor. (a) By our convention, it suffices to show the inequality in the
case where both the program and the dual program are consistent. Let x and
w fulfill the following conditions: x€P, Ax—2z,€Q; weQ?, yo—A*we P".

1) [11], Theorem 1, p. 225.
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Then we have
(2, yoh =(w, A*w))1 = (A, w))2 = (20, W)
The proof of (b) is easily seen.

Remark 1. By taking ¢(x)=Ax—z, and ¢(x)=((x, yo))1, we see that
the linear program (4, P, Q, yo, zo) is the convex program (¢, ¢, P, Q) in §3
and M=N. Noting that ((», y)h=((4x, w));=((x, 4*w)), for all x€ P is
equivalent to y,—A*we P*, we have by Lemma 3 that —M'=N".

§ 5. Duality theorems

Let Xx R and Y x R be paired under the bilinear functional (( , )) defined
by (((x, 1), (y, s))=((x, y)1+rs. Let G be the set in ¥ x R defined by

G = {(4L*w+ y, r—((z0, w))2); yE P, we Q" and r € R¢}.
Kretschmer proved

Tueorem 7.2  Let the program (A, P, Q, v, zo) be consistent and have a
finite value M. If G is w(Y x R, X x R)-closed, then the dual program (A*, Q*,
—P*, —zo, ) 18 convergent and has — M as its value.

We shall apply Theorem 2 in §3 to the present case. Let Zx R and W xR
be paired under the bilinear functional ((,)) defined by (((z,r), (w, s)))
=((z, w))2+rs. Let H be the set in Zx R defined by

H={(Ax—z, r+{(x, y))); x €P, z€Q and r € R,}.
By Remark 1, the set U in §3 can be written as follows:
U={(4dx—z—2z0, (x, yo)1+r); xEP, z€Q and r€ Ry}
= H—(z,, 0).
On account of Theorem 2 and Remark 1, we have

Tueorem 8. Let the program (A, P, Q, yo, z0) be consistent and have a
finite value M. If H1is w(Zx R, W x R)-closed, then the dual program (A*, Q*,
—P*, — 2z, ) s consistent and has — M as its value.

This theorem seems to be new in the theory of linear programs.
By means of Theorem 6 (b), we have the dual statements of the above
theorems:

Turorem T*.  Let the dual program (A*, Q*, —P*, —z,, y,) be consistent

2) [11], Theorem 3, p. 226. Cf. [4], p. 110.
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and have a finite value M'. If the set H is w(Zx R, W x R)-closed, then the pro-
gram (A, P, Q, o, zo) 18 convergent and has — M’ as its value.

TueorREM 8*%. Let the dual program (A*, Q*, —P*, —z,, yo) be consistent
and have a finite value M’'. If G is w(Y x R, X x R)-closed, then the program
(4, P, Q, ¥, zo) 18 consistent and has — M’ as its value.

Combining Theorem 7 with Theorem 8*, we have

THeoREM 9. Let the dual program (A*, Q*, —P*, —z,, yo) be consistent
and have a finite value M’. If G is w(Y x R, X x R)-closed, then the dual pro-

gram 1s convergent.
Similarly we have

TreorEM 9*%.  Let the program (A, P, Q, yo, zo) be consistent and have a
finite value M. If His w(Zx R, W x R)-closed, then the program is convergent.

Remark 2. The condition that G is w(Y x R, X x R)-closed does not neces-
sarily imply that H is w(Zx R, W x R)-closed. This will be shown by Example
1in §7.

§ 6. Sufficient conditions

When one intends to make use of duality theorems in the preceding sec-
tion, one may pose the following problems:

When is the set G w(Y x R, X x R)-closed?

When is the set H w(Z x R, W x R)-closed?
In order to study these problems, we define condition (K) and condition (K*)
as follows:

(K)  Q has a non-empty s(Z, W)-interior Q° and there exists x € P such
that Ax—zo€Q°.

(K*) P* has a non-empty s(Y, X)-tnterior (P*)° and there exists we Q"
such that yo— A*we (P*)°.

Kretschmer gave the following useful criteria.

Tueorem 10.  If condition (K) is fulfilled, then G is w(Y x R, X x R)-
closed.

Taeorem 10%. If condition (K*) is fulfilled, then H is w(Zx R, W x R)-
closed.

3) [11], Lemma 5 and Theorem 3. It should be observed that the proof of Lemma 5 in [11] is
not complete in case ((xg, ¥))1=0 for all xqe PN\T~-1(Q°) (p. 223, [. 11 from below). In this case by
taking x,, =((Tx,, w))sx,+ x, and z;, =((Txy, w))sz, with xg€ PNT-1(Q°) and we Q+, w0, we can
complete the proof.
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For simplicity, we denote by I" and I'* the totalities of feasible elements
of the program and the dual program respectively:

I'={x€P; Ax—z,€Q}, '* ={weQ"; yo—A*we P*}.
We have

ProvrosiTioN 2. Any one of the following conditions (C. 1) and (C. 2) im-
plies condition (K):

€. 1) —z€0°,

(C. 2) there is x, € P such that Ax,<€Q°.

