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The Lanczos algorithm transforming a given matrix into a tri-diagonal
form is well known in numerical analysis and is discussed in many literatures.
The possibility of this algorithm is shown in Rutishauser's excellent paper
[ΊΓ]. However it seems to the author that no further theoretical considera-
tion has been made since then.

The process starts from a pair of trial vectors x\ and yλ. A pair of the
ί-th iterated vectors x{ and y{ can be constructed successively if γj*χjφθ
( l ^ y ^ i —1). Hence, if yp+ι*xp+ι = 0 for somep<Ln — 1, we must modify the
algorithm so as to continue. This is possible in case where xp+ί = 0 or 7̂ +1 = 0,
while any method of modification is not known in case where Λ ^ + I ^ O and
yP+ιφΰ. We shall call the former case "lucky" and the latter "unlucky".
The only thing for us to do in "unlucky" case is to choose new starting vec-
tors xu j i and begin again in the hope that this case will not happen later.
Rutishauser's result (Q8[] Satz 1) guarantees this possibility.

In practical computation, however, "unlucky" case may occur after re-
peated modifications in "lucky" cases. Once we encountered with "unlucky"
case, we have to abandon all the efforts made before and start again with
new trial vectors (if we stick to the old knowledge). Then a question arises
naturally: Is it actually necessary to go back to the first step? In this paper
we shall treat this problem. Roughly speaking, the answer is as follows:
It is sufficient to go back to the latest modification. As a special case of this
result, we can show that one of the initial vectors can be chosen arbitrarily
to avoid "unlucky" case. Further it will be shown that there exists a vector
x such that the algorithm starting from xι = jι = x can be continued so that
"unlucky" case may not occur. These results will be stated in Theorems 3-6
of §2 and a new procedure will be proposed at p. 279. Finally, in connec-
tion with the Lanczos algorithm, we shall give, in Appendix, some properties
concerning the location of the eigenvalues of tri-diagonal matrices.

§1. Preliminaries

1.1. Let A be a given (complex or real) matrix of order n. Starting
from a pair of initial vectors xλ and γu construct a sequence of iterated vec-
tors xi9 y{ as follows:

* This work was partially supported by a research grant of the Sakkokaί Foundation.
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(1)
y2,

j=ι
A*y{ =

where * denotes a conjugate transpose and sealers r#, σ, , are determined for
each ίC>l) so as to satisfy the conditions yy*#i+1 = #y*y/+1 = 0 G ^ y ^ O
Clearly this is possible if y^xjΦO (l<Ξy<SO Then, as is easily seen, we
have

for l ^ y ^ i -

and

Hence the iteration (1) may be written as

x2 = Axi — aixi, y2 =

(2) χi+1 = Axi — aiXi — βi-i

Pi-i —

This is so-called Lanczos' algorithm and first considered in his paper [7].

1.2. Rutishauser \Ίf] showed that, if the degree of the minimal polyno-
mial of A is 77i, there exists a pair of initial vectors xx and yλ such that

l<U'<Sτ7i). In this case we have χm+ι = yw+i = 0 and

βl

1 ••.
βm-l

a™

However, no practical criterion for the choice of such vectors is known.
Therefore, if it happens that the selection is unsuitable, breakdown of the
algorithm will occur; namely we have yp+ι*χp+i = 0 for some positive integer
p<,n — 1, and the iteration can not be continued any more. This situation
can be divided into four cases:

Case 1. xp+ι = yp+ι = 0,

Case 2. xp+1 = 0, yp+1 φ 0,
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Case 3. xp+ι φ 0, yp+ϊ = 0,

Case 4. xp+1φ0, yp+iφ0.

For the first three cases, we can continue the process by the following
modification:

Case 1. In this case, take a non-zero vector wp+ι which is orthogonal to
the vectors xu x2, •••, χp. Then there exists a vector zp+ί orthogonal to the
vectors yu y2, •••, yp such that wp+i*zp+ιφ0. In fact the whole space (n-
dimensional Euclidean or unitary space) is a direct sum of the space spanned
by χι, x2, •••, χp and the orthogonal complement of the space spanned by yu

j2, •••, yp. Thus, if we replace xp+λ by zp+ί and yp+ί by wp+u then we can
continue the process by the formulas10

XP + 2 = ΛZp + ι — (Xp+ιZp + ι

A* -/ t wp+ι*Azp+1

yp+2 = A*wp+1 — ap+iwp+u ap+1 = Zp
+
ι

Xp
 + 3
 = ^ ^ + 2 ^

β'p+l= ^
 P + 2

>
Wp

+
i Zp

+
ι

y p + i =

Case 2. In this case, by similar argument, we can prove the existence
of a vector zp+ί such that yj*zp+ι = 0 ( l< j< je) and 7̂ +1*̂ +1=^=0. There-
fore the modified formulas in this case are

x
p+2
 =

_ yp+1*Azp+1 _ yP+ι*zp+1

* p *

y p + 2 =

xp+3 — Axp+2 — ap+2xp+2

y p + 3 =

1) For detailed discussion, see [3].
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Case 3. This case is similar to Case 2.
For Case 4, however, any method of such modification is not known.

The only thing to do in this case is to choose new starting vectors χ± and ji
and begin again in the hope that this case will not happen later.

