Non-Immersion Theorems for Lens Spaces. II

Dedicated to Professor Atuo Komatu on his 60th birthday

Teiichi Kobayashi

(Received September 19, 1968)

§1. Introduction

Throughout this note we assume that p is an odd prime. Let Z_p be the cyclic group of order p with generator γ . Let S^{2n+1} be the unit sphere in complex (n+1)-space. Define an action of Z_p on S^{2n+1} by the formula:

$$\gamma(z_0, z_1, ..., z_n) = (\lambda z_0, \lambda z_1, ..., \lambda z_n), \text{ where } \lambda = e^{2\pi i/p},$$

for $(z_0, z_1, ..., z_n) \in S^{2n+1}$. The orbit space S^{2n+1}/Z_p is the lens space mod p and is written by $L^n(p)$. It is a compact, connected, orientable C^{∞} -manifold of dimension 2n+1 and has the structure of a *CW*-complex with one cell in each dimension 0, 1, ..., 2n+1. Let $L_0^n(p)$ be the 2n-skeleton of $L^n(p)$.

The purpose of this paper is to prove some results on the stable homotopy type of the stunted space $L_0^n(p)/L_0^m(p)$ (n > m) and on the non-immersibility of the lens space $L^n(p)$ in the Euclidean space.

After some preparations in §2, we determine the structure of the reduced Grothendieck ring $\tilde{K}(L_0^n(p)/L_0^m(p))$ of complex vector bundles in §3. Using the Adams operation we shall prove the following result in §4.

THEOREM A. Let n > m. If $L_0^n(p)/L_0^m(p)$ is stably homotopy equivalent to $L_0^{n+t}(p)/L_0^{m+t}(p)$, then $t \equiv 0 \pmod{p^{\lfloor (n-m-1)/(p-1) \rfloor}}$.

We notice that the following result is known by Theorem 3 of [4]: $L_0^n(p)/L_0^m(p)$ is stably homotopy equivalent to $L_0^{n+t}(p)/L_0^{m+t}(p)$, if $t \equiv 0 \pmod{p^{\lfloor (n-m)/(p-1) \rfloor}}$.

Together with Theorem 3 of [5], Theorem A can be used to give a condition for the immersibility of $L^{n}(p)$ in the Euclidean space $R^{2n+2m+1}$.

THEOREM B. Let n and m be integers with n > m > 0. Assume that $n+m + 1 \equiv 0 \pmod{p^{\lfloor (n-m-1)/(p-1) \rfloor}}$. If there is an immersion of $L^n(p)$ in $R^{2n+2m+1}$, then the Euler class of its normal bundle is zero.

This will be proved in §5. From Theorem B we have the following result.

THEOREM C. Let n and m be integers with n > m > 0. Assume that the following two conditions are satisfied:

(i) $\binom{n+m}{m} \cong 0 \pmod{p}$

(ii) $n+m+1 \cong 0 \pmod{p^{\lfloor (n-m-1)/(p-1) \rfloor}}$.

Then $L^{n}(p)$ is not immersible in $\mathbb{R}^{2n+2m+1}$.

This is a generalization of Theorems 4, 4', 5, 5' of [5]. By [8], $L^n(p)$ is immersible in $R^{2n+2\lfloor n/2 \rfloor+2}$. Theorem C shows that this is best possible for some *n*. In fact we have the following two results which follow directly from the above fact and Theorem C.

COROLLARY D. Let n=2m and assume that the following conditions are satisfied:

- (i) $\binom{3m}{m} \equiv 0 \pmod{p}$
- (ii) $m \ge p$; $3m \ne 4p-1$; $3m \ne 5p-1$; $m \ne 16$ if p=7.

Then $L^{n}(p)$ is immersible in \mathbb{R}^{3n+2} and not in \mathbb{R}^{3n+1} .

COROLLARY E. Let n=2m+1 and assume that the following conditions are satisfied:

- (i) $\binom{3m+1}{m} \equiv 0 \pmod{p}$
- (ii) $m \ge p-1; 3m \ne 4p-2; 3m \ne 5p-2.$

Then $L^{n}(p)$ is immersible in \mathbb{R}^{3n+1} and not in \mathbb{R}^{3n} .

