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§1. Introduction

Throughout this note we assume that p is an odd prime. Let Z, be the
cyclic group of order p with generator y. Let S**' be the unit sphere in
complex (n+1)-space. Define an action of Z, on S*”*! by the formula:

T(ZO) 21y vy zn) :(ZZO) lzla ) zzn)a where 1= eZ”Hpa

for (zo, z1, ---, 2,) € S***1. The orbit space S***'/Z, is the lens space mod p
and is written by L"(p). It is a compact, connected, orientable C~-manifold
of dimension 2n+1 and has the structure of a CW-complex with one cell in
each dimension 0, 1, ..., 2n+1. Let L3(p) be the 2n-skeleton of L"(p).

The purpose of this paper is to prove some results on the stable homotopy
type of the stunted space Li(p)/L%(p) (n>m) and on the non-immersibility of
the lens space L"(p) in the Euclidean space.

After some preparations in §2, we determine the structure of the reduced
Grothendieck ring K(L3(p)/L%(p)) of complex vector bundles in §3. Using the
Adams operation we shall prove the following result in §4.

Treorem A. Let n>m. If Li(p)/L%(p) is stably homotopy equivalent to
Lt (p)/Lu+*(p), then t=0 (mod pt-"-DI(#?=J)

We notice that the following result is known by Theorem 3 of [4]:
Li(p)/L3(p) is stably homotopy equivalent to Lz**(p)/L7"'(p), if t=0
(modp[(”"”)"("‘l)j).

Together with Theorem 3 of [5], Theorem A can be used to give a condi-
tion for the immersibility of L”(p) in the Euclidean space R****"+1,

TueoreEM B. Let n and m be integers with n>m>0. Assume that n+m
+12¢0 (mod pt-7-D/*=3) " If there is an immersion of L"(p) in R* "+
then the Euler class of its normal bundle is zero.

This will be proved in §5. From Theorem B we have the following result.

Tueorem C. Let n and m be integers with n>m>0. Assume that the
SJollowing two conditions are satisfied:
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@ (”; m)éso (mod p)

(ii) nt+m+1lx0 (modp[(n—m—l)/(p_nj).
Then L"(p) 18 mot immersible in R2”+2m+1.

This is a generalization of Theorems 4, 4, 5, 5" of [5]. By [8], L"(p) is
immersible in R***2"/23+2 Theorem C shows that this is best possible for
some n. In fact we have the following two results which follow directly
from the above fact and Theorem C.

CororLrLarY D. Let n=2m and assume that the following conditions are
satisfied :

) (3’”)20 (mod p)

m

(i) m=p;3ma4p—1;3m=bp—1;m16 if p=T.
Then L"(p) is immersible in R*** and not in R¥"*'.

CoroLLARY E. Let n=2m+1 and assume that the following conditions
are satisfied

@ (P"=0  @modp)

(i) m=p—1;3mdp—2;3mcbp—2.
Then L*(p) is immersible in R*"*' and not in R*".

Corollary D (resp. E) is an improvement of Theorems 7 and 7’ (resp. 8
and 8) of [67].

The author wishes to express his hearty thanks to Professor M. Sugawara
for his available suggestions and discussions.

§2. Preliminaries

Let CP” be the complex projective space of complex dimension n. Let
& € K(CP") be (the equivalence class of) the canonical line bundle over CP* and
1€ K(CP") be (the equivalence class of) the complex 1-dimensional trivial
bundle over CP*. Put x=&—1¢ K(CP"). Let n: L"(p)— CP" be the map de-
fined by mq(zo, 21, -+, 2n)=[20, 21, -+, 2a] fOr (20, 21, -+, 24) € S, where
q: S**'— L"(p) is the natural projection. Let 7,: Li(p)— CP" be the restric-
tion of 7 to the 2n-skeleton Li(p). Then 7% :K(CP")— K(L3(p)) is an epimor-
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phism [ 3, (2.7)]. Define
0 =i e R(LY(p).
The following result is proved in [ 3, Theorem 17].
(21) Let n=s(p—1)+r 0=r<p—1). Then
R(L(p) = K(Ly(p) = (Z,511) +(Z,) 7

and o, ..., 0" generate additively the first r factors and ¢"*', ..., 0?~ the last
p—r—1 factors. Moreover, its ring structure is given by

ot = —pi}l <P><r", "+l = 0.

i=1\?