1.3. We note that, even if we modify the procedure for Cases 1-3 so as
to continue, Case 4 may occur at the later step. For example, let

A =

and choose a pair of initial vectors A;I = '(2/3, 1/3, —2/3, 0) and yι —
'(1/3, 1/6, —1/3, 1). Then, by simple computation we have x2 = 0 and
y2 = *(2/3, 1/3, 5/6, 1); namely Case 2 occurs. Hence, according to Causey
and Gregory's proposal Q3], take a new vector

5/9

4/9

2/9

1/3

-2/9

2/9

8/9

2/3

4/9

5/9

2/9

2/3

0

0

0

1

Z2 = J2" -1/3,13/6,1)

which satisfies y2*z2=/=0 and y!*z2 — 0. Then Case 4 will occur and the algo-
rithm fails there. In fact we have

*3 = '(-13/9, -2/9,4/9,2/3),

and

, = '(-2/9,8/9,2/9,-1/3),

Ύτ*Xa = 0.

Therefore, if we obey the old principle, we shall have to go back to the first
step and start again from new vectors %ι and yλ. However, this is not only
inefficient, but also unnecessary. For, as is easily seen, if we take another
vector zf

2 = \ —1/3, —2/3, 7/3, 1) and start again from there with a pair of
vectors zf

2 and j 2 , the algorithm2) can be well continued to completion.^ The
above fact is true in general. The purpose of this paper is to show this and
give an improved procedure for the Lanczos algorithm.

1.4. Notations and definitions. Throughout this paper, we consider

2) In the following, a term "the (Lanczos) algorithm" stands for the procedure according to the

modification mentioned above when Gases 1-3 occurred.

3) Namely, in the sense of footnote 2), the algorithm can be continued so that Case 4 may not oc-

cur. In the following we shall often use this expression.
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complex (or real) matrices and certain notational convensions will be observed.

For a matr ix A, A* (*A) s tands for a conjugate transposed (transposed) matr ix

of A. A{)\)^;;.)r^ denotes an r-square submatrix obtained from the i u ί2, • , ίr t h

rows and j u /2, • , j r th columns. A square matr ix A is called non-derogatory

if its minimal polynomial is the same as its characteristic polynomial, and

otherwise called derogatory. A square matr ix A = (a,if) is of an upper Hessen-

berg type if α ί7 = 0 for ί—j^>2. For an ^-square matr ix A and an rc-dimen-

sional vector x, there exists a number p(<^ n) such t h a t a set of vectors

x, Ax, • •-, Ap~1x is linearly independent and a set of vectors x, Ax, ..., Ap'1x,

Apx is linearly dependent. The number p is called the grade of x with respect

to A.4) Clearly x is a vector of grade p with respect to A if and only if

φ(A)x = 0 for a unique monic polynomial φ(λ) of degree p and φ(A)x Φ 0 for

any polynomial φ(λ) of degree less than p. Let xu x2, •••, χm be a set of m

vectors. Then we denote by [>i, x2, •••, Xm} and [_χu χ2, ..., Λ J ^ the vector

subspace spanned by χu x2, ••-, Λ;m and the orthogonal complement of the sub-

space [>i, x2, •••, Xm2 respectively. Finally, for vectors aι = \alu au, ••-, alp\

a2 = \a2U α2 2, ••-, a2q\ ••., α s = V s i ? «S2, •••, α s r ) , the notation α 1 φ α 2 0 φ α 5 or

Σ 0 α , means a vector '(an, a i 2, •••, alp, a2U a2 2, ••-, a 2 ί , •••, asi9 as2, •••, o β r ) .
ί = l

Similarly, for submatrices ^ i , ^42, •-, ^4S, we shall use the notation
s

• ..® As or Σ Θ Ai in place of a matrix
ί = l

§2. The possibility of Lanczos' algorithm

2.1. We begin with

THEOREM 1. Let A be a given matrix of order n. Then, by the Lanczos

algorithm starting from appropriate vectors xλ and yu we can always get a

Jordan normal form.

PROOF. Take a non-singular matrix T such that T~λA T is a Jordan nor-

mal form; i.e., T~ιAT= Σ Θ// where J{ are of order m and

4) By definition, it is clear that the grade of any vector with respect to A does not exceed the
degree of its minimal polynomial. Hence we note here that, if A is derogatory, the breakdown of the
algorithm (i.e., Cases 1-4) will certainly occur.
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Let ti and Ui be the i-th columns of T and Γ*"1 respectively. Then, by the
Lanczos algorithm starting from #i = ίi and j i = ^i, we get χ2 — t2 and y2 = 0.
Thus, according to the modification mentioned in §1, we can choose u2 as the
vector w2. Repeating the similar modification, the algorithm can be con-
tinued to completion as follows:

1 i 1 i 1 i =^l=^s -U?

i = 0, W{ = &; (2 ^ i ' ^ ft),

and

Hence the result is

This proves Theorem 1.
The above proof shows that theoretically a Jordan normal form can be

obtained by executing the Lanczos algorithm, using only the modification for
Case 1. If A is a real matrix and all the eigenvalues of A are real, then T,
or ti and u^ may be taken to be real. Therefore, in such a case we can ob-
tain a Jordan normal form by using the algorithm in the realm of real num-
bers. In practical computation, however, it is difficult to find the initial
vectors tu uu etc. Hence we are to seek for other properties which assure
the possibility of the algorithm.