Corollary D (resp. E) is an improvement of Theorems 7 and 7' (resp. 8 and 8') of [6].

The author wishes to express his hearty thanks to Professor M. Sugawara for his available suggestions and discussions.

§2. Preliminaries

Let CP^n be the complex projective space of complex dimension n. Let $\xi \in K(CP^n)$ be (the equivalence class of) the canonical line bundle over CP^n and $1 \in K(CP^n)$ be (the equivalence class of) the complex 1-dimensional trivial bundle over CP^n . Put $\mu = \xi - 1 \in \tilde{K}(CP^n)$. Let $\pi : L^n(p) \to CP^n$ be the map defined by $\pi q(z_0, z_1, \dots, z_n) = [z_0, z_1, \dots, z_n]$ for $(z_0, z_1, \dots, z_n) \in S^{2n+1}$, where $q: S^{2n+1} \to L^n(p)$ is the natural projection. Let $\pi_0: L_0^n(p) \to CP^n$ be the restriction of π to the 2n-skeleton $L_0^n(p)$. Then $\pi_0^*: \tilde{K}(CP^n) \to \tilde{K}(L_0^n(p))$ is an epimor-

phism [3, (2.7)]. Define

$$\sigma = \pi_0^* \mu \, \epsilon \, \tilde{K}(L_0^n(p)).$$

The following result is proved in [3, Theorem 1].

(2.1) Let n = s(p-1)+r $(0 \le r < p-1)$. Then

$$\tilde{K}(L^n(p)) \cong \tilde{K}(L_0^n(p)) \cong (Z_{p^{s+1}})^r + (Z_{p^s})^{p-r-1}$$

and $\sigma, ..., \sigma^r$ generate additively the first r factors and $\sigma^{r+1}, ..., \sigma^{p-1}$ the last p-r-1 factors. Moreover, its ring structure is given by

$$\sigma^p = -\sum_{i=1}^{p-1} {p \choose i} \sigma^i, \qquad \sigma^{n+1} = 0.$$

In the above statement, $(Z_m)^t$ denotes the direct sum of *t*-copies of the cyclic group Z_m of order *m*.

Suppose that n > m. Let $i: L_0^m(p) \to L_0^n(p)$ be the inclusion and $j: L_0^n(p) \to L_0^n(p)/L_0^m(p)$ be the projection.

(2.2) We have the exact sequence:

$$0 \to \tilde{K}(L_0^n(p)/L_0^m(p)) \xrightarrow{j^*} \tilde{K}(L_0^n(p)) \xrightarrow{i^*} \tilde{K}(L_0^m(p)) \to 0.$$

PROOF. Let μ' and σ' be the generators of $\tilde{K}(CP^m)$ and $\tilde{K}(L_0^m(p))$ respectively. As is well-known, $k^*\mu = \mu'$, where k^* is induced by the inclusion $k: CP^m \to CP^n$. So we have $i^*\sigma = \sigma'$. Thus i^* is an epimorphism. Since $\tilde{K}^{-1}(L_0^m(p)) = 0$ [3, (2.4)], the result follows from the Puppe exact sequence.

q.e.d.

Let #A denote the number of the elements of a finite set A.

(2.3) $\#\tilde{K}(L_0^n(p)/L_0^m(p)) = p^{n-m}.$

PROOF. By (2.1), $\#\tilde{K}(L_0^n(p))=p^n$ and $\#\tilde{K}(L_0^m(p))=p^m$. Thus we have the desired result from the exact sequence in (2.2). q.e.d.

§3. The structure of $\tilde{K}(L_0^n(p)/L_0^m(p))$

If n > m, σ^{m+1} , ..., σ^n belong to the kernel of i^* (= the image of j^* , by (2.2)), because $\sigma^{m+1}=0$ and $i^*\sigma=\sigma'$. We define, for t>m,

$$\sigma^{(t)} = j^{*-1} \sigma^t \in \tilde{K}(L_0^n(p)/L_0^m(p)).$$

We are ready to determine the structure of $\tilde{K}(L_0^n(p)/L_0^m(p))$.