In the above statement, (Z,) denotes the direct sum of z-copies of the
cyclic group Z,, of order m.

Suppose that n>m. Let i: L7(p)— Li(p) be the inclusion and j: Li(p)—
Ly(p)/L7%(p) be the projection.

(2.2) We have the exact sequence:

0> R(Li(p)/L3(p) > R(Li(p)) > R(L3(p) 0.

Proor. Let 4 and ¢’ be the generators of K(CP™) and K(L7%(p)) respec-
tively. As is well-known, k*x=yx', where k* is induced by the inclusion
k: CP"—CP". So we have i*¢ =¢’. Thus i* is an epimorphism. Since
K (L3(p))=0[3, (2.4)], the result follows from the Puppe exact sequence.

q.e.d.

Let #4 denote the number of the elements of a finite set 4.
23) #K(Li(p)/Ly(p)=p""

Proor. By (2.1), #K(Li(p))=p" and #K(L}(p))=p™. Thus we have the
desired result from the exact sequence in (2.2). q.e.d.

§8. The structure of K(L3(p)/L7(p))

If n>m, 0™, ..., 0" belong to the kernel of i* (= the image of j*, by
(2.2)), because 0" '=0 and i*¢=0". We define, for ¢ >m,

o = j*=1g' ¢ K(Li(p)/L%(p))-
We are ready to determine the structure of K(L3(p)/Lu(p)).

TueoreM (8.1) Let p be an odd prime, and assume that n>m. Then
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RO/ LY=L 6 (direct sum),

where each G; is the cyclic group of order p'*t="-D/*-11 generated by ¢™+"
A=i<p).

Proor. First, we show that K(Li(p)/L7(p)) is generated by o™, ...,
¢ ? D Let n=s(p—1)+r and m=s(p—1)+r (0=r, <p—1). Since
i*0=0", the kernel of i* in (2.2) is additively generated by p**lo, ..., p* 10",
po” Y ..., p¥a*"l. On the other hand, the first relation in (2.1) implies that

po= —L<P11>52_ —__PL<P_%>0"_..._P6P~1_O-D

2 r \r—
= pai6®+ - +pay_o0"" +a, 107,

where (a;, p)=1 for i=1,2, ..., p—1. Repeated application of this equality
shows that po is expressed as a linear combination ¢?, ¢?*', ..., ¢**%. By in-
duction, p'c’ can be expressed as a linear combination of ¢'?-D*i gHp-D+irl
<oy @'V P-2 1 Since the minimum of the set of integers {(s'+1)(p—1)+1,
s D (p=D 41, S(p—1)+r'+1, ., S(p—D+p—1} is S(p—D+r'+1=
m+1, the kernel of i* is generated by ¢™*!, ..., 0™*?~!, Therefore, by (2.2),
K(Ly p)/L3(p)) is generated by g™, ..., gm+?=1,

Since ¢* is of order p**[*-D/*-DI3 (2.10)], 0" is also of order pt=)/(»=13
by (2.2). We see easily that

p—1 .
1+{(n—m—i)[(p-1)] _ ,,n—m
iy -

Combining this with (2.3), we have the desired result. q.ed.

Remark. In the similar way to the proof of (3.1) we can determine the
structure of KNO(Lg( p)/L7%(p)) by making use of [3, Theorem 2]. Let r: K(X)

—»I’C\Z)(X) be a group-homomorphism induced by the standard injection
ry: GL(n, C)—>GL(2n, R). Define

& =ro € KO(Li(p)),
70 = j*-15' € KO(Li(p)/Li(p)), ~ for >[m/2],

where j*: IE@(L{,’( p)/ L p))—»I?Z)(Lg( p)) is induced by the projection. Then
we have the following result.

