
J. Sci. HIROSHIMA UNIV. SER. A-I
32 (1968) 309-330

On KuramochVs Function-theoretic Separative Metrics

on Riemann Surfaces

Hiroshi TANAKA

(Received September 20, 1968)

Introduction

In order to extend Fatou's and Beurling's theorems to arbitrary Riemann
surfaces, Z. Kuramochi introduced ([4]; also see [5] and [7]) two notions
of function-theoretic separative metrics, i.e., H. B. and H. D. separative met-
rics.

Since extended Fatou's and Beurling's theorems are stated in terms of
compactifications of an open Riemann surface, we shall define separative
compactifications rather than separative metrics. In this paper we shall give
necessary and sufficient conditions for a compactification to be H. B. or H. D.
separative, in terms of the Wiener or the Royden compactification, respec-
tively. Our characterizations are given in a simple form compared with the
original definition by Z. Kuramochi and may make it easier to comprehend
the meaning of these notions.

In §1, we shall discuss compactifications of a hyperbolic Riemann sur-
face R. §2 (resp. §3) is devoted to the study of harmonic measures (resp.
capacitary potentials) which were defined by Z. Kuramochi (Q3]). We shall
investigate their properties on the Wiener or the Royden boundary of R. In
§4 (resp. §5), we shall give our main theorems en H. B. (resp. H. D.) separa-
tive compactifications and study the relation between H. B. and H. D. separa-
tive compactifications (§5).

As an application, we shall show in §6: 1) for Fatou's theorem, Kura-
mochi's result ([4], [5], [7]) and Constantinescu and Cornea's result (Satz
14.4 in [2J) are equivalent; 2) for Beurling's theorem, Kuramochi's result
( M , [5], [7]) is independent of a similar result by Constantinescu and Cor-
nea (Satz 18.1 in [2]).

Notation and terminology

Let R be a hyperbolic Riemann surface. For a subset A of R, we denote
by dA and A1 the (relative) boundary and the interior of A respectively. We
shall call a closed subset F of R regular if dF consists of at most a countable
number of analytic arcs clustering nowhere in R.

An exhaustion will mean an increasing sequence {Rn}n=ι of relatively
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oo

compact domains on R such that \J Rn — R and each dRn consists of a finite

number of closed analytic Jordan curves.

A subset A of R is called polar if there is a positive superharmonic func-
tion s on R such that s(a)= + oo at every point a of A. A polar set is locally
of Lebesgue measure zero. We shall say that a property holds q.p. on a set
E if it holds on E except for a polar set.

Let u be a harmonic function on R such that inf u = 0 and sup^ = l. For
R R

each a ( 0 < α < l ) , we set Ωa = {z e R; u(z)^a}. If F is a regular closed set
in R, then there is a set E of at most a countable number of a in (0, 1) such
that FΓ\Ωa is a regular closed set in R for each α in (0, 1) — E.

§ 1. Compactifications

1.1 Definition of compactification

If R* is a Hausdorff compact space and if there is a homeomorphism of
R into if* such that the image of R is open and dense in 2?*, then we may
identify the image of R with R and call /?* a compactification of 7?. A — R^ — R
is called an ideal boundary of i?.

Let Q be a family of bounded continuous (real valued) functions on R.
If a compactification R* of i? satisfies:

1) every f e Q can be continuously extended over iϊ*3

2) ρ separates points of A = R* — R,

then R* is called a φ-compactification of R. It is known (cf. [_2J) that a Q-
compactification always exists and is unique up to a homeomorphism. Thus,
it will be denoted by R% and its ideal boundary by ΔQ.

We refer to [2Γ] for the definitions and properties of the Martin compacti-
fication R%, the Kuramochi compactification R%, the Wiener compactification
i?^5 the Royden compactification R% and harmonic boundaries Γw, ΓD.

For any subset A of R, we shall denote by A* (resp. AN, Aw, AD) the
closure of A in # * (resp. R%, R%, R$).

Let Rf and R$ be two compactifications of i?. If there is a continuous
mapping of Rf onto i?f whose restriction on R is the identity mapping, then
we shall say that R% is a quotient space of JSf. It is known (C2]) that, if
Q1CQ2, then R%λ is a quotient space of Λg2. Hence R%, R% and lϋ$ a r e quoti-
ent spaces of R%. Furthermore, R% is a quotient space of R%.

1.2 Dirίchlet problems

Let /?* be a compactification of iL Given a function / (extended real

valued) on J, we consider the following classes:
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_ ί superharmonic, bounded below on R,)
d / = Is; [

{ l i ( ) ^ / ( ) for any ξ e Δ
α-f

where °o means the function which is equal to + °° everywhere on R. We
define Hf(a) = inί{s(a); s e d/} and #/(α)= sup{s(α); u d / } . It is known
(Perron-Brelot) that Hf (resp. Hf) is either harmonic, = + co or Ξ —co. If
Hf = Hf and are harmonic, then we say that / is resolutive and Hf = Hf = Hf

is called the Dirichlet solution of / (with respect to R*).
If any finite continuous function on Δ is resolutive, then R* is called re-

solutive. It is known that a φ-compactification R% of R is resolutive if and
only if Q consists of bounded continuous Wiener functions (cf. pΓ]). Hence
R%, R%, R^ and R% are resolutive. We denote by ω = ωa the harmonic mea-
sure on Δw at α e i? and note that the support of ω is equal to /V

1.3 Some special examples of Q-compactίfications

Example 1. Let R be the unit disk {z | * | < 1} in the complex plane. Let
ωa be the harmonic measure of the half circle {eιθ'; |# |^7r/2} with respect
to R at a e #. We take {ωα} for (λ Then

a) RQ is a metrizable resolutive compactification,

b) RQ is not a quotient space of i?^.