THEOREM (3.1) Let p be an odd prime, and assume that n > m. Then

Teiichi Ковачазні

$$\tilde{K}(L_0^n(p)/L_0^m(p)) \cong \sum_{i=1}^{p-1} G_i$$
 (direct sum),

where each G_i is the cyclic group of order $p^{1+\lfloor (n-m-i)/(p-1) \rfloor}$ generated by $\sigma^{(m+i)}$ $(1 \leq i < p)$.

PROOF. First, we show that $\tilde{K}(L_0^n(p)/L_0^m(p))$ is generated by $\sigma^{(m+1)}, \ldots, \sigma^{(m+p-1)}$. Let n = s(p-1)+r and m = s'(p-1)+r' $(0 \leq r, r' < p-1)$. Since $i^*\sigma = \sigma'$, the kernel of i^* in (2.2) is additively generated by $p^{s'+1}\sigma, \ldots, p^{s'+1}\sigma^{r'}$, $p^{s'}\sigma^{r'+1}, \ldots, p^{s'}\sigma^{p-1}$. On the other hand, the first relation in (2.1) implies that

$$p\sigma = -\frac{p}{2} {p-1 \choose 1} \sigma^2 - \dots - \frac{p}{r} {p-1 \choose r-1} \sigma^r - \dots - p\sigma^{p-1} - \sigma^p$$
$$= pa_1\sigma^2 + \dots + pa_{p-2}\sigma^{p-1} + a_{p-1}\sigma^p,$$

where $(a_i, p)=1$ for i=1, 2, ..., p-1. Repeated application of this equality shows that $p\sigma$ is expressed as a linear combination σ^p , σ^{p+1} , ..., σ^{2p-2} . By induction, $p^t\sigma^i$ can be expressed as a linear combination of $\sigma^{t(p-1)+i}$, $\sigma^{t(p-1)+i+1}$, ..., $\sigma^{t(p-1)+i+p-2}$. Since the minimum of the set of integers $\{(s'+1)(p-1)+1, ..., (s'+1)(p-1)+r', s'(p-1)+r'+1, ..., s'(p-1)+p-1\}$ is s'(p-1)+r'+1=m+1, the kernel of i^* is generated by σ^{m+1} , ..., σ^{m+p-1} . Therefore, by (2.2), $\tilde{K}(L_0^n(p)/L_0^n(p))$ is generated by $\sigma^{(m+1)}, ..., \sigma^{(m+p-1)}$.

Since σ^i is of order $p^{1+\lfloor (n-i)/(p-1) \rfloor} [3, (2.10)], \sigma^{(i)}$ is also of order $p^{1+\lfloor (n-i)/(p-1) \rfloor}$ by (2.2). We see easily that

$$\prod_{i=1}^{p-1} p^{1+\lfloor (n-m-i)/(p-1) \rfloor} = p^{n-m}.$$

Combining this with (2.3), we have the desired result.

q.e.d.

REMARK. In the similar way to the proof of (3.1) we can determine the structure of $\widetilde{KO}(L_0^n(p)/L_0^m(p))$ by making use of [3, Theorem 2]. Let $r: \widetilde{K}(X) \to \widetilde{KO}(X)$ be a group-homomorphism induced by the standard injection $r_n: GL(n, C) \to GL(2n, R)$. Define

$$ar{\sigma} = r\sigma \ \epsilon \ KO(L_0^n(p)),$$

 $ar{\sigma}^{(t)} = j^{*-1} ar{\sigma}^t \ \epsilon \ KO(L_0^n(p)/L_0^m(p)), \quad \text{for} \quad t > \lfloor m/2 \rfloor,$

where $j^*: \widetilde{KO}(L_0^n(p)/L_0^m(p)) \to \widetilde{KO}(L_0^n(p))$ is induced by the projection. Then we have the following result.