(8.2) Let p be an odd prime, q=(p—1)/2, and assume that n>m. Then
~ q .
KO(Ly( p)/L3(p)) = g}lG,- (direct sum),

where each G; is the cyclic group of order p**t-2mIZ=Z)I(-17 geperated by
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0—.([ml2]+i) (1 g i é Q)-

§4. Proof of Theorem A

Let p be an odd prime, and m be a positive integer. Let v(m) denote the
maximum power of p which divides m, that is, m=up’™ for some integer u
such that (u, p)=1.

(4.1) Let ¢t be a positive integer. Then
v((p£1Y—(+1))=v()+1.

Proor. Let f be a positive integer. If x and y are integers such that
x— y=p’(mod p’**), then obviously

(1) xi’__ yi? = yP—IPf+1 (mod Pf+2):
2) #"—y"=ny"'p’  (modp’*'), for any integer n>0.
Since (p+1)—(+1)=p, repeated application of (1) shows that
(p=D" —(=D¥ =p/**  (mod p™*?).
Then, by (2), for any integer u >0 we have
(p 1) — (1" =(—1)*"'up’**  (mod p'*?).
The result follows if we suppose that (u, p)=1. q.e.d.

Proor or Tueorem A. Suppose that there is a homotopy equivalence
g: S* (L p)/Lu(p))— S'(L**(p)/L**(p)) for some integers r and t. g in-
duces an isomorphism of K-groups. We may assume that r is even.

Let ¥*: K(Ly(p))— K(L%(p)) be the Adams operation. Since 1+d(=1+
riu=nté) is a complex line bundle over Lj(p), we have Z*(1+0)=1+0)"
[1, Theorem 5.17. Therefore Z*sc=(1+0)*—1. The relation (1+0)’ =1
[3, (2.8)] shows that #?*! is the identity. By (2.2) we see that Z**': K(Lz(p)
/L p))—~K (L p)/L%(p)) is also the identity.

Consider the following diagram:

+7)/2

R@ip/ ) 20 (s o)/ i)

|
¢b+1i ypﬂl

R/ Iap) T2 R(S™ (T )/ L)

where I denotes the isomorphism defined by the Bott periodicity [ 2, Theorem
17. By [1, Corollary 5.3, we have

¢p+11(2t+r)/2 — (P+ 1)(2t+r)/2I(2t+r)/2¥/17+1 — (P+ 1)(2t+r)/21(2t+r)/2,
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and so the right-hand operation Z?*' in the diagram is given by #?*'=
(p+1)®+ni2  Similarly, the operation

wHt R(S"(Ly (p)/ Ly (p) > R(S"(L5 " (p)/ L (p)))

is given by Z?*'=(p+1)""2
Now, from the commutative diagram

R(S" @y (/I (p)) &> R(SP(Li p)/ L3 p)))
y;pﬂl ¢p+1l
R(S" (L (p)/Le+4(p))) —gi K(S* (L p)/L3(p)))

we have (p+ 1)@+ g¥= o¥(p+1)"2=(p+1)"'?g*. The Bott periodicity and
Theorem (3.1) imply that

K(S**"(Ly(p)/ L p))) = K(Li p)/ L p)) = Zpr+T(n-m=1) (-1 1+ -+

Therefore (p+1)**72=(p+1)""? (mod p**t*-"-D/®-D1) and so (p+1Y—1=0
(mod p'+[»-m-DI-17) " Thys (4.1) shows that t=0 (mod pt®-"-D/*-D1) qe.d.

Remark. The Adams operation ¥%: I%\O(Lg( p)— I?O(L{;( p)) is determined
by the equation:

UG =A+0)+1+0)* -2

where c: KO(Li(p))— K(Li(p)) is the complexification. Using this, we can
prove the following.