Example 2. Let i? be a Riemann surface which belongs to 0HD — 0HB>

Then it follows from Folgesatz 11.5 in Q2] that / ^ consists of only one point,
say ό, and Γw contains at least two distinct points, say a± and a2. Then there
is a bounded continuous Wiener function f on R such that l im/(α)=l and

lim/(α) = 0. Now we set ^ =3max(min(/, 2/3), 1/3)-1 and take {g} for Q.

Then

a) R% is a metrizable resolutive compactification,

b) R% is not a quotient space of 1?£.

§2. Harmonic measure and Wiener boundary

2.1 Dirichlet problems on an open set

Let 7?* be the one point compactification of R. Let G be a domain on R.
Given a function/ (extended real valued) on dG, we define the function/* on
G*—G which is equal t o / on dG and 0 on £* — 7? if G is not relatively compact
in i?. We may consider G* as a compactification of G and set Hf = Hf* and
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Hf = Hr. If Hf = Hf and are harmonic, then we say that / is resolutive with
respect to G and call Hf = Bf = Hf the Dirichlet solution of/. If G is an open
subset of R, then we decompose G into connected components {G, }. Given a
function / (extended real valued) on 9G, we denote by /,• the restriction of /
on dGi and define Hf = Hf/ and Hf = Hf* on G, . If each /,- is resolutive with
respect to G, , then we cal l/ resolutive with respect to G and write Hf — Hf
— Hf. If {/»}£=! is a monotone sequence of resolutive functions with respect
to G and {Hfn} converges, then the limit function f=limfn is resolutive with

ΐl—>oo

respect to G and Hf = \imHfn.

2.2 Reduced functions

Let .F be a closed set in R and let 5 be a non-negative superharmonic
function on R. We consider the following function

sF — inf {v; superharmonic ^>0 on R, v^>s q.p. on F}.

Then sF is superharmonic on R and 0 <Ξ sF <Ξ 5.

The following properties are known (cf. [2]]):

(Al) sF = Hf'F on R — F and 5̂  = 5 on F except for irregular boundary
points of R — F.

(A2) If F1C F2 and Sl < s2, then (Sl)Fl ^ (s2)F2.

(A3) If F±CF2, then ^ = ( ^ ^ ^ ( 5 ^ ) ^ .

(A4) (αχ5i + a2s2)F = 01(51)2? + a2(s2)F (α x , α 2 ^ 0).

(A5) 5ir iWj

2.3 PROPOSITION 1. Let {Fn}n=ι be a sequence of closed sets in R such

that Fn^)Fn+ι (rc = l, 2, ...) α^d f\Fn = Q. Set u = \imlFn and Ωa={ztR;

H(*) ^ α} (0 < a < 1). ΓAe^

(a) if F is a closed set in R such that i θ FHQ for some n0, then uF—u on i?,

(b) if u is positive, then sup u = 1 /or eαcfc n9
Fn

(c) lim 1FΛ-ΛΪ = 0 for each α,
n—>oo

(d) uΩa = u on R for each a.

PROOF, (a) Since F^)Fn for n^>n0, it follows from (A3) and (Al) that

lFn = Hf;n

F on i ? - F ( Λ ^ T I 0 ) .

Since 1 ^ decreases to w as TZ-^OO, we have u — Hζ~F on R — F. Since the set
of irregular boundary points of R — F is polar (cf. Satz 4.7 in [2J\ we have
uF=u q.p. on R by (Al). Hence uF—u on R.
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(b) Set Kn — sup u for each n. Then Kn decreases with n. Since u is
Fn

positive, Kn is positive. By (a), we have

u = uF <KmlF <KnlF on R
m m m,

for m^>n. By letting 7τι->oo? we have u<^Knιι on R. u>0 implies Kn — 1.
(c) We may assume that u is positive. Set va=limlFn_Ωia. Suppose va

is positive for some a. Then, by (b),

This is a contradiction. Thus va = 0 for each a.
(d) We may assume that u is positive. We note that \imuFn-Ω%<;

n—*o

_^α=:0by(c). Since u = uFnKjΩa<^uΩa + uFn-Ωi^»uΩa as ^->oo for each

a, we have u <i uΩa <^ u on R for each a.

REMARK. This proposition is a generalization of a result given by Z.
Kuramochi ([3]).

2.4 Harmonic measure on Wiener boundary

Let R* be a compactification of R. Let u be a non-negative superharmo-
nic function on i?. Given a closed subset 4̂ of J, we consider the following
class:

I superharmonic ^>0 on R, v^>u on UΓ\R)
v;

for some neighborhood U of A in 7?* J

Then the function

wA = inf {v\ v e d%R*}

is harmonic on R and 0 <J w^ <^ w.

The following lemma is due to M. Brelot [ 1 ] :

LEMMA 1. A metrizable compactification R* of R is resolutive if and only
if (1A)B = 0 for any mutually disjoint compact subsets A and B of J = R* — R.

LEMMA 2. If A is a closed subset of Jw, then lA = cό(A).

PROOF. It is easy to see that 1A = HΦA, where φA is the characteristic
function of A. On the other hand, it follows from Hilfssatz 8.3 in [2J that
HφA = ω(A). Hence lA = ω(A).

LEMMA 3. For any closed subset A of Aw, there exists a sequence {Fn}ζ=1

of regular closed sets in R which has the following properties:
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a) each Fjf is a neighborhood of A in R%,

b) ί Ό F β + 1 ( n = l ,2, -)andf\FH = 0,
n = ι

c) lFn decreases to ω(A) as n -> oo.