Proor. Condition (C. 1) obviously implies condition (K). Assume condi-
tion (C. 2). Then there exists a number >0 such that Ax,—tz,€Q°. Tak-
ing x;=x1/t, we see x,€ P and Ax;—zo=(Ax;—1tz,)/t €Q° ([1], p. 51, Corol-
laire 2).

CoroLLARY. If z0€Q° and I" ~=¢, then condition (K) is fulfilled.
Proor. Since I' =~ ¢, there exists x; € P such that 4x;,—z,€(Q. We have
A(%1/2) = (Ax1—20)/2+ 20/2 € Q°
([17, p. 51, Proposition 15). Thus (C. 2) is fulfilled.
By Theorem 5, we have
Prorosition 3.  The following condition (C. 3) implies condition (K):

(C. 3 I'* ¢, —co <M’ < oo and zo€Q°.

Remark 3. In general, the condition z, € Q° is not enough to ensure condi-
tion (K). This will be shown in Example 2 in §7.

For a locally convex Hausdorff topological linear space (E, ¥), we denote
the strong dual of (E, #) by E*. It is clear that E and E* are paired under
the bilinear functional ((, )); defined by ((e, e*));=e*(e) and that E* and E
are paired under the bilinear functional ,(( , )) defined by ((e*, e))=e*(e).

Observe that s(E, E*)=¢% if (E, %) is a disk space® ([ 2], p. 70, Proposition
5) or metrizable ([2], p. 71, Proposition 6).

We shall prove

ProrosiTioN 4.  Assume that Z is a disk space and W=2*. If I'* is a
non-empty w(W, Z)-compact set and Q° =~ ¢, then condition (K) is valid.

Proor. If condition (K) is not valid, then we see by the same argument
as in the proof of Theorem 5 that there exists w, € Q* such that w; %0 and
(%, A*w1))1=((Ax, wy)); =<0 for all x€ P. Hence — A*w, € P*. Taking we I'*,

4) =espace tonnelé.
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we have w+tw; € I'* forall 1€ R,. Since Q° 5~¢, this contradicts our assump-
tion that 7'* is w(W, Z)-compact.

We have some criteria of another type. In case Q*={0}, the equality
G=P" x R, holds and hence G is w(Y x R, X x R)-closed. In the rest of this
section, we always assume that Q*=~ {0}.

ProrosiTioN 5. Let Z be a normed space, let W=27%, and assume that
{w;we Q* and ||w||=1}% is w(W, Z)-compact. Lf I'* is non-empty and w(W, Z)-
compact, then G is w(Y x R, X x R)-closed.

Proor. Let {(ya, ra); @€ D} be a net in G which w(Y xR, X x R)-con-
verges to (y,r)€ YxR. We prove (y, r)€G. There exists w, € Q" such that
yo—A*w, € P* and ((z0, wy)); = —ro. Then there exists a subnet {w,.; o€ Do}
such that {||lw.||; @€ Dy} is bounded. In fact, if we suppose the contrary,
then there exists a subnet {w.;a€ D'} such that |jw,||— oo along D'. We
set w, =w,/||w.|| and choose a w( W, Z)-convergent subnet of {w,;a€ D'}. We
shall denote it again by {w,; € D’} and let w; be the limit. Then for any
x € P, we have

(G, A¥wp)s = Hm (o, A*we))s = Hm(Cr, A*w)s/ el
<Hm(C, ya)/llwl| =0,

and hence — A*wjc P*. Take wel'*. Then we see easily that w4 tw)e I'*
for all 1€ Ry,. Since ||w{||=1 and w; € Q*, there is z € Z such that ((z, w})).>0.
Therefore we have

(2, wttwp))e = ((z, W)+ t((2, wp))e >0 as  1—> oo,

which means that /™* is not w(W, Z)-bounded. This is a contradiction ([27], p.
65, Théoréme 1). We choose a subnet {w,;ac D’} of {w,; ac D, which
w(W, Z)-converges to we Q*. Then it follows that

(o, w)e =i (o, we)a=lim(—r.) = —7

and

(o, y— ¥y =lm((x, ya)h — Hm(Ax, wa)).
= hDrp (=, Ya— A*we ) =0

for all x € P. Consequently y— A*we P* and hence (y, r)€G.

We define condition (C. 4) as follows:

5) Forwe W=2Z%, |w|l is defined by sup{|((z, w)),|; z € Z and |z|=1}.
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(C. 4 I'*s£¢, —co<M' < oo, P {0} and —A*we(P)°
Jor all we Q*, w=0.
We shall prove

ProrosiTION 6. Assume that Y and Z are normed spaces, that X=Y* and
W=27* and that {x; x€P and ||x||=1} and {w; weQ" and |[w|[=1} are
w(X, Y)-compact and w(W, Z)-compact respectively. Lf we further assume
condition (C. 4), then G is w(Y x R, X x R)-closed.

Remark 4. Condition (C. 4) does not necessarily imply condition (K).
This will be shown by Example 3 in §7.

We prove the following lemma under the same assumptions as in Pro-
position 6.