(4.2) Let p be an odd prime, g=(p—1)/2, and k be any integer. The
Adams operation T%: I%\’O(Lg( p))—»IFC\O(Lg( p)) is given by
D =74

3 &k (ki1
11) wqu(d)—1§17< 2;-1 )0' fO’l" 1§k§%
where & € I?@(Lg( p)) is the generator.

§5. Proof of Theorem B

The following result is Theorem 3 of [57].

(6.1) Let n and m be integers with n>m and let n=s(p—1)+r (0=<r<p—1).
Assume that a 18 a positive integer such that 2ap’>4n+3 where v=s or s+1
according as [r/2]=0 or [r/2]=1. Put t=ap’—n—m—1. If L"(p) is im-



Non-Immersion Theorems for Lens Spaces. I1 291

mersed in R**2"+1 qwith a normal bundle whose Euler class is mon-zero, then
there is a map

g: SZt(Ln(P)/Lm—l(P)) > Ln+t(P)/Lm+t—l(P>
which induces isomorphisms of all cohomology groups with Z, coefficients.

Proor or THEOREM B. Suppose that L"(p) is immersed in R***?"*! with
a normal bundle whose Euler class is non-zero. Let ¢ be an integer such that
2ap”’>4n+3, and put t=ap’—n—m—1. Then by (5.1) there exists a map

g: SZt(Ln(P)/Lm—l(p)) > Ln+t(p)/Lm+t—1(P)

which induces isomorphisms of all cohomology groups with Z, coefficients.
We may assume that g is a cellular map. Then clearly g defines a map

go: S*(L(p)/Ly(p) > Ly (p)/ Ly (p)

which induces isomorphisms of all cohomology groups with Z, coefficients.
Since the mod p reduction Z— Z, induces an isomorphism H'(Li(p)/L%(p); Z)
=~ H(Lp)/L(p); Zy) (= Z, for 2m<i=<2n, i even; =20 for other i>0), and
since the spaces are simply connected, g, is a homotopy equivalence. There-
fore, by Theorem A, we have ¢=0 (mod pt»-"-D/®-1J)  As we may take
a such that ap’=0 (mod pt»—"-D/¢-DI)  we see that n+m+1=0
(mod pt-m=D/*=DI) " But this is inconsistent with the assumption. Conse-
quently, if there is an immersion of L"(p) in R****"*! then the Euler class of
its normal bundle is zero. g.e.d.

Remark. If there is an embedding of L”(p) in R****"*!  the Euler class
of its normal bundle is zero (cf. [7, Theorem 147).

§6. Proof of Theorem C
We shall apply the previous results to the problem of finding the least

integer % such that L"(p) can be immersed in R**!** (c¢f. [57], [6] and [8]).
First, we recall the Pontrjagin class of L"(p) (cf. [9, Corollary 3.2]).

(6.1) The mod p Pontrjagen class p; and the mod p dual Pontrjagin class
Pi are given by the equations:

p=p(L(p) = L+ 2y
p=pE ()=t = B (M)

where x is a generator of H*(L"(p); Z,) (=2Z,).
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Proor oF Tueorem C. Suppose that n+m-+120 (mod pt®—m-D/(?=13),
According to Theorem B, if there is an immersion L*(p) in R****"*! then the
modp Euler class x of its 2m-dimensional normal bundle is zero. Since

#*=pn (cf. [7, Theorem 317), pn=0. Thus, by (6.1), we have (”j;m) =0

(mod p). This is inconsistent with the assumption (i). Therefore, L*(p) is
not immersible in R2#+27+1, q.e.d.

Remark. As is well-known, if an m-dimensional manifold M is immer-
sible in R™**(k>0), then p;(M)=0 except 2-torsions for any i >[%/27]. Hence
we have the following.

(6.2) Let n and m be integers with n>m >0. If
+
("Fm)=<0 (modp),
then L"(p) is not immersible in R***".
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