PROOF. Let a be a fixed point in R. Then there exists a sequence
isn}n=i i n d ^ , ^ such that 5w(α)->lA(α) as n-^oo. Each sM dominates 1 on
UnΓ\R for some neighborhood Un of 4̂ in i?^. We can choose a sequence
{Fn}n=i of regular closed sets in R which satisfies a), b) and FnCUnΓ\R for
each n. Set u = \im.lFn. Then w, is harmonic and u^>lA on JR by the defini-

?Z—>oo n

tion of 1^. Since sn^>lFn on i? for each n, we see that

sn(a) ]> lim 1F (a) = u(a) ^ 1A(CL).

Hence U = 1Λ on i?. Therefore c) is valid by Lemma 2.

COROLLARY 1. // {Fn}^1 is a sequence of regular closed sets in R such
oo oo

that Fn^)Fn+ι (ra —1, 2, ...)and f\Fn = 0, then 1F decreases to ω(f\F^)as n->oo.
n=l n n=l

COROLLARY 2. If F is a regular closed set in R, then

where {Rn}n=ι is an exhaustion of R.

PROOF. It follows from the above corollary that the second equality is
valid. By Hilfssatz 8.7 in [_2~], we obtain that hιF<Hf, where / is the charac-
teristic function of FwΓ\AW. Hence hχF<,ω(FwΓ\ Aw) by Hilfssatz 8.3 in [2].
Since (lF)R-Rn^lF^R^ by letting ra—>oo5 we have

F R n = ω{Fw Γ\ΔW).

This completes the proof.

REMARK. The functions in Corollary 2 are denoted by w{FΓ\B, z) in [ΊΓ|,
M , [5] and by w(B(F\ z) in [7].

LEMMA 4. If F is a regular closed set in R, then 1F can be continuously
extended over i?^. Furthermore, l.p = l on Fw and lF = 0 on Γw — Fw.

PROOF. Since I F is a bounded continuous Wiener function on R, it can be
continuously extended over R%, so that 1^ = 1 on Fw. Since lF=hιF+p (p: a
continuous Green potential), it follows from Corollary 2 to Lemma 3 and
Folgesatz 9.2 in [2] that lF = hlF = ω(FwrΛJw) = 0 on Γw-Fw.

1) See p. 55 in [2] for this definition.
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LEMMA 5. If F is a regular closed set in R, then

for each a in (0, 1), where Ωa = {ze R; ωz(FwΓ\Jw)^a} ( 0 < α < l ) .

PROOF. Let {Rn}n=ι be an exhaustion of R such that each F—Rn is a
regular closed set in R. We assume that F—Ωi, is a regular closed set in R
for each a in (0, 1) — E, where E is a set of at most a countable number of a
in (0, 1). By Corollary 2 to Lemma 3 and (c) in Proposition 1, we obtain that

o)(F-Ω*a

wΓ\Jw) =

for each a in (0, 1)-E. Since F-Ω^™CF-Ω^J7 if aι<a2 and (0, 1)-E is

dense in (0, 1), ω(F-Ωi

a

wίλJw) = 0 for every a e (0, 1).

2.5 Let Ko be a closed disk in R and let R0 = R — K0. Given a closed sub-
set A of Jw, we consider the following class:

ί superharmonic ^>0 on Ro, v^>l on UίΛR0)

[ for some neighborhood U of A in R% J

Then the function

ωκ°(A) = in f {v ve βA}

is harmonic on Ro and 0 ^
We shall prove

LEMMA 6. If A is a closed subset of Jw, then

ωκ°(A) = ω(A)-HSU) on Ro.

PROOF. By a discussion similar to the proof of Lemma 3, we can choose
a sequence {Fn}%=1 of regular closed sets in R which has the following pro-
perties :

a) each Fξ is a neighborhood of A in R%,

b) F O F β + 1 ( n = l ,2, ...) and Λ*Ί. = 0,
»=i

c) lF | i\fl)(^) and Hf^Fn\ωκ^(A) as rc^co,

where /» = 0 on 9K0 and 1 on 9FW. Let {i?w}«=1 be an exhaustion of R. We
may assume that Fnr\Rn = 0 for each n. Let #„ be the continuous function
on dFn\jdK0 such that g « = 0 on dis* and =1FΛ on δ 1 ^. Obviously,

on

By an elementary discussion, we can show that H*°~Fn-+H^A) on Ro as rc
Hence, by letting π, -> co in the above equality, we complete the proof.
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COROLLARY. ω(A) = 0 if and only if ωκ°(A)=0.

§3. Capacity on Royden boundary

Let Ko be a closed disk in R and let R0 = R — K0.

3.1 Dirichlet principle

Let / be a Dirichlet function2) on R and let F be a non-polar closed set in
R. Then there exists a uniquely determined Dirichlet function fF which
minimizes the Dirichlet norm \\g\\ among Dirichlet functions g such that
g—f q.p. on F and which is equal to / on F and is harmonic on R — F.

The following properties are known ([2J):

(Bl) ll/l^ll/ll, and (/F, g-fF) = 0 for any Dirichlet function g such
that g=f q.p. on F.

(B2) (a1f1 + a2f2)
F = a1(f1)

F + a2(f2)
F (al9 α 2 : real).

(B3) If / = constant, then f = / .
(B4) If/^0, then/F^O.

(B5) If ίΊCΉ, t h e n / F ^ ( / F 0 F 2 = (/F 2)F l .
(B6) If G is a component of R-F, then / F = / a G on G.
(B7) If / ^ 0 , then/ F ^i7f- F on R-F.

The following property is an immediate consequence of (B4):

(B8) If / ^ 0 on F, then f :> 0.