Lemma 4. Let weQ* satisfy y—A*we P*. Then we can find @' €Q”
such that w—a' € Q*, ||@'|| < — B(y)/0(A), ((z0, @) = (20, @)) amd y— A*@" € P,
where 0(A4) and 5(y) are given by

0(4) = inf inf | (4%, w)):|, B(y)=min(0, inf((x, )
A B Pash
Proor. Since ((4x, w)); is continuous on {x € P; ||x||=1} x {weQ™*; ||w||=1}
which is the product of a w(X, Y)-compact set and a w(W, Z)-compact set,
it is clear by condition (C. 4) that 6(4)>0. We may assume @w==0. Suppose

that there is w;€Q* such that ((zo, w));>0. Taking we I'*, we see that
w—+tw, € I'* for all : € R, and hence

— M’ = ((z0, w+ tw1))2 = ((z0, w))2+ t((z0, 1))z

Letting ¢ — oo, we have M’ = — oo, which contradicts our assumption. There-
fore ((z9, w)):=<0 for all we Q" and hence —z,€Q**=Q by Lemma 1. If
y€ P*, then @' =0 satisfies the conditions. If y¢ P*, then we set

7 = sup ((x, A*@)) and p= ir{g} (%, Y1

lx.=1 lx =1

It is easily seen that f(y)=£=0 and

—r= ig}f (%, — A*@))1 =0(A)l|@]|.
%=1
If r =8, then <X —0(4)||w|| and @ itself satisfies the conditions. If r<3,
we consider @' =wp3/y. We see that w—a' € Q" and ||@'|| < —p/0(4). It is
not difficult to verify that y— 4*@'€ P*. Since —z,€Q, we have ((zo, @), =
((z, @'))2. Thus @’ satisfies all the requirements.

Proor or ProrosiTiON 6. Since G is convex, it suffices to show that G is
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s(Yx R, X x R)-closed ([ 2], p. 67, Proposition 4). Let {(y.,, r»)} be a sequence
in G which s(YxR, Xx R)-converges to (y,r)€ YxR. Then there exists
@, € Q" such that y,—A*w,c P* and ((zo, @,)):= —r,. For every w,, we take
wy, by Lemma 4. Since s(Y, X)-topology is the topology induced by the norm
on Y, {B(y,)} are bounded. Consequently {||@;||} are bounded. Choose a
w(W, Z)-convergent subsequence, denote it by {@;} again and let @’ be the
limit. Then we have

(o @) = lim (zo, @) Z1im (20, 1)

=lim(—r,) = —r,

N—oo

(r, 401 = (A, @)y = lim (A, @)
= lim ((x, 4*@) <lim((x, 5k = (x, D)

for all x € P and hence y— A*%w' € P*. This means (y, r)€G.
In case Q= {0}, we can not apply some of the above criteria. In this case,
we have

ProrositioN 7. Let Y and Z be normed spaces, X=Y* and W=2*. If
z29€ A(P)°, then G is w(Y x R, X x R)-closed.

Proor. It suffices to show that G is s(Y x R, X x R)-closed. Let {(y,, )}
be a sequence in G which s(¥Y x R, X x R)-converges to (y,r)€ YxR. Then
there exists w,€Q* such that y,—A*w,c P and ((z0, wp))e=—r,. If we
prove that {w,} is relatively w(W, Z)-compact, then we see (y, r)€G by the
same argument as in the proof of Proposition 6. Let x, be an element of P
such that 4x,=2z,. Then we have

— 72 = (20, wa))2 = (A0, wa))2 = (%0, A*w))1 = (%0, yu)1

and hence {((zo, w,)):} are bounded. Since z,€ A(P)°, it is easily seen that
{((z, w,))2} are bounded for every z <€ Z.
The dual statements of the results in this section are also valid.

§ 7. Potential-theoretic linear program

In this section, we shall study how the preceding theory is applied to
the potential-theoretic duality problem treated in [137]. Let E and F be com-
pact Hausdorff spaces, M(E) be the totality of Radon measures of any sign
on E, M*(E) be the totality of non-negative Radon measures on E, C(E) be the
totality of finite real-valued continuous functions on E and C*(E) be the sub-
set of C(E) which consists of non-negative functions. We use this notation
in the rest of this paper.
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We set
X=ME), Y=CE), Z=CF) and W = M(F).

It is easily seen that X and Y are paired under the bilinear functional ((, ));
defined by

@, @n=|gis  forallceXand gev,
and Z and W are paired under the bilinear functional (( , )). defined by
(@2 ‘L‘))2=Sfdf forall fe Zand re W.

Let @(u, v) be a continuous kernel, i.e., a finite real-valued continuous func-
tion on Ex F and let 4 be a linear transformation from X into Z given by

A5 = (g, ) = S@(u, Ydo(w).
The linear transformation A4 is w(X, Y)—w(Z, W) continuous and 4* is given
by
A¥r = 0., ©) = Sm(-, 0)de(v).
Let go be an element of C(E) and f, be an element of C(F).
Set
P=M*E), Q=C'F), yo=g0 and z=fo.

It is clear that P is a w(X, Y)-closed convex cone in X and that Q is a w(Z, W)-
closed convex cone in Z. In this way, the program (4, P, Q, go, fo) is well-
defined.