(3.2) Let p be an odd prime,
$$q = (p-1)/2$$
, and assume that $n > m$. Then

$$\widetilde{KO}(L_0^n(p)/L_0^m(p)) \cong \sum_{i=1}^q G_i \quad (direct \; sum),$$

where each G_i is the cyclic group of order $p^{1+\lfloor (n-2\lfloor m/2\rfloor-2i)/(p-1)\rfloor}$ generated by

 $\bar{\sigma}^{(\lfloor m/2 \rfloor + i)} (1 \leq i \leq q).$

§4. Proof of Theorem A

Let p be an odd prime, and m be a positive integer. Let v(m) denote the maximum power of p which divides m, that is, $m = up^{v(m)}$ for some integer u such that (u, p) = 1.

(4.1) Let t be a positive integer. Then

$$v((p\pm 1)^t - (\pm 1)^t) = v(t) + 1.$$

PROOF. Let f be a positive integer. If x and y are integers such that $x - y \equiv p^{f} \pmod{p^{f+1}}$, then obviously

(1)
$$x^{p} - y^{p} \equiv y^{p-1}p^{f+1} \pmod{p^{f+2}},$$

(2)
$$x^n - y^n \equiv n y^{n-1} p^f \pmod{p^{f+1}}$$
, for any integer $n > 0$.

Since $(p \pm 1) - (\pm 1) = p$, repeated application of (1) shows that

$$(p\pm 1)^{p^f} - (\pm 1)^{p^f} \equiv p^{f+1} \pmod{p^{f+2}}.$$

Then, by (2), for any integer u > 0 we have

$$(p\pm 1)^{up^f} - (\pm 1)^{up^f} \equiv (-1)^{u-1} up^{f+1} \pmod{p^{f+2}}.$$

The result follows if we suppose that (u, p) = 1.

PROOF OF THEOREM A. Suppose that there is a homotopy equivalence $g: S^{2t+r}(L_0^n(p)/L_0^m(p)) \to S^r(L_0^{n+t}(p)/L_0^{m+t}(p))$ for some integers r and t. g induces an isomorphism of \tilde{K} -groups. We may assume that r is even.

Let $\Psi^k: \tilde{K}(L_0^n(p)) \to \tilde{K}(L_0^n(p))$ be the Adams operation. Since $1+\sigma(=1+\pi_0^*\mu=\pi_0^*\xi)$ is a complex line bundle over $L_0^n(p)$, we have $\Psi^k(1+\sigma)=(1+\sigma)^k$ [1, Theorem 5.1]. Therefore $\Psi^k\sigma=(1+\sigma)^k-1$. The relation $(1+\sigma)^p=1$ [3, (2.8)] shows that Ψ^{p+1} is the identity. By (2.2) we see that $\Psi^{p+1}: \tilde{K}(L_0^n(p)/L_0^n(p)) \to \tilde{K}(L_0^n(p)/L_0^n(p))$ is also the identity.

Consider the following diagram:

$$\begin{split} &\tilde{K}(L_0^n(p)/L_0^m(p)) \xrightarrow{I^{(2t+r)/2}} \tilde{K}(S^{2t+r}(L_0^n(p)/L_0^m(p))) \\ & \Psi^{p+1} \downarrow \qquad \Psi^{p+1} \downarrow \\ & \tilde{K}(L_0^n(p)/L_0^m(p)) \xrightarrow{I^{(2t+r)/2}} \tilde{K}(S^{2t+r}(L_0^n(p)/L_0^m(p))) \end{split}$$

where I denotes the isomorphism defined by the Bott periodicity [2, Theorem 1]. By [1, Corollary 5.3], we have

$$\Psi^{p+1}I^{(2t+r)/2} = (p+1)^{(2t+r)/2}I^{(2t+r)/2}\Psi^{p+1} = (p+1)^{(2t+r)/2}I^{(2t+r)/2},$$

q.e.d.

and so the right-hand operation Ψ^{p+1} in the diagram is given by $\Psi^{p+1} = (p+1)^{(2t+r)/2}$. Similarly, the operation

$$\Psi^{p+1}: \tilde{K}\big(S^r\big(L_0^{n+t}(p)/L_0^{m+t}(p)\big)\big) \to \tilde{K}\big(S^r\big(L_0^{n+t}(p)/L_0^{m+t}(p)\big)\big)$$

is given by $\Psi^{p+1} = (p+1)^{r/2}$.