LEMMA 7. If f is a bounded continuous Dirichlet function on R, then
fF(a)->f(b) as a in R — F tends to every regular boundary point b of R — F.

PROOF. Suppose | / | <JM<oo. Then we have

Hf+r-M<;fF^HfiF + M on R-F

by (B2), (B3) and (B7). Hence we have the lemma.

3.2. A continuous function on an open set G in R will be called piecewise
smooth if it is continuously differentiate in an open subset Gf C G such that
G — G' locally consists of a finite number of points and open analytic arcs. Let
F be a regular closed set in R and let φ be a given continuous function on OF.

We denote by Q)R^F(φ) the family of piecewise smooth functions / on
R — F with boundary values φ on OF and with finite Dirichlet norm | | / | U _ F .

Any function in Q)R^F(φ) is a Dirichlet function on R — F.
The following formulation of Dirichlet principle is due to M. Ohtsuka

2) This is called eine Dirichletsche Function in [2].
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([8]):

Let F be a regular closed set in R and let φ be a given continuous function
on dF. If Q)R-F(Φ)Φ0, then there exists a uniquely determined function φF in
Q)R-F(Φ) such that

a) φF is harmonic on R — F,
b) WΦFWR-F^WSWR-F for any g in Q)R_F(φ).

Furthermore, if {/?»}»=i is an exhaustion of R, then there is a uniquely deter-
mined harmonic function hn on Rn — F with boundary values hn=φon the closure
of dFΓ\Rn and dhn/dv = 0 on the rest of the boundary. hn tends to φF locally uni-
formly on R — F and in Dirichlet norm as 72, —• oo.

We shall prove

LEMMA 8. Let F be a regular closed set in R. Iff is a bounded continuous
Dirichlet function on R, then φF=fF on R — F, where φ is the restriction of f on
dF.

PROOF. By Lemma 7, we see that fF eQ)R-F{φ). Hence \\ΦF\\R-F<>

\\fF\\R-F- Conversely, let g=φF on R — F and = / on F. Then we can show
that g is a Dirichlet function on R. Hence, by (Bl), we have (φF—fF, fF)R-F
= 0. Thus

Since both fF and φF are harmonic on R — F and take the same boundary values
φ on dF, it holds that φF=fF on R-F.

3.3 Full-superharmonic functions

Let s be a non-negative (Ko~) full-superharmonic function3) on Ro and
let F be a closed set in R. We consider the following function

ί full-superharmonic ^ 0 on Ro,]
sF = mΐlv; | .

( υ^s q.p. on FΓ\R0 J

Then the function sF is full-superharmonic on Ro and O^SJ? <Js.

The following properties are known ([2]):

(Cl) sF = s on F except for irregular boundary points of Ro — F and sp is
harmonic on Ro — F.

(C2) If F1CF2 and Sl<,s2, then (Sl)p1 ^(S2)P2.

(C3) If F1CF2, then 8^ = ^)^ = ^ ^ .

(C4) (aisi + a2s2)p = aι(sι)p + a2(s2)p (au a2 ̂  0).

3) This is called superharmonic by Z. Kuramochi ([3]) and "positive vollsuperharmonisch" in [2].
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(C5) s^yf2 + s^f2 <; sp1 + sp2.

(C6) If s is a Dirichlet function on i?, 5 = 0 on Ko and 5 is non-negative
full-superharmonic on Ro, then

sp = sFvκ* on Ro-F.

3.4 PROPOSITION 2. Let {Fn}n=1 be a sequence of regular closed subsets

of Ro such that Fn^)Fn+ι(n = 1,2, •••) and f\Fn = &. Then lp converges locally

uniformly on Ro and in Dirichlet norm as n-+°o. Furthermore, setting u —
limljr and Ωa = {z e Ro; u(z)^>a} ( 0 < α < l ) , we have

(a) if F is a regular closed subset of Ro such that 1O FHQ for some n0, then
uρ = u on Ro,

(/?) if u is positive, then sup u = lfor each n,
Fn

(γ) lim lf^r^i = 0 for each a,

(ί) uaa — u on Ro for each a.

PROOF. Let D be an open disk in R such that D^K0 and FιΓλ(DyjdD) = 0.
Let v be the harmonic function on D — Ko with boundary values 0 on dK0 and
1 on dD. We extend v over R by 0 on Ko and by 1 on R — D and denote by /
the extended function. Then / is a continuous Dirichlet function on R and
is full-superharmonic on Ro. By (C6), we see that

It follows from (Bl) that {lpn}n=ι is a Cauchy sequence in Dirichlet norm.
Hence lpn tends to u locally uniformly on Ro and in Dirichlet norm as n^°o.
Note that u vanishes on dK0, so that

(a) By (B5) and (Bl), we have

Since every boundary point of Ro — F is regular, we have up = u on Ro by (Cl).
(/?) can be proved by a discussion similar to the proof of (b) in Proposi-

tion 1.
(r) We may assume that u is positive. Set va = l i m l ^ ^ . Then

Fn — Ω(

a is a regular closed subset of Ro except for a set E of at most a count-
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able number of a in (0, 1). Suppose va \$ positive for some a in (0, 1) — E.
Then, by (/?),

1 = SUP Va^ SUP U<;<X<1.
Fn-Ωi Fn-Ωi

This is a contradiction. Since vai<,va2 if aχ<a2 and (0, 1) — E is dense in
(0, 1), we have va = 0 on R for each α.

(δ) can be proved by a discussion similar to the proof of (d) in Proposi-
tion 1.