Following [ 137, we introduce two families of measures:

M = {5 b€ M*(F) and 0(u, i )< gi(u) on E},
M ={v;veM'(E)and O(r, v)=fo(v) on F}.

Then it is valid that .#=7"* and .#'=1I". The program (4, P, Q, g, fo) is con-
sistent if and only if .#’=~¢. The value of the program is equal to

6)
M= M} = inf {g godv; v e d/z} .

The dual program (4%, Q*, —P*, — fo, go) is consistent if and only if .# 4.
The value of the dual program is equal to

6) As to notation, note that g, (f; resp.) and My (M, resp.) in this section play the roles of g (f
resp.) and M’ (M resp.) in [13].
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— M = M,=sup {Sfod,u-; e '/é/}
The sets G and H in §5 are written as follows:
c= {(m(-, W+ g r— gfody,); pe M*(F), g C*(E) and re RO},

H={<a>(u, I—f, r—l—ggodv>; »€ M*(E), f€ C*(F) and rERo}.

By Theorem 9, there exists p < .# such that M(,:S fodp provided that

MG, — o0 < My< oo and that G is w(Y xR, X R)-closed. This is a gene-
ralization of Theorem 2 in [13].
From Theorems 7* and 8*, we derive an extension of Theorem 3 in [13].

Tueorem 11. Assume that # =¢ and —oco < My<oo. If we further as-
sume either that G is w(Y x R, X x R)-closed or that H is w(Z x R, W x R)-closed,
then we have 4’ ¢ and My= Mj.

Next we are concerned with sufficient conditions given in §6. The topo-
logy s(Z, W) is the topology induced by the norm on Z defined by || f]|=
sup {|f(v)|; v€ F}. Conditions (K) and (K*) may be stated as follows:

(K)  There is »€ M*(E) such that o(», -)— f,>0.
(K*) There is p€ M*(F) such that go—&(-, 1)>0.
In order to complement the remarks in §5 and §6, we give some examples.

ExampLe 1.7 Let F={1} and E={N, o} be the Alexandroff one point
compactification of the discrete space IV of all natural numbers. Let fy(1)=1,
go(n)=1/n’ gi(w)=0 and define @ by @(n, 1)=1/n, &(», 1)=0. Then we have
My=M;=0. We see by Theorem 10 and Proposition 3 that G is w(Y xR, Xx R)-
closed. Since the program (4, P, Q, go, fo) is not convergent, we see by Theo-
rem 9* that H is not w(Z x R, W x R)-closed.

ExamprLE 2. Let E and F be the compact interval [0, 1] in the real line,
0=0, fo=1and go=1. Then we see that &(», -)— fo=—1&Q° for any » € P.

ExampLE 3. Let E and F be the same as in Example 2, 0=—1, f,=0
and go=1. Then #'={0}, #=M"(F) and O(v, -)—fo=—v(E)¢Q° for all
veEM*(E)=P.

As in [13], we consider the following conditions relative to @, f, and g:
(i) fo>0o0n F,

7) [17], Example 3.
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(ii)  there is uo € E such that @(u,, +)>0 on F,
(i) fo<O0on F,

(iv) 0<0on ExF,

(v)  g<0onE,

(vi) there is vy € F such that @(-, v9)<0 on E|
(vii) go>0on E,

(viii) @>0 0n EXxF.

Clearly any one of conditions (ii), (iii) and (viii) implies condition (K), and
any one of conditions (iv), (vi) and (vii) implies condition (K*) (Proposition 2).
In case .# ¢ and — oo < My< oo, condition (C. 3) is equivalent to condition (i)
and hence condition (K) follows from condition (i) by Proposition 3. In case
M F¢ and — co < My< oo, condition (C. 4) is led by condition (iv) and hence
condition (iv) implies that G is w(Y x R, X x R)-closed (Proposition 6). Condi-
tion (K*) is derived from .# =~ ¢ and condition (v). This is the dual result of
the corollary of Proposition 2.
Thus we have

ProposiTiON 8. Assume that 4 ¢ and —co < My<oo. If one of condi-
tions (1)-(viii) is satisfied, then 4’ =~¢ and M= Mj.

ProrposiTioN 8%,  Assume that #'==¢ and —oco<Mi<oo. If we assume
one of conditions (1)—(viii), then we have 4 ==¢ and My= M.

Remark 5. In the case where E=F, the following condition (ix) also im-
plies condition (K):

(ix) @=0o0n ExF and ®(u, u)>0 for every uc E.

This is an immediate consequence of Kishi’s existence theorem in [107] and
Proposition 2 (ef. §11).

§ 8. Lower semicontinuous kernel

In this section, we extend Proposition 8* in a form similar to Ohtsuka’s
duality theorem in [137].

Let @ be a lower semicontinuous kernel on E x F, i.e., a lower semicontinu-
ous function on E x F which takes values in (—co, co]. Let g, be a bounded
Borel function on E and f, an upper semicontinuous function on F which does
not take the value +co. We define .#, .#', M, and M in the same way as in
§7. It is easily verified that M, << M;.