2.2. The following lemma plays a fundamental role throughout this
paper.

LEMMA 1. Let A and A be matrices such that A=T~λAT with a non-
singular matrix T. If we denote by £/, yι (xi9 yi) the iterated vectors obtained
by Lanczos' algorithm for A (A) with initial vectors xu j i (χι= Txu yi = T*~1yi),
then we have xι= Tx{, yι= 77*"1 y, . Hence #^+1 = 0 (yP+i = 0) for some p if and
only if 5 i +i = 0 (yp+i = 0). Further, if we take a modified vector zp+1

5) (ίup+1)
for A, then zp+ι= Tzp+Ϊ (wp+ί= T*~ιίΰp+ι) is a modified vector for A.

PROOF. The following relations hold:

v * T~l A Tr - v *r

and

5) Namely, zp+1 6 [^i,-,5?J± and y P + i % + i ^ 0 (if yp+ί φθ), etc.
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* y > γ — y * γ, i

^ y% * 7 , - 1 ,

which may be written as

and

y. M Π Q ( Γ y , ) Txi-i-U

1 y,)

This implies that Tx{ and Γ* 1 y{ is the ί-th iterated vectors for A starting
from initial vectors Txi and T*~ιyλ. Similarly the remaining part can be
verified easily. Q.E.D.

2.3. The following Lemmas 2, 3 and Theorem 2 are due to Rutishauser
PΓ|. But we give here purely algebraic proofs of Lemma 2 and Theorem 2 for
the sake of completeness.

LEMMA 2. Let Abe a matrix of order n and m be the degree of the mini-
mal polynomial for A. If we put

y*χ y*Ax

γ*Ax
fi(x, y, A) =

with n-dimensional vectors x and j , then there exist two vectors xι and yx such
thatfi(xu yu

PROOF. Let Γbe a non-singular matrix such that T~λA T=AιQ)A2, where
Aγ is of order m, A2 of order n — m, and

1 . λ l .

1 λ2

1 'λ2

\

j for iφf).
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(Note that Ax is non-derogatory, and that A2 does not appear if and only if
A is non-derogatory.) For any fixed ί with 1 <Ξ ί <Ξ m, consider an f-square
matrix A = Aι({lzi). Then A is non-derogatory. Therefore we can find an
^-dimensional vectors x(y) such that a set of vectors x, Ax, ..., A1'1^ (y, A*y,
..., Ά*ι~ιy) is linearly independent. For such vectors we have

fi(x, y, A) = y*Ά
• \x, Ax, ...,

Let x = T X*x9 0, ..., 0) and y= Γ* l'Xy, 0, ..., 0), then we have y*Akx =
y*Akx for any k. In fact, because of a special form of Au we have

y*Akx = y*(^})(li::{)5 = y*{^i(ϊi::ί)}*2 = y*-ί*2

Hence we obtain

which implies that /,-(#, y, A)^έO considering as a function of the components
of vectors x and y. Obviously a union of the roots of the non-trivial equa-
tions fi(χ, j , A) = 0 does not spann the whole space since they are equal to a

m

set of all the roots of a non-trivial single equation JJfi(χ, y, A) = 0. Thus we
i = 1

can find two vectors xu yx such that/,•(#!, ji, ^4)̂ =0 (X<>ί<L™)* Q.E.D.

LEMMA 3. Let Abe a matrix of order n, and m be the degree of its mini-
mal polynomial. Then there exist two trial vectors xu yι such that x^ j ,
(l^i^m) are well defined, i.e., y^XiφO (l^i^m) and y^Xj = 0 (iφj). In
this case we have always xm+ι = jm+i = 0.

PROOF. This follows from Lemma 2 by noting that

(see [6] or [8]). Q.E.D.

THEOREM 2 (Rutishauser). Let A be a matrix given as in Lemma 3. Then
there exists a pair of initial vectors xι and ji such that the algorithm can be
continued to final step using only the modifications in Case 1 and

A ( χ l 9 ••', * , ) = ( * i , •••, * „ ) • (

for some s, where
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(3)

CCi2 βi2

•'/'•.'βini-ι

1 aini

for any i9 j)

and m = nι^>n2^>-^ins.
6)

PROOF. Considering a Jordan normal form, there exists a non-singular

matrix T such that T~ιA T= Σ Θ^/> where A{ are non-derogatory of order rn
* = 1

(m = nι^>n2^> ^>ns, Σrii = n) and the characteristic polynomial for 4̂Z co-
ί = 1

incides with the minimal polynomial of Σ φ^4; ( l ^ ^ )̂. Then, by Lemma
j

3, we can find two 7irdimensional vectors xiu yn such that yα*χαφθ and the
-th iterated vectors xih y{j for A{ starting from xiu yn satisfy

and

for each ί (1<JJ<]S). Therefore, by Lemma 1, if we apply the algorithm to
A with initial vectors

the iterated vectors #; , j ; must have the form

_ τjnr.. o 0") v — T*~ι t(t'VΛ' 0 0")
•̂ 7 \ l75 J * ' '5 /? /7 V /I75 5 ' " *5 /

and

Next we set

Zni+1 = Γ.'

and begin again with them, since

•••, ynj1-, Wn1+l

6) More precise results will be given later as Theorems 5 and 6.
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and

Then the iterated vectors xh yj satisfy

and
xn1+n2 + l = yni+n2 + l = 0.