3.5 Let G be an open set in R with piecewise analytic boundary. Let F

be a closed subset of G such that R — GDίλFD = 0. Then there is a bounded
continuous Dirichlet function on R such that f=0 on R — G and 1 on F. Since
JT(R-G\JF d o e s n o t depend on the choice of/, we shall denote it by lg.4) If F
is a regular closed set, then lξ is continuous on G. Let {jpw}^=1 be a sequence

of regular closed subsets of G such that Fn^)Fn+1 (n = l, 2, ...) and f\Fn = 0.
l

Suppose R — GDΓ\Fξ = 0. Then I n t e n d s to a function, say u, on i? locally
uniformly and in Dirichlet norm a s / i ^ o o and u is harmonic on G.
Let i2Λ = {*eG; a(*);>α} ( 0 < α < l ) .

The following lemma is known ([7J):

LEMMA 9. / / u Ξ^

ί - | ^ds = | H | | for almost all α, 0 < α < l .

By Lemma 3 in [_7J and Lemma 8, we have

LEMMA 10. If f is a bounded continuous Dirichlet function on i?, then

is a constant for almost all a,

We shall prove

PROPOSITION 3. Let G, {Fn}n=x and u be as above. Suppose u^0. Let F

be a regular closed subset of G such that 'R^FΪDΓλFζ = 0. Then (Λ —G)wi^ D n

Qa — FiΌ — 0 for every a ( 0 < a < 1 ) and n, and 1G->C tends to 0 locally uni-
formly on G—Fn and in Dirichlet norm as α->l for each n. Furthermore,
l^'pι tends to 0 locally uniformly on G and in Dirichlet norm as a—>l.

PROOF. By the assumption on F, there is a bounded continuous Dirichlet

4) This function is denoted by ω(dF, z, G-F) in [3], [7].
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function/on R such that/=O on Fλ and 1 on R-F*. Then g =min(lg«,/)
is a bounded continuous Dirichlet function on R. Since #=0 on (R—G)\jFn

and 1 on Ωa-F\ (R-G)\jFn

DΓ\Ω^FiD = 0 for every α (0<α<l) and n.
Now fix an integer n>0 arbitrarily. By (Bl), we see that

and IG^FΓ (resp.lga~Fi) tends to a harmonic function, say v (resp. vo\ locally
uniformly on G—Fn (resp.G) and in Dirichlet norm as α->l, so that ||UO||G2S

||v||G-Fn. Suppose V^EO. We set δa = {z eG-Fn; v(z)^a} (0<α<l). Then,
by Lemma 9, we obtain that

for almost all a, 0<a<l. We can show that u(R~G)κjFn=u on G—Fn by a dis-
cussion similar to the proof of (a) in Proposition 2. Hence, by Lemma 10,

\ u -^— as
Jdδa σv

is a constant, say m, for almost all a, 0 < α < l . Since 0<^u<l on G, we have

dδa

Let β0 (0</5Ό<l) be a real number such that 77I<^O||^||G-FW. On the other
hand, since u<

R-GXjF*=u on G-Fm ^-G)^.w(fl«-^) = α On G - ^ . Since
g ^ / α on (R-G)\jFn\j(Ωa-Fi\ we have lg«>f = ̂ ( i?-G)^F^ ( i2«-^ )^ w /α on
G-Fn by (B8). Hence ^ ^ o n G - ^ . Thus

for almost all /9, 0</?<l. This is a contradiction. Therefore, z; = 0 and
hence vo = O.

COROLLARY. Let {Fn}n=ι be a sequence of regular closed subsets of Ro such

that Fn^)Fn+1 (τι = l, 2, ...) and f\Fn = 0. Set Ωa = {z e Ro; \imlpn(z)^a}

). // R — F*n

Dr\Fξ+ι = Q for each n, then l^>p* tends to 0 locally uni-
formly on Ro and in Dirichlet norm as a-> 1 for each n.

This is proved easily by the aid of the identity 1$«-Fn = l ^ ^ u on Ro for
each n.

REMARK. The above Proposition and Corollary are essentially due to Z.
Kuramochi \JΓ\ and
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3.6 Capacity on Royden boundary

Given a closed subset A of JD, we consider the following class:

ί full-superharmonic ^ O o n i ? 0 , ^ ^ l o n UίλRo)

[ for some neighborhood U of A in R% J

Then the function

ώ(A) = a)a(A) = inf {υ(a) v e όA} (a € Ro)

is full-superharmonic, harmonic on Ro and 0<,cΰ(Λ)<^l. The following lem-
ma will show that ||α)(y4)||<oo.

LEMMA 11. For any closed subset A of JD, there is a sequence {Fn}n=ι of
regular closed subsets of Ro which has the following properties:

a) each F% is a neighborhood of A in R%,

b) Fn>FH+1(n = l, 2, ...) and Γ\Fn = 0,

c) lpn\cΰ(A) and ||lj?n-fi>G4)||->0 as n-+oo.

PROOF. By a discussion similar to the proof of Lemma 3, we can choose
a sequence {Fn}n=ι of regular closed subsets of Ro which satisfies a), b) and
lρn\ &(A) as n —• oo, By Proposition 2, we see that lpn tends to ω(A) as τι->oo
in Dirichlet norm.

COROLLARY 1. // {Fn}n=ι is a sequence of regular closed subsets of Ro such
oo oo

that Fn^)Fn+ι (7i = l, 2, ...) and f\Fn = 0, then lp decreases to &(f\Fζ)9

n=ι n n=\

ω(A^)IH0 as n^oo
» = 1

and 11 lρn\ \ decreases with n.

COROLLARY 2. If F is a regular closed set in R, then

where {Rn}n=ι is an exhaustion of R.

REMARK. The functions in Corollary 2 are denoted by ω(FΓ\B, z) in
[3], [4], [5] and by ω(B(F\ z) in [7].