We shall prove

Turorem 12. Assume that 4 #=¢ and —oco<Mj<co. If there exists
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vo€ M*(E) such that O(vo, v)—fo(v)>0 on F, then #F+¢ and M;= M,
=Sfody,for some € M.

Proor. First we consider the case where @ and f, are continuous. Let
X, Z, W, P,Q, zy, Aand ((,)): be the same as in §7. Take for Y the class
B(E) of all bounded Borel functions on E and take g, for y,. Then X and Y
are linear spaces paired under the bilinear functional ((, )), defined by

(0, = S gds  forallge Xand ge Y.

In this way, the program (4, P, Q, yo, zo) is well-defined. Since condition (K)
is fulfilled by our assumption, our assertion follows from Theorems 7 and 10.

Secondly we consider the case where f, is continuous but @ may not be
continuous. Let D be the directed set of continuous functions not greater
than @&. We use the notation 4y, 4}, My= M,y and My= My when ¥ & D
is taken as a kernel. If &, /e D and & <¥’, then # C My C My and 4y C
My C M. Hence {My} and {My} are decreasing along D and li;n My = M.

We can show that there exists € D such that #(v,, v)—fo(v)>0 on F for
all ¥ €D, ¥ =%, Infact, writing Vy={v; vEF and ¥(»,, v)—fo(v)>0} for
¥ € D, we see that Vy is open, that Vy(Vy- if & <%’ and that F=U{Vy;¥eD}.
Since F is compact, there is a finite subset D, of D such that F=\U{Vy; ¥ D,}.
It suffices to take the upper envelope of D, for #,. Thus we see that .#, ¢,
— oo < My < oo and condition (K) is satisfied for € D, ¥ >¥,. Then it fol-

lows from the first step that .#,=¢ and My= M= Sfod;w for some py € Ay.
We show that {us(F); ¥ €D, ¥ >¥,} is bounded. Suppose that uz(F)—
along a subdirected set D’ of D. We set \p= pw/pv(F) and choose a vaguely
convergent® subnet of {\,; Z € D’}. We denote it again by {\y; Z € D'} and
let 1, be the limit. We have
'(uy M) =¥ (u, Mp) =< go(w)/ pu(F)
forall, ¥’ e D', ¥ <¥. Hence
O(u, No) = sup¥'(u, No) <lim go(u)/pwy(F)=0
v’eD’ vrep’

and

[ fodng =1im(( fodper) / B = lim M/ g () = 0.

We have

8) The topology w(M(F), C(F)) is the vague topology on M(F). Cf. [3].
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0< [0, v)—fol)Iane) = {00, Iar)

= S O(u, No)dvo(u) <0,

which is a contradiction. Now we choose a subnet {uy; €D} of
{uw; ¥ €D, ¥ =¥, which converges vaguely to uoc M*(F). We observe
that po€ .# and

M <lim Mj, = lim S Fodpy = g Fod o < M,
D’ D’

and hence M= M,= Sfod,u-o.

Finally we consider the general case where f, may not be continuous. We
consider the directed set H of continuous functions 4 not smaller than f, and
use the notation #,, .#;, My=M,, and M,=M;, when h€ H is taken as f,.
{M;} and {M;} are decreasing along H and the inequalities M,> M, and
M, > Mj hold. By the same argument as in the second step, we see that there
is ho€ H such that @(vo, v)—h(v)>0o0n F for all A€ H, h<h,. Hence for hc H,

h<h,, we infer that .#,=~¢ and M,’,=M,,=ghd/¢h for some u,€.#. We can

prove as in the second step that {.,(F); he€ H, h<<h,} is bounded. Choose a
subnet {u,; A€ H'} of {u;; h€ H, h<ho} which converges vaguely to
wo € M*(F). Then it follows that x,€ .# and

M;<lim Shd,u,, <lim Sh’d,u,h - Sh’d,l.o
in ,
for every ' € H', and hence
M= fodo < Mo

This completes the proof.

Making use of Theorems 8* and 10 and Proposition 3 in the first step of
the above proof, we can prove

ProposiTion 9. Assume that 4 =+¢ and —oco<My<oo. If we assume
that fo>0 on F, then #' ¢ and M’=M0=gfod/bfor some p € M.

This is an extension of Theorem 4 in [137].

§ 9. Duality theorems of the Minkowski type

Hustad [ 8] obtained duality theorems of the Minkowski type and showed
some applications of them. We here give a simple proof for his theorems.
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Let po be an element of M*(E), g be an element of C(E) and P be a convex
cone in C(E). Hustad gave

TuEOREM 13. Suppose that one of the following conditions is true:
1) g>0onE,
(2) P contains a strictly negative function.

Then the following equality holds:

sup {uo(f); fFEP, f=gt =min{u(g); p€ M'(E), p=pmo on P}.
Proor. Let us take
X=Z7Z=CCE), W=ME), Q=C*(E) and z= —g

Then Z and W are linear spaces paired under the bilinear functional ((, )).
defined by ((f, p))=p(f) for all f€Z and € W. Let A4 be a linear trans-
formation from X into W defined by Af=—f, ¢(f)=Af—z and ¢(f)=
—po(f). In this way, the convex program (¢, ¢, P, Q) is well-defined. It is
easily seen that N=inf{¢(f); fE€P, Af—z0€Q} and N’'=sup{((z0, w))2;
weQ", (Af, w))=¢(f) on P} are finite. By condition (1), we have 4f—z,
=geQ° for f=0. By condition (2), there exists f,€P such that f,<0.
Since E is compact, there is a positive number : satisfying ¢ (max{fo(u); u€E})
<min{g(u); u€ E}. We have tfo,€ P and A(tfo)—z0=—1tfo+ g€ Q°. Since
Q*=M*(E), our assertion follows from Theorem 4.