Continuing this process, the algorithm is complete after 5 — 1 modifications in
Case 1 and the result is

where

^1+...+li<+i = Γ.'(0, ..., 0, ^ i + v , 0, ..., 0)

and Li is a non-derogatory tri-diagonal matrix shown in (3) with

The proof is complete.^

2.4. We now turn to the problems raised in §1. The following theorem
assures the possibility of the algorithm in Case 1.

THEOREM 3. Let us apply the Lanczos algorithm to A with initial vectors
xι and ji, and assume that Case 1 occurs after several modifications due to
Cases 1-3. Namely let

X U •••> X p i i Z P 1 + U x P λ + 2 , •••> X p 2 , Zp2 + U •••> xPr-> x P r + l = Q>

^i^Pn ίφpi

^j^q*, jΦqi

7) The similar proof for this theorem is found in [6], but there it is not clear whether there are

vectors zp+1, wp+1 (wp+1*zp+1φ0) such that they have a common grade and yj*zp+1 = Xj*wp+1 = Q

(1 <Lj ̂ p), in case where xp+ί=γp+1 = 0.
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and

pr = qs=p(say).

Then there exists a pair of vectors zp+u wp+ι with a common grade such that

( i ) z p + ι 6 [ y i , ..., y q i , w Q l + u γ q i + 2 , ••-, y « 2 , w « 2 + i , •••

(ii)
(iii) ^+1*^+1=^=0,

Pl,

and
(iv) ίΛe algorithm starting again from zp+ι and wp+ι can be well continued

so that Case 1 occurs, i.e., so that, for some integer pr+u w e have

Namely, under the above situation, the algorithm can be well continued to com-
pletion using only modifications due to Case 1.

PROOF. Let

and ui, ••-, ^w_^ (vι, ••-, vn-p) be a basis of ί/±(Q9±). Then the subspace Q9-1 is
invariant under A. In fact we have

y*(Aυ) = (A*γi)*v = 0

and

wqj+1*(Av) = (A*wq.+1)*v = 0

for any vector v e Q9± since

A*yu A*wq.+ι 6 09

Thus we may write

n-P

/ = i

for some scalar bμ. Let 5 be a matrix of order n—p constructed from the
coefficients bμ\

B = boo

bn-pι bn-P2 ••• bn-p n-p ,
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Then, by virtue of Theorem 1 or 2, we can find a pair of n —p dimensional
vectors zp+1 and wp+1 such that B is well transformed into a block tri-diagonal
matrix Ziφ φ Z β by the Lanczos algorithm starting from the pair. Let
the order of Lλ be nx and put/?r+i=p + ̂ i. If we denote the iterated vectors
for B by £, , % we have

and

Let

l, yP + 2, ••', J / - l ] ±

•Λ — v ^ l ? " ' ' 5 - ^ P i ) ^ P\ + I 5 % p 1 - \ - 2 ) * ' * 5 - ^ / > 5 ^ 1 ) • • • ? V n — p ) )

and

Uι*Vι Uχ*V2

Then the matrix C is non-singular since Z and Y are non-singular and

Now we shall show that a pair of vectors zp+ι = (vh •-, v»-/,)2/,+i and wp+ι —
(uu , un-p)C*~ιwp+ι is what we seek. It is clear that the conditions (i) and
(ii) are satisfied since zp+1 and wp+ι are linear combinations of vu •••, vn-p and
ui, , u»-/, respectively. Further we have

Next, to prove the condition (iv), we denote by xh y{ (i^>p + 2) the iterated
vectors which are obtained by applying the algorithm to A with the modified
vectors zp+u wp+ι. Then they satisfy the relations

and
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as is easily verified using induction on ί^ip + Z. Let

Z=(xU •••, XPl, Zp1+U XpJ+2, ••-, Xp, Zp + U xP + 2, •••, xpr+1)

Then, by noting t h a t A(vu ..., υn-p) = (t>i, •• vn^p)B, we obtain

AZ = Z(L0®L1)

where Lo is a (block) tri-diagonal matrix of order p such that

and its concrete form will be shown below. This completes the proof.

Typical diagram of Lo in case of p±<qι< •••<qs-i<pr ( = qs=p)

( Oil βl

\ \ βp-ι

1 <Xp

2.5. We shall now consider the possibility of the algorithm after the
modification in Case 2 or 3. First we show the following:

LEMMA 4. Let A{ (l<Li<Ls) be s Jordan block matrices of order m

(Σlni — n) such that

1 λt
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and let A = Aι(&--®AS. Corresponding to this matrix A, let v = vιQ) Q)vs

be an n-dimensional vector such that each subvector v{ is n{-dimensional. Then
υ has the grade n with respect to A(A*) if and only if the first (last) component
of each V{ is different from zero.

PROOF. Let vi = t(viu υi2, •••, vin). If, for instance, we assume that
ι>ii = 0, then the first row of a matrix 0 , Av, • ••, An~1v) consists of only zero
elements. Hence a set of n vectors v, Av, , An~1v is linearly dependent, and
υ can not be of grade n with respect to A namely, if v has the grade n with
respect to A, we must have υnΦQ for every i (l^i^s). In this case a
simple computation on determinant shows that

Av, ..., An-ιυ) =

αi(O)

a2(0) a2(T) •-• a2(n — ~.

« s ( 0 ) as(l) ... as(n — ~.

where a{(j) stand for ^-dimensional column vectors whose components con-
sist of the first column of A\. (A°{ is an identity matrix of order m.) Hence
the value of the determinant on the right, denoted by J, is non-vanishing8).
From this it follows that det (v, Av, ..., An-χv)φ§ if vixφ§ ( l ^ ί ^ s ) , since
Δ is independent of the components of v. This proves the assertion.