For any closed subset A of JD, we define

We call C(A) the capacity of A (with respect to Ko). Let {Fn}n=ι be a sequ-
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ence which has the properties in Lemma 1. By Lemma 9 and Green's formula,
we have

Since dlpjdv tends to dω(A)/dv uniformly on dK0 and ||1#J|2 tends to
as n-> oo by c) in Lemma 11, we see that C(Λ) = (2π)~1\\ώ(Λ)\\2.

We see that both A -• ωa(A) and A -> C(A) are Choquet's capacities.

LEMMA 12. Let Fbea regular closed set in R and let Ωa— {zeR0 ώz(FDΓ\ΔD)
Then

for each <x

PROOF. By the aid of Corollary 2 to Lemma 11 and (γ) in Proposition 2,
we can prove the lemma in a way similar to the proof of Lemma 5.

LEMMA 13. Let {Fn}%=1 be a sequence of regular closed subsets of Ro such

that Fn^Fn+1 (7i = l ,2, •••) and f\Fn = 0 and let Ωa={zeR0;

a} (0<α<l). IfR-FiDr\FD

n+1 = 0for each n, then C(^a-FiDr\JD) tends to
O α s α ^ l for each n.

PROOF. Each Ωa — Fι

n is a regular closed subset of Ro for a e (0, 1)—E,
where E is a set of at most a countable number of a in (0, 1). By the aid of
Corollary 2 to Lemma 11, we have

for each αe(0, Ϊ) — E and each n. It follows from the Corollary to Proposi-
tion 3 that

as a-+l (αe(0, ΐ)-E) for each n. Since C(Ωaί-Ft

n

Dr\JD)>C(Ωa2-Ft

n

Dr\JD)

if aλ<a2 and (0, ΐ)-E is dense in (0, 1), C(Ωa-Ft

n

DΓ\JD)^0 as a-^1 for each
n.

We can show

LEMMA 14. If Fu F2 are regular closed sets in 7?, then
κ on RQ
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and

where C is the Kuramochi capacity^ on ΔN (with respect to Ko).

COROLLARY. C(ΓD) is positive for any hyperbolic Riemann surface.

PROOF. By Satz 8.6 in [2], we see that ωκ»(Γw)<:ω(ΓD) on Ro. By the
aid of Lemma 6, we can show that ωκ*(Γw)>0. Therefore C(ΓD)>0.

REMARK. Let π be the continuous mapping of R% onto R% whose restric-
tion on R is the identity mapping. If X is a closed subset of ΔN, then

C(π-\X))=C(X).

§4. H.B. separative compactification

In this section we shall denote by A the closure of any subset A of R in

4.1 Definition of H.B. separative compactification

Definition. A compactification R* of R is said to be H.B. separative if
the following Condition B is satisfied:

Condition B: If Fu F2 are regular closed sets in R such that FfΓ\Fξ = 0
in Λ*, then

ω( A t

where <?« = {* eΛ; lFl(z)>a} ( 0 < α < l ) .

By virtue of the remark in 2.4, we see that the above definition is equi-
valent to that introduced by Z. Kuramochi in [ 7 ] ; also see [_4Γ\ and [ΊΓ].

4.2 PROPOSITION 4. If i<\, F2 are regular closed sets in R, then

ω( f\ ΩaΓ\F2Γ\Δw) = ω( f\ δaΓ\F2Γ\Δw)
0<«<l 0<«<l

= ω(F1r\F2Γ\Jw\

where Ωa = {z e R; ωz(F\Γ\Jw)^cί} and δa = {z e R; l^OaO^α:}

PROOF. By Lemma 4, we see that

F1ΓλΓw= f\ §aΓ\Γw.
0<a<l

Since ωz(FιΓ\Δw)<LlFι(z) on R by Corollary 1 to Lemma 3, ΩaCSa for each a.

5) See [2] and [3] for this definition.
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Hence we have

ω( A ΩaΓ\F2Γ\Δw)<Lω( f\ daΓ\F2Γ\Δw)
< < 0<«<l

Since FιΓ\F2C{FιΓ\Ωar\F2)\jFι-Ωι

a and ω(F1-Ωi

aΓ\Δw) = 0 by Lemma 5,
we see that

ω(FιΓ\F2Γ\Δw)<Lω( f\ ΩarλF1r\F2ΓλΔw).
0<*<l

Next we shall prove f\ Ω0CΓ\F1ΓλF2C A ΩaΓ\F2. We may suppose that
0<<2<l 0<«<l

ω(FιΓ\Δw) is not a constant. Then i 2 Λ ^ 0 and ΩaφR for each α by Lemma

3 and (b) in Proposition 1. Let a be an arbitrary point of A ΩaΓ\FχΓ\F2.

Suppose there is an aQ such that a 4 Ωa Γ\F2. Then there is a neighborhood

U of a in R% such that Ur\ΩaQΓ\F2 = 0. Since {z e R%\ ωz(FιΓ\Δw)^cto} is
a neighborhood of a in i?^ and its restriction on R is Ωa^ we may assume
that Ur\RCΩa . Hence UΓ\F2 — 0, This shows that α does not belong to

F2. This is a contradiction. Thus A Ωar\F1Γ\F2C A ΩarλF2. There-
0<α<l 0<α<l

fore we have

pF)<;ΰ)( A ΩaΓ\F2Γ\Δw).
0<«<l

This completes the proof.

COROLLARY 1. Condition B is equivalent to that ω^FxΓλF^^O for any
regular closed sets Fu F2 in R such that FfΓ\F2* — &.