§ 10. Application to the theory of capacities

Recently Ohtsuka [14] showed that Kretschmer’s duality theorem is ap-
plied to the theory of capacities in the potential theory. We follow these
lines and apply our duality theorem to a problem similar to the one in [14].

Let E and F be compact Hausdorff spaces, B(E) the metric space of
bounded Borel functions on E given the distance sup|f— g| for f, g€ B(E),
and B*(E) the subset of B(E) which consists of non-negative functions. The
strong dual of B(E) is denoted by B(E)*. Note that B(E)* contains the set
M(E). Let 0(u, v) be a lower semicontinuous kernel on E x F and m be a non-
negative Radon measure on E.

We assume the following two potential-theoretic conditions:

(PT.1) U"(v)= S@(u, v)dm(u) € C(F),

(PT. 2) S@(u, o) f(w)dm(u)€ C(F)  for every fe B(E).

We shall prove
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Tueorem 14. Let g be an element of C(F) such that g>0. If the value
sup{g gdv; ve M*(F), S U*dm <m(e) for every Borel set eCE} 18 finite, then

we have

max{g gdv; v € M*(F), ge U*dm <m(e) for every Borel set eCE}

— inf {g fdm; fe B*(E), S@(u, o) f(w)dm(u) = g(u) on F}
where
U(w) = g@(u, 0)du(v).

Proor. We set
X=B(E), Y=B(E)*, Z=B(F), W=BF), P=B*(E), Q=B*'(F).

Then X and Y (Z and W resp.) are linear spaces paired under the natural
bilinear functional ((, )): (((, )): resp.) mentioned in §6. Define Af for fe X
by

Af(v) = Sd)(u, ) f(w)dm(w).

Take m for yo€ Y and g for zo€ Z. Then the quintuple (4, P, Q, yo, zo) is a
program by our assumption. In case o€ M(F), ((h, 0)), signifies Shdo‘ for
every he B(F). For every we W= B(F)*, there exists a unique Radon meas-
ure ¢ such that ((h, w)), is equal to ghdc)' for all he C(F). If a measure be-

longs to Q*, then it is non-negative, i.e., M(F)NQ*=M*(F). We have by
condition (PT. 2)

(f, 470 = (Af, wi = | Afdo

_ SS@(u, ) f(w)dm(w)do(v) = S fUdm

for all f€ B(E). Since zo= g€ C(F)NQ° and the value

— M = sup {((z0, w))2; weQ", ((f, yo— A*w)), =0 for all f < P} is finite by
our assumption, our assertion follows from Theorems 8*, 9 and 10 and Pro-
position 3.

We consider the case where E=F is a compact set K in R?® and @ is the
Newtonian kernel, i.e., @&(u, v)=1/|u—v|. Let m be the restriction of
Lebesgue measure in R® onto K. Then conditions (PT. 1) and (PT. 2) are
fulfilled (cf. [147]). We have



350 Maretsugu Y AMASAKI

CoroLLARY. If the value sup {»(K); v€ M*(K), U’<1 ae. on K}* s
finite, then

max {»(K); v€ M*(K), U*<1 a.e.on K}
=inf{uw(K); pw€ M*(K), i is absolutely continuous, U*=>1 on K}.

Next we shall consider another application of our results to the theory
of capacities. Let 1<\p<co and 1/p+1/g=1. Assume that there exists
m € M*(E) whose support is equal to E. We use usual norms || ||, and || ||,
on L*(E, m) and LY(E, m).

Fuglede [ 6] proved the following theorem by making use of a generalized
minimax theorem.

THEOREM 15. Assume that @ is a non-negative lower semicontinuous kernel
on E x F which satisfies the condition that for every v € F there exists u € E such
that @(u, v)>0. Then

max {u(E); p€ M*(F), ||0(-, w)ll, =1}
= inf {|| fll,; f € L;(E, m), ( fm, -)=1 on F}.

We remark here that this theorem can be proved by a generalized duality
theorem. We only consider the case where @ is a continuous kernel. For
the general case, we may repeat the same argument as in §8. We set

X=IXE, m), Z=C(F), W=MF), P=Ly(E m), Q=C'(F),
o(O)=lIfll, and ¢(f)=Af—z,

where Af=0(fm, -) and z, is an element of C(F) such that z¢(v)=1 for every
vEF. Zand W are linear spaces paired under the bilinear functional ((, )).
defined in §7. Thus the convex program (¢, ¢, P, Q) in §3 is well-defined.
Since N'=sup {i(E); p€ M*(F) and ||0(:, w)||,=1} is finite and z,€Q°, we
have the desired equality by Theorems 4 and 5.