LEMMA 5. Let us assume that Case 2 occur at the p + l-th step (it may
occur at the p( <p) th step), and modify the algorithm choosing a new vector
zp+ι e [ji5 •••> ypΎ- Iffi(zp+u yp+u ^ ' V 0 ( l ^ ' S S λ ) , then a sequence of the
iterated vectors x{, y{ (p + 2^i<^p + k) is well defined by this modification, and
we have

P + k

yp+u Λ) = (yp+ι*zp+ι)- JJ (y^xd
i 2

where fk is defined as in Lemma 2.

PROOF. Induction on k. Since the lemma is trivial for k = l, we suppose
that it holds for k — 1. Then x{, j , (p + 2<Lί<,p + k — 1) are well defined and

8) If Jii ^ n2 ^ ^ /ιs, we can show that

/ί 77 (1 1 \n7 njΔi = 11 {Λi — λj) ι J

by noting that

det(as(n-ns), as(n-ns+l), ••-, a s (rc-l)) = λ™s(n-ns.

and

= 0 (1 <*v<Lninj— 1, ίyj),

considering as a function of λ%. Hence Lemma 4 follows from this fact. But such calculations are not

necessary for our purpose.
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fk-i(zp+u
i=2

Hence χp+k, yp+k can be constructed and we have

where φj(λ) is a monic polynomial of degree /—1 and φj(λ) is a polynomial of
degree/—2. Since χp+1=0 by assumption, we have Aqxpe[_χι, , xp} for
any q and j/>+y*0, (̂ ί)Λ;/> = O for any ί and / (2<J/<[&). This implies that

yp+j*xp+i = yp+j*<Pi(A)zp+1.

Moreover, γp+j*φi(A)zp+i is a linear combination of yp+j*zp+i, yp+J*Azp+u ...,
yp+j^Ai'1zp+\ with coefficient one over the last term. Thus, by elementary
calculation on determinant, we have

K

(yP+ι*zp+1) //(yp+j*xp+J) =
yp+2*xp+k

yp+i*Azp+i yp+ί*A2zp+ί . . .

=fk(zp+1, yp+u A). Q.E.D.

LEMMA 6. 1/ x(y) is a given vector of grade p with respect to A (-4*), then
we have

considering as a function of the components of a vector y(x).

PROOF. Obviously, we may assume that A = Yi@Ai with

(λi

1 \

1 'λi

•rei(ϊ)

l ' .

1 'λi

\

•n2(ί)
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Then we put

Θ*(*), y = y(X)® ~®y(s),

where x(ί\ y(ι) correspond to Ai9 and

In order to prove the lemma, it is sufficient to show that, for any A with 1 <J
&<Ξ/>, we can construct a vector y such that /*(#, y, A)ΦO. Now, given ΐ,
define an integer hj(i) for each j , as follows:

( q if $jq+i(i)φθ and ξjt(i) = O for ί < ; ? ,

( 0 if ίyi(0^0.

Next, let

dί, = max {nj(i) — hj(i)}
j

and

where /t is an identity matrix of the same order as of A{. Then, for any k
such that 1 <Ξ k ^ /?, we have

, 4̂Λ;, ..., Ap~ιx)

Σ
ί = 1

= Σ d{.

Hence it is possible to select non-negative integer A, so that ki^di and

Σ A;# = A;. Without loss of generality we may assume that
ί = 1

di = ni(i) — hi(i) (1 fC / < 5).

Then, putting hi = h\(ϊ) in order to simplify the notation, we define /^-dimen-
sional vectors 5(0, y(0 a n d &,-square matrices ί̂, as follows:

7(0 = '
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Now, for the vector x given above, consider a vector y such that

7jjt(i) = 0 (jφl9 or 7 = 1 and

and

275

Then this vector y satisfies /*(#, y, A)Φ§. In fact, if we put

and

then, by Lemma 4, a set of λ -dimensional vectors x, Ax, .., Ak~ιx{% A*% ,
A*k~ιy) is linearly independent since the first (last) component ξihί+ι(i)
(yihi+kjίί)) of the vector x(ί) (y(0) is different from zero for each i. Also it
is clear that y*A*x = y*A*x for any non-negative integer ί. Thus we obtain

fk(x, y, A) =fk(χ, % A)

y*
y*A

i.e., fh(x, y,A)^0 (1 ^ k ^ p ) ,

which establishes the assertion. Q.E.D.

We are now in a position to prove the following:

THEOREM 4. Let us apply the Lanczos algorithm to an n-square matrix A
with initial vectors xι and yγ. And assume that Case 2 occurs after several
modifications due to Cases 1-3. Namely, let the iterated vectors be obtained as
follows:

Prτ
 xPr+ι =

(4)

where p r = qs> Then there exists a vector z P r + χ such that

( i ) zPr+1e\iyu -.., γqi,wQl+l9 y Q l + 2 , •••, w ί β _ 1 + i , •••,

(ii) ^ r + 1 * 2 r ί r +

9) If di — 0 for some z", then ^ = 0 and x(i), y(ί) and /44 do not appear.
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and

(iii) the algorithm starting again from zPr+ι and ypr+ι can be well con-
tinned to completion.

In particular, if A and the vectors in (4) are all real, the vector zPr+ι can
be taken as a real vector.