COROLLARY 2. Let Rξ and R% be two compactifications of R. Suppose Rf
is a quotient space of R$. IfR2 is H.B. separative, then so is Rf.

4.3 Main theorem on H.B. separative compactifications

THEOREM 1. A compactification R* of R is H.B. separative if and only
if it is resolutive.

PROOF. Let Fu F2 be regular closed sets in R. If R* is resolutive, then
F*r\F} = & implies F1ίλF2 = 0. Hence i?* is H.B. separative by Corollary 1
to Proposition 4.

Conversely, suppose R* is H.B. separative. First we assume that R* is
metrizable. Let A, B be any mutually disjoint compact subsets of Δ. Then
there are two regular closed sets Fu F2 in R such that Ff is a neighborhood
of A, F2* is a neighborhood of B and F?Γ\F2* = 0. We set u = ω(F1Γ\Δw\
Ωa = {z a R; u(z)^a} ( 0 < α < l ) and da = R-Ωi

a. Then there is a set Eof at
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most a countable number of a in (0, 1) such that each F2Γ\Ωa is a regular
closed set in R f or a e (0, 1) — E. We obtain that lA<>u and

where {ΛΛ}»=1 is an exhaustion of R. By letting π,->- °o5 we have

on i? for each α e ( 0 , l ) - £ by Corollary 2 to Lemma 3. Let 0<a<β<l
(a e (0,1) — E). Then ι̂ α = a on R by (d) in Proposition 1 and u8a <; l8a. Hence
^ δ α ^ m i n ( l δ α 5 1^). Since δaΓ\Ω/3 = 0, uSa vanishes on /V by Lemma 4. It
follows from the minimum principle (cf. Satz 8.4 in [2]) that

on R for each a e (0,1) — E. Since ω{Ωair\F2Γ\Δw)^ω{Ωa2Γ\F2Γ\Aw) if
and (0, 1) — E is dense in (0, 1), we obtain that

on R for each α in (0, 1). Thus

0 < <

by Proposition 4 and Condition B. Therefore Λ* is resolutive by Lemma 1.
Next we consider the case where R* is not necessarily metrizable. We

can find a family Q of bounded continuous functions on R such that R* = R%.
Let/o be any function in Q and set Qo= {/o} It follows from Corollary 2 to
Proposition 4 that R%Q is H.B. separative. Since R%Q is metrizable, by the
above discussion, we see that R%Q is resolutive. Hence, it follows from
Hilfssatz 8.2 in [2] that f0 is a Wiener function on R. Thus any function
in Q is a Wiener function. Therefore R* = R% is resolutive (cf. Satz 9.3 in
[2]).

COROLLARY 1 (Z. Kuramochi Q4], [7]). The Martin and Kuramochi com-
pactifications are H.B. separative.

COROLLARY 2. A compactification R* of R is resolutive if and only if
ω(FιrλF2)=Q for any regular closed sets Fu F2 in R such that FfΓλFf = 0 in
Λ*.

§5. H.D. separative compactification

In this section we shall denote by A the closure of any subset A of R in
R%. Let KQ be a closed disk in R and let R0 = R — K0.
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5.1. Definition of H.D. separative compactification

Definition. A compactification iϊ* of R is said to be H.D. separative if the
following Condition D is satisfied:

Condition D: If Fu F2 are regular closed sets in R such that FfΓ\Ff = 0
in i?*, then there is an increasing sequence {Vn}n=ι such that

a) each Vn is a relatively open subset of F2 such that F2 — Vn is a regular
closed set in R,

b) C(F2-VnΓ\ΔD)->0 as rc^oo,

c) F1ΓλVn\JdVn = 0 for each n.

REMARK, (i) The property b) does not depend on the choice of Ko.
(ii) The property c) is equivalent to the fact that there is a bounded con-

tinuous Dirichlet function fn on R such t h a t / w = 0 on Fι and 1 on Vn\JdVn.
By virtue of the first remark in 3.6, we see that the above definition is

equivalent to that defined by Z. Kuramochi in []4] and [5J (cf. [T], §3; in
particular footnote 4) and Lemma 5).

5.2 PROPOSITION 5. // Fu F2 are regular closed sets in R, then

where Ωa={ze Ro; &z(FiΓΛJD)^a} ( 0 < α < l ) .

PROOF. By a discussion similar to the proof of Proposition 4, we can
prove that

C(F1ίΛF2r\JD)^C( A Ω~ήF2)
0<«<l

by using Lemma 12. Now we shall prove the converse inequality.

For A=FιΓ\F2Γ\JD (resp. Λ=FIΓ\JD\ there is a sequence {ώn}?=i (resp.

{Sn}n=i) of regular closed subsets of Ro which satisfies a), b) and c) in Lemma

11. Since R% is a normal space, we may assume that ~R — δi

nΓ\δn+ι = 0 and

δnr\F2Γ\ΔDCΩnΓ\ΔD for each n. Since ΊfjΛF2CδnΓ\F2\j'Ωa — δi, we have

C(Ωar\F2r\ΔD)<:c(δnr\F2r\ΔD)+c(Ωa-δt

nrλΔD).

It follows from Lemma 13 and the definition of capacity that

c( A ϊ

By letting n-* co5 we have C( A Ωar\F2)<,C(F1r\F2r\ΔD) and thus we com-
<<
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plete the proof.