Note that the hypothesis on the kernel assures that N’ is finite.

§ 11. Existence theorems in potential theory

Let E and F be compact Hausdorff spaces, G(u, u"), 0(u, v), f(z) and g(v)
be real-valued continuous functions on Ex E, Ex F, E and F respectively. A
measure will always be a non-negative Radon measure on E or F. For a
measure p, we denote the support of x by Sp. In this section, we shall be
concerned with the following two problems:

9) a.e.=almost everywhere with respect to m.
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ProBLEM I. Do there exist measures x on E and » on F satisfying
1.1) 6(u, w+0(u, v)=f(u) onk,

L.2) Gu, w+0(u, »=f(u) on Sp,

I 3) O(s, )=g) onF,

1 4) O(p, v) = g(v) on Sp?

Let E consist of a finite number of mutually disjoint compact sets {E:},
k=1, ..., n, h be a real-valued continuous function on E and {¢;} be numbers.
We define &, by h,=h on E, and h,=0 on the complement of E; in E.

ProBLEM II. Do there exist a measure x on E and numbers {7;} satisfy-
ing

AL 1) G, W+ Srih(w)=f@w)  onE,
AL2) Glu, W+ Brhi(w)=fw)  on Sp,
(IL 3) Shkd/L:tk (k=1, -, n) ?

These problems are closely related to the conditional Gauss variational
problem treated in [127, [147] and [16]. In the case where G is symmetric,
ie., G(u, u)=G(', u) for all u, u' € E, Problems I and II (in a more general
form as in Remark 8 below) were studied by Ohtsuka [14] by means of the
Gauss variational method. However this method can not be applied to our
problems, since G is not symmetric. We use Glicksberg-Fan’s fixed point
theorem and generalized duality theorems obtained in §5 and §6 in the pre-
sent paper.

First we study Problem I. Let .# be the set of measures 1 on E satisfy-

ing
(2, v)< g(v) on F.
We have

TuEOREM 16. Assume that g>0 on F and that .« is vaguely compact.
Then Problem I is solvable.

Proor. It is easily seen that .# is a non-empty vaguely compact convex
set. For a measure i on E, we set

fulw) = f(u)—G(u, p).
We define a point-to-set mapping ¢: u— ¢(x) on A« by
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ga(p):{le/%; Sf,,d/leﬁ}», where M#:sup{gfﬂdr;reall}.

Since G(u, u) is continuous, ¢(;) is non-empty and convex, and the mapping
¢ is closed in the following sense: If nets {u,; @€ D} and {,; o< D} (Dis
a directed set) converge vaguely to x and 1 respectively and 2, € ¢(x.) for
any a€ D, then 1€ ¢(p). Consequently by Glicksberg-Fan’s fixed point theo-
rem ([57], [7]) there exists a measure € .# such that po € ¢(j0).

Since g>0 on F and M, is finite, there exists a measure v, on F such

that @(u, vo) = f,.(x) on E and M, = g gdvo=min {g gdy; O(u, )= f,,(u) on Ef.

In fact, we see that f, and g play the roles of f, and g in the programs in
§7. Since the condition that g>0 on F implies condition (K*), our assertion
follows from Theorems 7* and 10*. By the relation

My, = { fradin= | 06, v0)d o) = [0Gu0, )0 = { o,

we see easily that ;, and v, satisfy (I. 1)-(1. 4).

RemARk 6. Let x and v be a solution of Problem I. If g>0 on F and
there exists uo € E such that f(u)>0, then =0 by (I. 1) and (I. 4).

In the case where F={v}, g(v)=1 and f(u)=0(u, v)=1 for every u<cE,
the assumptions in the above theorem are satisfied. If G(u, u)=0 and
G(u, u)>0 for every u, u’ € E, then we see easily by Theorem 16 and Remark
6 that there exists a measure ;- on E such that

Glu, )=1 onkE,
Glu, k=<1 on Sp.
We shall call this result Kishi’s existence theorem; see [107].

Remark 7. We shall show by an example that Problem I has not always
a solution if we omit the condition g>0 on F. Let E and F be the interval
[0, 1] in the real line, =1, f(u)=u+1, ®(u, v)=uv and g(v)=v>. If there
exist measures i and v which satisfy (I. 1)-(I. 4), then p=ae, and »=be, with
a=0and 6>0 by (1. 3) and (I. 4), where ¢, is the unit point measure at x=0.
This contradicts (I. 1) and (1. 2).

We can weaken the compactness condition for .# as follows:

ProrosiTioN 10.  Assume that G>0, f >0, g>0and @ =0. Then Problem
I 1s solvable.

Next we shall study Problem II.
We have

TaeorEM 17.  Assume that h>0 on E and t,>0 for every k. Then Prob-
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lem II 1s solvable.

Proor. Let # be the set of measures y on E satisfying ghkd//,=tk for

every k. Then & is vaguely compact and convex. By the same argument as
in the proof of Theorem 16, we see that there exists a fixed point uo€ &F of
the point-to-set mapping ¢: x— ¢(w) on & defined by

o ={res; Sfﬂdl -}

where Mﬁzmax{g fudvive F} and £,(0)=f@~6(u, p).