PROOF. For convenience sake, let pr = qs=p and let ί/, 09 be defined as in
the proof of Theorem 3. Then it is clear that there exists a vector zp+1 such
that zp+ι 6 09^ and ^+1*2^+1 =̂ =0, since the union of a set of the vectors xu

• , xp^ zp1+u -5 XP a n d a basis of Q9-1 spanns the whole space. If either one
of Cases 1-3 occurs after starting again from a pair of vectors zp+ί and yp+u

we can continue the process by the modification as is explained in §1. There-
fore, in order to prove the theorem, it is sufficient to show that a vector zp+ι
satisfying (i) and (ii) can be chosen so that Case 4 does not occur. On the
contrary, suppose that Case 4 occurs for any choice of a vector zp+x satisfying
the condition (i>and (ii). Then there exists a positive integer k = k(zp+1) Q>2)
depending on zp+ί such that

(5)
yP+k*χp+k = 0, xp+kφ0 and yp+kφ0,

where xp+j, yp+j (2<;/<Ξ&) denote the iterated vectors obtained by the algo-
rithm starting again from the vectors zp+ί and yp+1. Since k<n—p,

q = max k(zp+1)

yp+1*zp+1Φθ

exists and we can find a vector zp+ΐ such that the situation (5) happens at
k=q. Then the grade of yp+ι with respect to J * is not less than q since

l9 A*yp+h ..., A * * '

Hence, by Lemma 6, we have

/,<*, yp+l9 A)^0

considering as a function of the components of x. This implies the existence
of a vector z such that

ffc, yp+u A)φO (l^ί^q).

Since the whole space is the direct sum of the space U and Q9-1, the vector z
can be written uniquely in the form
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We put zp+ι = v. Since, as is easily seen, the space U is invariant under A,
we have for any positive integer h

and

γp+1*Ahzp+ι = yP+ι*Ahz.

Therefore we have

fi(zp+u yp+u A)=fi(z, yp+u

On the other hand, since the vector zp+1 satisfies the conditions (i) and (ii),
we can continue the process starting again from a pair of the vectors zp+ί and
yp+ι. Then, by Lemma 5, the following holds:

Q

fq(zp+u yp+u A) = (yp+1*zp+1)-//(yp+j*xp+j)
J ~2

where xp+h yp+j represent the iterated vectors constructed by this algorithm.
Hence we must have yp+q*xp+g=£0, which contradicts to the maximality of q.
Thus there exists a vector zp+1 such that zp+ΐ e Q9X, ^+1*^+1=^0 and Case 4
does not occur. Especially, if A and the iterated vectors in (4) are all real,
it is clear that the vector zp+ι can be chosen as a real vector. The proof is
complete.

As a special case of Theorem 4 we have

THEOREM 5. For a given non-zero vector x( j), there exists a vector y(x)
such that the Lanczos algorithm starting from xι — x and y\ — y can he well con-
tinued to completion. Especially\ in Theorem 2, one of the vectors xu y\ can
he chosen arbitrarily as long as it has the grade m.

2.6. As is well known, if A is hermitian (or real symmetric), the algo-
rithm is well continued to completion, starting from any common initial vector
χ\ = yι = χ- This is not true in general, even for normal matrices as the
following simple example shows:

Consider a normal matrix

A =

If we choose a vector # = ̂ 2 / 3 , 0, 1/V3) as a common initial vector, then we
have

X2 = Ax-—£-x = '(-V2/3, iV2/3, 2/3),
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**=<(-V2/3, -ή/2/3,2/3),
x*x

and

This example raises a question whether, for a given matrix A, there always
exists a vector x such that the algorithm starting from χ1 = y1 = χ can be well
continued to completion. Fortunately the answer is affirmative. Namely,
as another refinement of Theorem 2 (Rutishauser), we obtain

THEOREM 6. In Theorem 2, xλ and yx can be taken as the same vector.
Namely we can find a vector x of grade m with respect to both A and A* so that
the algorithm starting from xι = y± = χ may be well continued to completion
using only modifications due to Case 1. If A is real, the vector x may be taken
as a real vector and the algorithm is possible in the realm of reals.

PROOF. Let T and Aλ be the matrices defined in the proof of Lemma 2.
We denote by /,- (1 <J ί <^s) the ι-th Jordan block matrices of order m appeared

in Ai; i.e., Aλ— Σ Θ// Then it will be shown that
ί = 1

{ΌJ Jk\X) i^ ίx, 1 Alj^Ό (Λ^k^m)

considering as a function of the components of a vector x. To prove this, we
take a positive integer k with 1 <: k <[ m and r {< s) positive integers k{ such

r

that ki<,rii and Σ k i — k. Further we put

(
i = 1

0) Θ '(όΓTδ), T* τx=(Σ Θ j(0) θ X^7*l
i 1

where x(ί\ y(i) are ^/-dimensional vectors and

ί = ' ( 0 , . . . , 0 , f a , - , f , O
<0

y(0 = '(*, > *5 ?7ίi, 5 v»*t) (1 ̂  ^

Since Γ* T7 is positive definite, each component ΎHJ is a non-trivial function of
fiij •••, fi*l5 •••? ίrij •••, ίrA;r Hence we can find k numbers ξM such that τjijφθ
( l ^ i ^ r , l^j^ki). By an ordinary argument of continuity, we may as-
sume that ξhιφ0 (l<^h<;r, l<,l<,ki). Then, in the same way as in the
proof of Lemma 6, we obtain fk(x, T*Tx, T~1AT)=fk(χ, % Ά)φO9 where

(
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and

A V (Ts T{ni-ki + l,ni-ki + 2,...,m\Λ — ZJ W Jι\m-ki + l,ni-ki + 2,. ,nί)'
ί = 1

Since k is an arbitrary integer such that l<,k<^m, this establishes (6). There-
fore we can find a vector % such that fk(x, T*Tx, TyAT)φO (l^k^m).
Then the grade of x with respect to T~ιAT is clearly m and the algorithm
for Tι A T starting from initial vectors %ι = x and yλ = Γ* Tx can be continued
to the m-th. step:

where x{ and y{ denote the i-th. iterated vectors applied to T~λAT. There-
fore, by Theorem 3, the algorithm can be well continued to completion. By
Lemma 1, this implies that the algorithm for A starting from common initial
vectors χ\ = y\ — Tx\ can be well continued to completion using only modifica-
tions for Case 1. Evidently the vector Txx has the grade m with respect to
both A and A*. The remaining part is clear. Q.E.D.