5.3 Main theorems on H.D. separative compactifications

THEOREM 2. A compactification R* of R is H.D. separative if and only
if C(F1ΓλF2)=0 for any regular closed sets Fu F2 in R such that FfΓ\F% = 0 in

PROOF. Let Fu F2 be regular closed sets in R such that F^Γ\F% = 0 in

2?*. Suppose i?* is H.D. separative. Let {Vn}n=ι be a sequence which satis-

fies a), b) and c) in Condition D. Since FιΓΛF2CF2 — Vn, we see that

as n—> oo.
Conversely, suppose C(FiΠF2)=0. We set A=F1ΓλF2. If A = 0, then

we can take F2 for Vn (n = l, 2, ...) and see that Λ* is H.D. separative. Hence
we may assume that Aφ0. Let {£„}»=x be a sequence for A which satisfies
a), b) and c) in Lemma 11. Then Vn = F2 — δn is a relatively open subset of F2

and increases with n. We may assume that each Vn is a regular closed set
in R. It is easy to see that

FιΓ\Vn\jdVn = 0 for each n.

Since F2— VnCSn for each n, we see that

as n-+oo. Therefore JS* is H.D. separative.

THEOREM 3. // a compactification Λ* of R is a quotient space of R% then
it is H.D. separative. The converse is not true.

PROOF. Theorem 2 shows that if iί* is a quotient space of R% then it is
H.D. separative. Now we shall prove that the converse is not true. Let R
be a unit disk {z; \z\ <1} in the complex plane. We take R% which is de-
fined in Example 1 in 1.3. Then R% is not a quotient space of R$. We shall
prove that R% is H.D. separative. We take {z a R; | * |<; i/2} for Ko. We
may identify the Kuramochi compactification of R with the closed disk
iz '•> I z I 5S1} (see p. 167 in pΓ|). We denote by C the Kuramochi capacity on
{z I z I = 1} with respect to Ko. Let Fu F2 be regular closed sets in R such
that FfίΛF$ = 0 in R%. Then we can show that
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Hence

by Lemma 14. Therefore R% is H.D. separative by Theorem 2.

COROLLARY (Z. Kuramochi [4], [ΊJ). The Kuramochi compactification of
R is H.D. separative.

THEOREM 4. // a compactification R* of R is H.D. separative, then it is
resolutive. The converse is not true.

PROOF. Let Fu F2 be regular closed sets in R such that FfίλFf = 0 in
R*. Then

ωκ^FYr\F2

v)^ώ(F1ίλF2) = 0

by Lemma 14 and Theorem 2. It follows from the Corollary to Lemma 6 that
o)(Ff Γ\Ff)=0. Hence R* is resolutive by Corollary 1 to Proposition 4. Now
we shall prove that the converse is not true. Let R be a Riemann surface
which belongs to OHD — OHB. We take R% which is defined in Example 2 in
1.3. Then R% is resolutive. Let Fλ= {z e R #(*);> 2/3} and F2 = {z e R g(z)
<:i/3}. Then F?r\F$ = 0 in R%. We may assume that both Fλ and F2 are
regular closed sets in R. Since Ff(k = l, 2) is a neighborhood of ak (k = l, 2)
in R$y, it follows from Satz 8.6 in [2Γ\ that b e F1ίλF2. Hence we have

by the Corollary to Lemma 14. Therefore RQ is not H.D. separative by Theo-
rem 2.

§6. Remarks on Fatou's and Beurling's theorems

Let φ be an analytic mapping of an open Riemann surface R into another

open Riemann surface R'. Suppose Rr is hyperbolic. Let Δ\ (resp. Ji) be the
set of all minimal points of the Martin (resp. Kuramochi) boundary of R.

For each b e Δλ (resp. b e Δλ\ we denote by ®b (resp. ©^) the system of fine
neighborhoods of b (resp. b).6) Let i?'* be a metrizable compactification of Rr

and consider the following sets:

3-(φ) = {be Δτ; f\ Φ(βf is one point}
Ge© 6

and

{btΔύ Γ\ ΊZβf is one point},

where φiβf means the closure of φ(G) in R'*. It is known (cf. [2], [4], [6],

6) See p. 145 and p. 221 in [2] also see § 2 in [7].
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[7]) that both 9(φ) and 9 (φ) are Borel sets.

6.1 Fatou's theorem

We shall denote by % the harmonic measure on R^ — R.

THEOREM F l (Z. Kuramochi [4], [6], [7]). If Rf* is H.B. separative, then

THEOREM F2 (C. Constantinescu and A. Cornea; Satz 14.4 in [2]). If jR'*
is resolutive, then

The following theorem is an immediate consequence of Theorem 1:

THEOREM 5. Theorems F l and F2 are equivalent.

6.2 Beurling's theorem

We shall denote by C the Kuramochi capacity on R%~R with respect to
a fixed closed disk Ko.

THEOREM Bl (Z. Kuramochi [4], [6], [7]). // R'* is H.D. separative and
φ is an almost finitely sheeted mapping^ then

THEOREM B2 (C. Constantinescu and A. Cornea; Satz 18.1 in [2]). If R'*
is a quotient space of R'D* and φ is a Dirichlet mapping^ then

We shall prove

THEOREM 6. Theorems Bl and B2 are independent.

PROOF. First we take R = R'={z; | * | < 1 } , w = φ(z) = z and R'*=R'Q* in
Example 1 in 1.3. By the proof of Theorem 3, we see that the conditions of
Theorem Bl are satisfied by this example. However, the assumptions in
Theorem B2 are not satisfied.

Next we set

R'= {w; e~ι< \w\<e},w = φ(z)=ez and R;* =

7) See [4], [6] and [7] for this definition.

8) This is called eine Dirichletsche Abbildung in [2].



330 Hiroshi^TANAKA

It follows from Folgesatz 10.3 in [2] that φ is a Dirichlet mapping. On the
other hand, we can show that φ is not a finitely sheeted mapping. Hence the
conditions of Theorem Bl are satisfied but the conditions of Theorem B2 are
not. Thus we complete the proof.
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