We shall show that there exist numbers {r,} such that

Srihi(w=fw)  on Eand S Fundpso =k§"1rkghkdm.

Set X=M(E), Y=C(E), Z= W=R", P=M*(E), Q= {0}, yo=—f,, and zo=(—11,
..., —t,). X and Y are paired under the natural bilinear functional ((, )); (cf.
§7). Z and W are paired under the bilinear functional ((,)). defined by
((z, w));= zw, where zw means the inner product of z€ R” and we R*. Let 4
be the linear transformation from X into Z defined by

A/”:<_Sh1dll” ey —Shnd,u)
Thus the program (4, P, Q, yo, z0) is well-defined. Since the value of the
program is equal to M, = g Sfu,dpeo and zo€ A(P)°, our assertion follows from

Theorem 7 and Proposition 7. It is easily seen that x, and {r,} satisfy (IL. 1)-
(II. 3).

CoroLLARY. There exist a measure u on E and a real number r satisfying
@) 6(u, p)+r=f(u) on E, (2) G(u, p)+r = f(u) on Sp and (3) p(E)=1.

Remarx 8. It is easily seen that Problem II is a special case of the
following problem which was discussed in [147] in the case where G is sym-
metric:

Prosrem II". Do there exist a non-negative Radon measure x on E and
a signed Radon measure v on F satisfying

AV. 1) G(u, )+ 0u, )=f(u)  on E,
(1. 2) G(u, p)+0(u, V)< f(uw)  on Sy,
Ir. 3) O(pey v) = g(v) on F?

This problem seems however to be beyond the application of the duality theo-
rems in this paper. In fact, if we study Problem II’ by the same method as
in the proof of Theorems 16 and 17, then we need a new duality theorem
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which is valid in the case where the constraints are given by equalities.
Though we can transform equality constraints into inequality constraints as
in the classical case, we can not apply most of the criteria in §6 to this case.
Needless to say, equality constraints correspond to the condition Q= {0} or
P*={0} in the programs. The answer to Problem II’ in [14] is not there-
fore yet complete, a remark with which Professor Ohtsuka has been kind
enough to say that he agrees.

§ 12. Appendix

As remarked in the introduction, our main theorem is a converse of
Kretschmer’s duality theorem. In this section, we give a converse of Dieter’s
strong duality theorem in [4].

Let X be a real locally convex linear space and X* be the strong dual of
X. Let Cand D be convex sets in X, f(x) a convex function on C and g(x)
a concave function on D. We recall some definitions in [4].

Lfs €1= {0, #); x€Cr= fw) CRX X,
fH(x*) = sup {x*(x)—f(x); x € C},

C* = {x* € X*; f*(x*)< oo},

Lg D1={(r, x); x€ D, r < g(x)} CRx X,
g¥(x*) =inf {x*(x)— g(x); x € D},

D* = {x* € X*; g*(a*)>—oo}.

It is well-known that f*(x*) is a convex function on C* and g*(«*) is a con-

cave function on D*.
We set

V =sup {g(x)—f(x); x€ CND} if CND=~¢,
V=—oo if CND=¢,
V*=inf { f*(x*)— g*(x*); x* € C*ND*} if C*ND*=~4¢,
V*=co if C*ND*=¢,
S=Lf* C*1+[—g* —D*]

Dieter proved

TueoreM 18 (strong duality theorem). Let [ f, C] and [ g, D] be closed.
If V is finite and if the set S 1is weak* closed, then V=V*=min {f*(x*)
— g¥(x*); x* € C*ND*}.
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We shall prove

Tueorem 19. Let [ f, C] and [ g, D] be closed. If V* is finite and if the
set S is weak* closed, then the equality V="V* holds.

Proor. Since 7* is finite, we see that (V*+e, 0)€ S and (V*—e, 0)&E S
for every ¢>0. Let ¢ be an arbitrarily fixed positive number. Since S is
weak* closed and convex, there exist (s;, x;)€ Rx X and a; € R, by a well-
known separation theorem, which satisfy

(V*—e)s1<ay Zrsi+x*(x)

for all (r, x*)€ S. From the fact (V*+e, 0)c S, we derive s;>0. Writing
a=a;/s; and x= —x1/s1, we have

V —e<a<r—a*(x)

for all (r, x*)€ S. By the relation {(f*(s¥)—g*(x}), xF—x%); xFeC*,
x¥ € D*} C S, we have

a+ xf(x) — fH(a1) < o f(w) — g* (o)
for all ¥ € C* and x§ € D*. Making use of the fact that
f(x) = sup {x{(x)— f¥(x¥); «f € C*}
and
g(x) = inf {23 (x) — g*(x}); € D*}

(C4], p. 99, Hilfssatz 7), we have a+ f(x)< g(x), which implies x & CND.
Consequently V*—e<a< g(x)—f(x)<V. By the arbitrariness of e we
have V*<V. The converse inequality is always valid ((4], p. 102).

CororLrARY. Let [ f, CJand [ g, D] be closed. If V* is finite and if the
set S is weak* closed, then there ewists x*€ C*ND* such that V*=f*(x*)

— g*(x*).
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