2.7. Computational procedure. So far, we discussed the possibility of
the Lanczos algorithm from theoretical point of view. Now, according to the
results obtained there, a computational procedure of the algorithm can be
formulated as follows:

Step 1. Let xx and yx be a pair of vectors which is chosen arbitrarily or
according to any criterion, and start the algorithm.

Step 2. If Case 4 first occurs on the way, we choose a new vector x[ and
begin again with a pair of vectors x[ and yx.

Step 3. If either one of Cases 1-3 occurs on the way, we modify the
procedure according to the rule stated in §1, and continue the iteration.

Step 4. Proceeding in this way, if Case 4 occurs after several modifica-
tion due to Cases 1-3, we go back to the latest modification and begin again
from there replacing the modified vector by a new one. Namely, if the latest
modification is due to Case 1 at the p + 1-th step, we may replace only one of
the vectors zp+ί and wp+i by a new vector; similarly, if it is due to Case 2 (3)
at the p+ 1-th step, it is sufficient to replace the vector zp+ι(wp+ι) by a new
vector z'p+ι(w'p+i).

In the above procedure, if A is a real matrix, the algorithm can be done
in the realm of real, i.e., vectors xu yu zp+u wp+h etc. may be taken as real
vectors. At any rate, theoretically, the algorithm is always possible by the
above procedures as Theorems 3,4 and 5 guarantee. Further, by Theorem 6,
we may replace "Step 1" by the following:

Step Γ. Choosing any non-zero vector x, start the algorithm from
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2.8. Geometric interpretation. Let A be a non-derogatory matrix of
order n, and 5 be an ^-dimensional (complex or real according as A is com-
plex or real) affine space. For each positive integer k, let Vu be an algebraic
variety defined by the equation fk(χ, j , A) = 0. Considering an ^-dimensional
vector as a point of the space 5, we shall call a pair of the initial vectors
leading to one of Cases 1-4 as a breakdown point in a space 5x5. Then a

set of all the breakdown points forms an algebraic variety V= \jVk in Sx S
n

defined by fTfh(χ, y, A) = 0 since

or

fk(zp+ι, yp+u A) = \ZP+I yp+i.
J = Δ

etc. by Lemma 5. Thus the results (Theorems 2-6 and Lemma 6) suggest
the following geometric interpretation for the possibility of the Lanczos al-
gorithm.

THEOREM. Let A, 5, and V{ be defined as above.
(i) A set of all the breakdown points forms an algebraic variety

n

V — \jVi in 5x 5. And there exists a point P of Sx 5 such that P ί V.
(ii) For any point x(Φ(0)) 6 5 having the grade p with respect to A, we

P P

have xxSφ\JVi and certainly xxS^Vp+ι. Analogously we have Sx y^\jVi
/ = 1 i = 1

and Sx y^ Vp+Ϊfor any point y(φ(0)) e 5 having the grade p with respect to
A*.

(iii) The diagonal in Sx 5 is not contained in V.

Appendix. The eigenvalues of tri-diagonal matrices

In this appendix, we investigate some properties concerning the eigen-
values of tri-diagonal matrices, in connection with the Lanczos algorithm.
Let A — {aij) be an upper Hessenberg matrix of order n. If ai+li = 0 for some
ί, the eigenvalue problem for A is reduced to that of lower order. Hence
there is no loss of generality even if we assume that ai+uΦ0 for any ί. Then
the following lemma is clear from the theory on elementary divisors since
the elementary divisors e, satisfy e, = l (l^i^n — 1). But we give here
another elementary proof for the sake of completeness.

LEMMA. Let A — {μij) be an upper Hessenberg matrix with ai+u^0
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<Li<,n — 1). Then the eigenvalues of A are distinct if and only if A is dia-
gonalizable.

PROOF, let λu λ2, •-, λk be k numbers and consider a matrix

A = (A-λJXA-λ2ϊ) ..(A-λkI)9

where /denotes the identity matrix of order n. If k<n, then AφO since,
k

as is easily seen, the (4 + 1, 1) element of A is fjai+uΦO. Therefore the
i = l

degree of the minimal polynomial for A must be n. Hence the eigenvalues
of A are distinct if A is diagonalizable. The converse is clear. Q.E.D.

Since a tri-diagonal matrix is a special case of the Hessenberg matrix,
we obtain from the lemma

THEOREM A.I. Let

(1) A =
c2

an-ι

where αz and a are real and aiCi > 0 (l<*ί^n — ΐ). Then we have the following:
(i) The imaginary part of any eigenvalue λ of A satisfies

<J max Im(i, ).min

(ii) // bi are real, the eigenvalues of A are real and simple.
(iii) // bi are all real, exactly one eigenvalue of A(\lZn-ϊ) ^es between any

two eigenvalues of A.