Now, from the commutative diagram

we have $(p+1)^{(2t+r)/2}g^* = g^*(p+1)^{r/2} = (p+1)^{r/2}g^*$. The Bott periodicity and Theorem (3.1) imply that

$$\tilde{K}(S^{2t+r}(L_0^n(p)/L_0^m(p))) \cong \tilde{K}(L_0^n(p)/L_0^m(p)) \cong Z_{p^{1+\lfloor (n-m-1)/(p-1)\rfloor}} + \cdots$$

Therefore $(p+1)^{(2t+r)/2} \equiv (p+1)^{r/2} \pmod{p^{1+\lfloor (n-m-1)/(p-1) \rfloor}}$, and so $(p+1)^t - 1 \equiv 0 \pmod{p^{1+\lfloor (n-m-1)/(p-1) \rfloor}}$. Thus (4.1) shows that $t \equiv 0 \pmod{p^{\lfloor (n-m-1)/(p-1) \rfloor}}$. q.e.d.

REMARK. The Adams operation $\Psi_R^k : \widetilde{KO}(L_0^n(p)) \to \widetilde{KO}(L_0^n(p))$ is determined by the equation:

$$c \Psi^k_R(\bar{\sigma}) = (1 + \sigma)^k + (1 + \sigma)^{-k} - 2$$

where $c: \widetilde{KO}(L_0^n(p)) \to \widetilde{K}(L_0^n(p))$ is the complexification. Using this, we can prove the following.

(4.2) Let p be an odd prime, q = (p-1)/2, and k be any integer. The Adams operation $\Psi_R^h: \widetilde{KO}(L_0^n(p)) \to \widetilde{KO}(L_0^n(p))$ is given by

i)
$$\Psi_R^{p\pm k} = \Psi_R^k$$

ii)
$$\Psi_R^k(\bar{\sigma}) = \sum_{i=1}^k \frac{k}{i} \binom{k+i-1}{2i-1} \bar{\sigma}^i$$
 for $1 \leq k \leq q$,

where $\bar{\sigma} \in \widetilde{KO}(L_0^n(p))$ is the generator.

§5. Proof of Theorem B

The following result is Theorem 3 of [5].

(5.1) Let n and m be integers with n > m and let n = s(p-1)+r ($0 \le r < p-1$). Assume that a is a positive integer such that $2ap^v > 4n+3$ where v = s or s+1 according as $\lfloor r/2 \rfloor = 0$ or $\lfloor r/2 \rfloor \ge 1$. Put $t = ap^v - n - m - 1$. If $L^n(p)$ is im-

mersed in $\mathbb{R}^{2n+2m+1}$ with a normal bundle whose Euler class is non-zero, then there is a map

$$g: S^{2t}(L^{n}(p)/L^{m-1}(p)) \to L^{n+t}(p)/L^{m+t-1}(p)$$

which induces isomorphisms of all cohomology groups with Z_p coefficients.

PROOF OF THEOREM B. Suppose that $L^{n}(p)$ is immersed in $\mathbb{R}^{2n+2m+1}$ with a normal bundle whose Euler class is non-zero. Let *a* be an integer such that $2ap^{v} > 4n+3$, and put $t=ap^{v}-n-m-1$. Then by (5.1) there exists a map

$$g: S^{2t}(L^n(p)/L^{m-1}(p)) \to L^{n+t}(p)/L^{m+t-1}(p)$$

which induces isomorphisms of all cohomology groups with Z_p coefficients. We may assume that g is a cellular map. Then clearly g defines a map

$$g_0: S^{2t}(L_0^n(p)/L_0^m(p)) \to L_0^{n+t}(p)/L_0^{m+t}(p)$$

which induces isomorphisms of all cohomology groups with Z_p coefficients. Since the mod p reduction $Z \to Z_p$ induces an isomorphism $H^i(L_0^n(p)/L_0^m(p); Z) \cong H^i(L_0^n(p)/L_0^m(p); Z_p) (\cong Z_p$ for $2m < i \leq 2n$, i even; $\cong 0$ for other i > 0), and since the spaces are simply connected, g_0 is a homotopy equivalence. Therefore, by Theorem A, we have $t \equiv 0 \pmod{p^{\lfloor (n-m-1)/(p-1) \rfloor}}$. As we may take a such that $ap^v \equiv 0 \pmod{p^{\lfloor (n-m-1)/(p-1) \rfloor}}$, we see that $n + m + 1 \equiv 0 \pmod{p^{\lfloor (n-m-1)/(p-1) \rfloor}}$. But this is inconsistent with the assumption. Consequently, if there is an immersion of $L^n(p)$ in $R^{2n+2m+1}$, then the Euler class of its normal bundle is zero.

REMARK. If there is an embedding of $L^{n}(p)$ in $\mathbb{R}^{2n+2m+1}$, the Euler class of its normal bundle is zero (cf. [7, Theorem 14]).

§6. Proof of Theorem C

We shall apply the previous results to the problem of finding the least integer k such that $L^{n}(p)$ can be immersed in R^{2n+1+k} (cf. [5], [6] and [8]). First, we recall the Pontrjagin class of $L^{n}(p)$ (cf. [9, Corollary 3.2]).

(6.1) The mod p Pontrjagen class p_i and the mod p dual Pontrjagin class \bar{p}_i are given by the equations:

$$p = p(L^{n}(p)) = (1 + x^{2})^{n+1}$$
$$\bar{p} = \bar{p}(L^{n}(p)) = (1 + x^{2})^{-n-1} = \sum_{i=1}^{\lfloor n/2 \rfloor} (-1)^{i} {\binom{n+i}{i}} x^{2i}$$

where x is a generator of $H^2(L^n(p); Z_p) \cong Z_p)$.

PROOF OF THEOREM C. Suppose that $n+m+1 \equiv 0 \pmod{p^{\lfloor (n-m-1)/(p-1) \rfloor}}$. According to Theorem B, if there is an immersion $L^n(p)$ in $R^{2n+2m+1}$, then the mod p Euler class x of its 2m-dimensional normal bundle is zero. Since

 $\chi^2 = \bar{p}_m$ (cf. [7, Theorem 31]), $\bar{p}_m = 0$. Thus, by (6.1), we have $\binom{n+m}{m} \equiv 0$ (mod p). This is inconsistent with the assumption (i). Therefore, $L^n(p)$ is not immersible in $R^{2n+2m+1}$.

REMARK. As is well-known, if an *m*-dimensional manifold M is immersible in $\mathbb{R}^{m+k}(k>0)$, then $\bar{p}_i(M)=0$ except 2-torsions for any $i>\lfloor k/2 \rfloor$. Hence we have the following.

(6.2) Let n and m be integers with n > m > 0. If

$$\binom{n+m}{m} \cong 0 \qquad (\text{mod } p),$$

then $L^{n}(p)$ is not immersible in \mathbb{R}^{2n+2m} .

References

- [1] J. F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
- [2] R. Bott, Quelques remarques sur les théorèmes de périodicité, Bull. Soc. Math. France, 87 (1959), 293-310.
- [3] T. Kambe, The structure of K_A -rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
- [4] T. Kambe, H. Matsunaga and H. Toda, A note on stunted lens space, J. Math. Kyoto Univ., 5 (1966), 143-149.
- [5] T. Kobayashi, Non-immersion theorems for lens spaces, J. Math. Kyoto Univ., 6 (1966), 91-108.
- [6] T. Kobayashi, On the immersion problems for certain manifolds, J. Sci. Hiroshima Univ. Ser. A-I, 31 (1967), 161-171.
- [7] J. Milnor, Lectures on characteristic classes, (mimeographed notes), Princeton Univ., 1957.
- [8] D. Sjerve, Geometric dimension of vector bundles over lens spaces, Trans. Amer. Math. Soc. (to appear).
- [9] H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math., 86 (1964), 685-697.

Department of Mathematids, Faculty of Science Hiroshima University