(REMARK. The properties (ii) and (iii) are well known in connection with
Sturm sequence, but, as is shown below, we can give a unified treatment.)

PROOF. AS is well known, by diagonal matrix D, we can transform A

into

D-

δ i

yJan-2cn-2 bn-ι Vαw_icw_i

^CLn-lCn-l bn

Hence, if όt are real, D ιAD is real symmetric and diagonalizable. There-
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fore the eigenvalues of D~ιAD (and A) are real and distinct by the lemma.
This proves (ii). (iii) is a consequence of a direct application of the separation
theorem for the real symmetric matrix D~ιAD. Now we shall show (i). Let
χ = \ζu , £«) be a unit eigenvector for D~ιAD corresponding to an eigenvalue
λ. Then we have

X = χ*D-χADx = Σ bi I ξi 12 + *Σ Vα^ (&•£, +i + £, f , +i).

Hence we obtain

ί = l

Thus the inequality (i) follows. Q.E.D.

As a dual for Theorem A.I, we obtain

THEOREM A.2. In the tri-diagonal matrix (1), let α, , a be real and a{Ci<
(l^ί^n — 1). Then we have the following:

(i) The real part of eigenvalue λ of A satisfies

min Re(ό, )<;iteOO<] max Re(6, ).

(ii) If bi = 0 (l<,i<=n\ the eigenvalues of A are pure imaginary (ad-
mitting zero) and simple.

PROOF. It is sufficient to consider a diagonal matrix D=diag( 1, \l—ai/cu

and D~ιAD. Q.E.D./7(/
i = 1

COROLLARY (Arscott [1]). If the matrix A in (1) is real and α, c, <0
(1 <; i ^ 7i — 1), ίfcew αii ίfce real eigenvalues of A lie between the least and gre-
atest of the bi, these values included.

The similar results hold for a certain type of infinite tri-diagonal matrix.
Let X be a separable infinite dimensional complex Hubert space. And let A
be a linear operator of X into itself. If A admits an infinite tridiagonal mat-
rix representation

(2)

( b\ C\
H b2

a>n-i

with respect to some orthonormal basis of X, and am bn, cn-^0 (n->oo)? then
A is compact. Hence all the eigenvalues of A are approximated by the eigen-
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values of finite matrix

([4] Lemma XL 9.5). On the other hand, let λi(n) (| λι(n)| :> | λ2(n) | ^ ) be
the eigenvalues of Am each arranged according to a certain rule. Then, for
every ί, any limit point of {λi(n)}~=1 is a point of the spectrum of A (see [12]).
Therefore Theorems A.I and A.2 are transformed respectively as follows:

THEOREM A.Γ. Let A be an operator of X into itself and admit a matrix
representation (2) with respect to some orthonormal basis of X. If a{ and c{

are real and aid>0for every i, then we have the following:
(i) The imaginary part of any eigenvalue λ of A satisfies

inf
i

(ii) // bi are real, the eigenvalues of A are real.

THEOREM A.2'. Let A be an operator defined as in Theorem A.I'. // α,
and a are real and aid<0 for every i, then we have the following:

(i) The real part of any eigenvalue λ of A satisfies

inf Re(δt )<!Re(ii)<[sup Re(όt ).
i i

(ii) If bi = 0 for every ί, the eigenvalues of A are pure imaginary (ad-
mitting zero).

Acknowledgement. The writer wishes to express his hearty gratitude to
Professor Y. Nakai for his constant guidance and encouragement during this
investigation.

References

[1] Arscott, F. M.: Latent roots of tri-diagonal matrices, Proc. Edinburgh Math. Soc, 12 (1961), Edin-

burgh Math. Notes No. 44, 5-7.

[2] Brooker, R. A. and F. H. Sumner: The method of Lanczos for calculating the characteristic roots

and vectors of a real symmetric matrix, Proc. Instn elect. Engrs B., 103 (1956), Supple. 114-119.

[3] Causey, R. L. and R. T. Gregory: On Lanczos algorithm for tri-diagonalizing matrices, SI AM Review,

3 (1961), 322-328.

[4] Dunford, N. and J. T. Schwartz: Linear operators. Part II. Interscience Publishers, 1963.

[5] Gregory, R. T.: Results using Lanczos' method for finding eigenvalues of arbitrary matrices, J . Soc.

Indust. Appl. Math., 6 (1958), 182-188.

[6] Householder, A. S.: The theory of matrices in numerical analysis, Blaisdell Publishing Company,

1964.



284 Tetsuro YAMAMOTO

[7] Lanczos, G.: An iteration for the solution of the eigenvalue problem of linear differential and integral ope-

rators, J . Res. Nat. Bur. Standards, 45 (1950), 255-282.

[8] Rutishauser, H.: Beitrage zur Kentniss des Biorthogonalisierungs-Algorithmus von Lanczos, Z. Angew.

Math. Physik, 4 (1953), 35-56.

[9] Wilkinson, J. H.: The calculation of eigenvectors by the method of Lanczos, Comput. J., 1 (1958), 148-

152.

[10] , The algebraic eigenvalue problem, Clarendon Press. Oxford, 1965.

[11] Yamamoto, T. : On the characteristic roots of Hessenberg matrices (Japanese), Jyόho-Syori, 8 (1967),

154-156.

[12] , On the eigenvalues of compact operators in a Hilbert space, Numer. Math., 11 (1968), 211-

219.

Department of Mathematics
Faculty of General Education

Hiroshima University




